
 1

Multiview 3D Geometric Reconstruction:
Exploiting Massive Parallelism

Presented by

Chaman Singh Verma
Department of Computer Science
University of Wisconsin Madison

16th December, 2009

 2

Outline:

● Motivation and Goals.
● Literature Survey.
● Parallelization.
● Results(Success and Failures)
● Future work.

 3

Objectives

● Construct 3D geometric models from a collection of
images.

● Objects: Architectural building and statutes of
archaeological/historical significance.

 4

Motivation#1:
Inexpensive Technology

● Digital cameras are
inexpensive and portable
compared to laser
scanners.

● Influenced by the Marc
Levoy Michelangelo Michelangelo
ProjectProject

 5

Motivation#2:
Photorealistic Digital Taj Mahal
There are two kinds of people in the world. Those who have seen the Taj Mahal and love it and
those who have not seen the Taj and love it. I would like people to watch Taj Mahal and fall in
love with it : Bill Clinton

 6

Motivation #3:
Computationally Demanding

● A real benchmark application for upcoming new multicore computer
architecture(specially for Intel Larrabee).

● Can take advantages of some of the esoteric instruction extensions,
blas and lapack libraries.

● A Good application for marketing honchos.

● Application suitable for Cloud computing and MapReduce
Architectures.

 7

Related Work:

● Mostly from groups at Univ. of Washington and Microsoft
Research.

Noah Snavely, Steven M. Seitz, Richard Szeliski. Yasutaka Noah Snavely, Steven M. Seitz, Richard Szeliski. Yasutaka
Furukawa, Jean Ponce.Furukawa, Jean Ponce.

 8

Related Work:

● Silhouette and Stereo Fusion for 3D Image
Modelling: Carlos Hernandez Esteban

●

 9

What components do we need ?
Public Domain Software

● SIFT,SIFT, Dense SIFT++ etc.
● Bundler:Bundler: Structure from Motion for Unordered

Image Collections:
● sbasba: A Generic Sparse Bundle Adjustment C/C+

+ Package Based on the Levenberg-Marquardt
Algorithm:

● PMVSPMVS: Dense Feature Points and
● 3D Surface reconstruction from point clouds

(Quite a few, Tight Cocone, Poisson
Reconstruction).

 10

Project Goals:

● No Skeletal Set available: All images are taken
into consideration.

● Structured Image Collection: controlled image
collection instead of from the Internet collection.

● Question to answer: Under what conditions, we
get the highest quality models ?

 11

Flow Chart:

 12

Dataset Information:

● Middlebury data: http://vision.middlebury.edu/mview

● Ponce data: http://www-cvr.ai.uiuc.edu/ponce_grp/data/

●

DatasetDataset #Images#Images Image SizeImage Size

Middlebury: Temple 359 640x480

Middlebury: Dino 363 640X480

Ponce: GreenDragon 24 3104x2072

Ponce: Armor 48 3504x2336

UW: BascomHall 150 1645x970

Capitol 246 1649x970

http://vision.middlebury.edu/mview
http://www-cvr.ai.uiuc.edu/ponce_grp/data/

 13

Profiling Application:
Where should we focus first ?

● Capitol Dataset: Single Processor

Module Time Spend
(in minutes)

Present Goal

Feature Detection 129 2

Feature Matching 900 14

Bundler (SFM) 242 49

PMVS2 45 9

Surface Reconstruction 25 25

TotalTotal 22 hours 35 minutes ~2 Hours

 14

Parallelism Everywhere
● Instruction level parallelism;Instruction level parallelism;

– Operations on pixels are independent.
– BLAS and Lapack solvers are hightly optimized on multicore

machines.
– SFM uses expensive RANSAC algorithm, which can be

detected easily by automatic parallelizing compilers.

● Task based parallelism:Task based parallelism:
– Every image is independent. Operations on each image can

be independently run on multiple processors.

 Surface Reconstruction (last step) is difficult to parallelize Surface Reconstruction (last step) is difficult to parallelize
efficiently on distributed memory machines. efficiently on distributed memory machines.

 15

Example: KeyMatchFull:
A simple implementation without load balancing

● int main(int argc, char **argv) {

● MPI_Init(&argc,&argv);MPI_Init(&argc,&argv);

● MPI_Comm_rank(MPI_COMM_WORLD,&myid);MPI_Comm_rank(MPI_COMM_WORLD,&myid);

● MPI_Comm_size(MPI_COMM_WORLD,&numprocs);MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

● for (int i = myid; i < num_images; i+= numprocs) {for (int i = myid; i < num_images; i+= numprocs) {

● ANNkd_tree *tree = CreateSearchTree(num_keys[i], keys[i]);

● for (int j = 0; j < i; j++) {

● std::vector<KeypointMatch> matches = MatchKeys(num_keys[j], keys[j], tree, ratio);

● ofile << j << " " << i << endl;

● ofile << matches.size() << endl;

● for (int i = 0; i < matches.size(); i++)

● ofile << matches[i].m_idx1 << " " << matches[i].m_idx2 << endl;

● }

 }

● }

 16

Programming model:

● Multicore Multicore :: Light Weight threads.
● Distributed Memory Machines:Distributed Memory Machines: Message

Passing Interface.

 17

Feature Detection:

 18

Feature Detection

● Almost linear scaling, but confident that the
performance could be far better using better
scheduling or using TBB.

 19

Feature Matching:

● Simple implementation, results can be
improved with good load balancing and using
process affinity policies or using TBB.

 20

Load balancing on condor

● Diverse machines, unpredictable scheduling on
condor make it difficult to analyze the results.

 21

Results: Bascom Hall

 22

Results: Capitol Building

 23

Results: Ponce dataset
http://www.cvr.ai.uiuc.edu/ponce_grp/data/

 24

Conclusions and Lessons learned.
Parallelization

● Simple to parallelizeSimple to parallelize almost all modules on
various machines. Even with a naïve
implementation, respectable performance is
achieved.

● use TBB: use TBB: pthreads is too low level and difficult
to use.

● BLAS and Lapack:BLAS and Lapack: Perhaps it is too difficult to
beat the performance of vendor supplied
libraries.

 25

Conclusions and Lessons learned:
Algorithms

● PMVS2 is bottleneckPMVS2 is bottleneck. Memory footprint is too
high for small machines to handle (Capitol
dataset using 16GB of RAM).

● Better Surface Filling AlgorithmsBetter Surface Filling Algorithms: PMVS2
creates large holes in the surface.

● Noise Removal and Subsampling errors: Noise Removal and Subsampling errors: Point
cloud with the Noise is difficult for surface
reconstruction. Either manual clean-up or
Moving least square methods are required.

 26

Total Failure Cases: Future work

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

