
Multi-View 3D Geometry Reconstruction:

Exploiting Massive Parallelism

Chaman Singh Verma

Department of Computer Sciences

University of Wisconsin, Madison

December 24, 2009

Abstract

3D geometric reconstruction from digital images captured from con-
sumer cameras is an inexpensive, but computationally demanding ap-
plication. In this experimental study, we have explored parallelism in
the best known public domain software (Bundler and PMVS2) and
found that massive parallelism exists at various levels that can be ex-
ploited on various computer architectures (such as multi-cores, dis-
tributed memory and GPU machines). Although in this report, we
present results for multi-core and distributed memory machines, but
we believe that similar results could be obtained on vector machines
and GPU architectures as well. We have tested our MPI codes on a
large clusters of 500 Linux nodes. Having shown almost linear scalabil-
ity, we stress upon the need of improvements in sequential algorithms
to enhance the quality of generated models.

1

1 Introduction

3D geometric reconstruction from images from digital camera is very at-
tractive technique because digital consumer cameras are now a days quite
inexpensive, extremely portable and have reasonably high resolution. Com-
mercial large laser scanners, although provide extremely high quality trian-
gulated models, are limited in usage because of their high cost, bulkiness
and non-portability.

Another driving force for developing this technology is Internet Imagery.
Internet is perhaps the biggest repository of images where millions of pho-
tographs of well known buildings, statues and structures can be downloaded.
The major characteristic of Internet images is the diversity in every sense
which provides both opportunities and challenges in the development of
Internet imagery a killer future application. It is possible to find a large
number of images of every conceivable viewing direction and environment
conditions(sunny, cloudy, night etc). Diversity in image resolutions, expo-
sure setting and image quality provides additional information that can be
exploited to reconstruct high quality 3D models.

One of the major obstacle in reconstructing 3D models from images is
high computational cost per image in the set. Depending on the image sizes
and number of images, it could take many hours or days to produce accept-
able quality despite using the best known algorithms on a single processor
machines. In this project, we have explored parallelism (both fine grained
and coarse grained) in the existing, well known public domain software that
can be exploited on various computer hardware.

2 Exploiting Parallelism

In many applications, parallelism exists at many levels. Fine grain paral-
lelism occurs at loop levels or instructions level. Such parallelism are hard to
exploit and many modern compilers can automatically detect and parallelize
the code. On the other hand, coarse grain or task parallelism are application
dependent, simpler to implement and reason about. In many applications,
coarse grained parallelism provide unlimited scalability. Fortunately, in this
application both fine grains and coarse grain parallelism exists that can be
exploited on modern computer hardware very efficiently.

3 Literature Survey

There is large collection of papers on the 3D reconstruction and stereo
matching. But this project is influenced by Building Rome in a Day[3].
In addition, we refer Modeling the World from Internet Photo Col-

lection [4] for algorithms and techniques used in the reconstruction process.

2

Module Fine Grain Coarse Grain

Parallelism Parallelism

Feature Detection pixel level operations every image is independent
are independent so each image run on different

processor

Feature Matching Parallel KD Tree Each image is matched against
all others

SFM Parallel Linear Algebra
Parallel RANSAC

Dense Point Cloud Each Patch is independent Each patch is independent
and each patch is run by each patch run on different
independent thread processor

Surface Reconstruction Domain Decomposition Domain Decomposition

Mesh Processing Domain Decomposition Domain Decomposition

Table 1: Parallelism in different modules of 3D reconstruction

4 Public Domain Software

Instead of developing software from scratch, we have used best known public
domain software which have been provided for research purpose.

• SIFT is a feature detector (Lowe 2004) which provides good invariance
to image transformation.

• Bundler Bundler takes a set of images, image features, and image
matches as input, and produces a 3D reconstruction of camera and
(sparse) scene geometry as output. The system reconstructs the scene
incrementally, a few images at a time, using a modified version of the
Sparse Bundle Adjustment package of Lourakis and Argyros as the
underlying optimization engine.

• PMVS is a multi-view stereo software that takes a set of images
and camera parameters, then reconstructs 3D structure of an object
or a scene visible in the images. Only rigid structure is reconstructed,
in other words, the software automatically ignores non-rigid objects
such as pedestrians in front of a building. The software outputs a set
of oriented points instead of a polygonal (or a mesh) model, where
both the 3D coordinate and the surface normal are estimated at each
oriented point.

3

Figure 1: Pipeline of 3D model reconstruction

Data Set Images Image Size

Middlebury: Temple 359 640x480

Middlebury: Dino 363 640x480

Ponce: GreenDragon 24 3104x2072

Ponce: Armor 48 3504x2336

UW: BascomHall 150 1645x970

Madison: Capitol 246 1649x970

Table 2: Dataset used in the experiments

5 Results

We have implemented two most time consuming operations i.e. Feature
Detection and KeyMatching using Message Passing Interface (MPI) and
tested the codes on Intel Eight cores machines and a cluster of 64 nodes
at Engineering Physics department at the University of Wisconsin,Madison.
PMVS is already available as multithreaded code so we did not modify it.
Two of the dataset are from Middlebury benchmark and two are from Ponce
Research group. These four dataset have been used to compare the results
with other group. We have taken large number of images of Bascom Hall
and Capitol building at Madison and these two dataset are primarily used
to study parallelization issues.

4

DataSet Min Max Mean Total

Features Features Features Features

Temple 445 1144 869 314426

Dino 66 248 156 58654

Dragon 6928 9546 8194 198050

Armor 11919 55417 27764 1408775

BascomHall 3673 69907 15120 2317129

Capitol 144 28597 13700 3103375

Table 3: SIFT Features in the dataset

DataSet↓ 1 2 4 6

NumThreads →

Temple 12/1.0 6.0/2.0 3.0/4.0 2.20/5.45

Dino 538/1.0 271/1.98 138/3.89 95/5.66

Dragon 831/1.0 432/1.92 237/3.50 173/4.80

BascomHall 4492/1.0 2270/1.97 1163/3.86 776/5.78

Capitol 7757/1.0 3902/1.98 1967/3.93 1366/5.67

Table 4: Features Detection on Intel Eight-Core Machine

6 Conclusions

From the results of the experiments we can conclude that

• There is almost linear scaling on the two most time consuming op-
erations in the 3D reconstruction pipeline i.e. Feature detection and
Feature matching on both Multi-Core and distributed memory ma-
chines using MPI. The parallelization of these two module is trivial
task with MPI.

• Presently PMVS2 is multi-threaded and there is good scope to improve
both the algorithm and the implementation on distributed memory
machines.

• The point cloud generated after the PMVS2 has many outliers and has
sampling errors which make it difficult for the surface re constructors
to generate watertight triangulated mesh.

7 Future Work

We firmly believe that 3D reconstruction with images has great potential for
future applications. But in the entire pipeline of reconstructions,it seems the

5

DataSet↓ 1 4 7

NumThreads →

Temple 113m 10s 29m 16m 41s

Dino 5m 25s 4m 15s 3m 38s

Dragon 5m 25s 1m 39s 1m 7s

Armor 105m 54s 26m 16m 5s

BascomHall 6h 46m 1h 45m 62m 31s

Capitol 14h 58m 3h 50m 137m 3s

Table 5: Features Matching on Intel Eight-Core Machine

DataSet→ BascomHall Capitol

NumProcs ↓

1 18514s 34688s

4 9257s 17258s

8 3675s 8682s

16 2520s 4300s

32 1249s 2334s

64 841s 1416s

Table 6: Features Matching on 64 Node Intel Cluster

quality of an acceptable model is primarily dependent on (1) Better feature
detection (2) Dense point cloud generation. At present, the dense point
cloud produced by PMVS2 has lots of scope for improvement. In many
cases, it still generates large number of holes which are difficult for surface
reconstructors.

In order to generate photo realistic models, it is important to apply tex-
ture mapping on the model. In future we would like to investigate applying
image texture on the reconstructed models.

One of the limitations of the present algorithm is that they can not recon-
struct 3D models if the model’s surfaces are shinny and reflective. Probably
using High Dynamic Range imaging, we can avoid input images to have
shinny spots. In future, We would to explore use of HDR imaging in 3D
model reconstruction.

6

Figure 2: Madison Capitol Building Generated with 246 images

8 MPI Source Code: KeyMatching with Load

Balancing

#include <assert.h>

#include <time.h>

#include <string.h>

#include <sstream>

#include <fstream>

#include "keys2a.h"

#include <deque>

#include <boost/lexical_cast.hpp>

using namespace std;

#ifdef PARALLEL

#include <mpi.h>

#endif

int main(int argc, char **argv)

{

char *list_in = "./list.txt";

char *file_out = "matches.init.txt";

double ratio;

ratio = 0.6;

int myid = 0, numprocs = 1;

7

Figure 3: 3D Reconstruction for Ponce Armor Dataset

Figure 4: 3D Reconstruction for Ponce GreenDragon Dataset

int start_proc_id = 0;

#ifdef PARALLEL

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

double tstart = MPI_Wtime();

#endif

unsigned char **keys;

int *num_keys;

/* Read the list of files */

std::vector<std::string> key_files;

FILE *f = fopen(list_in, "r");

if (f == NULL) {

printf("Error opening file %s for reading\n", list_in);

return 1;

8

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Processor ID

1503

1503.1

1503.2

1503.3

1503.4

1503.5

1503.6

1503.7

1503.8

1503.9

1504
E

xe
cu

tio
n

tim
e

Load Balancing on Distributed Memory Machine
Module: KeyMatching; Capitol Dataset

Figure 5: Dynamic load balancing on 64 nodes distributed memory machine

}

char buf[512];

while (fgets(buf, 512, f)) {

/* Remove trailing newline */

if (buf[strlen(buf) - 1] == ’\n’)

buf[strlen(buf) - 1] = 0;

string fname = std::string(buf);

size_t pos = fname.find(".jpg");

if(pos != string::npos) {

fname = fname.substr(0, pos);

fname = fname + ".key";

key_files.push_back(fname);

}

}

fclose(f);

int num_images = (int) key_files.size();

9

keys = new unsigned char *[num_images];

num_keys = new int[num_images];

/* Read all keys */

for (int i = 0; i < num_images; i++) {

keys[i] = NULL;

num_keys[i] = ReadKeyFile(key_files[i].c_str(), keys+i);

}

string ofilename = file_out + boost::lexical_cast<string>(myid);

ofstream ofile(ofilename.c_str(), ios::out);

assert(!ofile.fail());

int numPieces = num_images/numprocs;

int numindex = 0;

int imgid, work_requester, num_images_processed = 0;

MPI_Status mpi_status;

if(myid == 0)

{

deque<int> imgQ;

for(int i = 0; i < num_images; i++)

imgQ.push_back(num_images-i-1);

for(int i = 1; i < numprocs; i++) {

imgid = imgQ.front(); imgQ.pop_front();

MPI_Send(&imgid, 1, MPI_INT, i, 0, MPI_COMM_WORLD);

}

while(!imgQ.empty()) {

MPI_Recv(&work_requester, 1, MPI_INT, MPI_ANY_SOURCE, 0,

MPI_COMM_WORLD, &mpi_status);

imgid = imgQ.front(); imgQ.pop_front();

MPI_Send(&imgid, 1, MPI_INT, work_requester, 0, MPI_COMM_WORLD);

}

for(int i = 1; i < numprocs; i++)

MPI_Recv(&work_requester, 1, MPI_INT, MPI_ANY_SOURCE, 0,

MPI_COMM_WORLD, &mpi_status);

int stop_signal = -1;

for(int i = 1; i < numprocs; i++) {

MPI_Send(&stop_signal, 1, MPI_INT, i, 0, MPI_COMM_WORLD);

}

} else {

while(1) {

MPI_Recv(&imgid, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &mpi_status);

if(imgid == -1) break;

10

int i = imgid;

if (num_keys[i])

{

num_images_processed++;

/* Create a tree from the keys */

ANNkd_tree *tree = CreateSearchTree(num_keys[i], keys[i]);

for (int j = 0; j < i; j++) {

if (num_keys[j] == 0) continue;

/* Compute likely matches between two sets of keypoints */

std::vector<KeypointMatch> matches =

MatchKeys(num_keys[j], keys[j], tree, ratio);

int num_matches = (int) matches.size();

if (num_matches >= 16) {

/* Write the pair */

ofile << j << " " << i << endl;

/* Write the number of matches */

ofile << matches.size() << endl;

for (int i = 0; i < num_matches; i++)

ofile << matches[i].m_idx1 << " " << matches[i].m_idx2 << endl;

}

}

delete tree;

}

MPI_Send(&myid, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

}

/* Free keypoints */

for (int i = 0; i < num_images; i++) {

if (keys[i] != NULL)

delete [] keys[i];

}

delete [] keys;

delete [] num_keys;

ofile.close();

#ifdef PARALLEL

double tend = MPI_Wtime();

double elapsetime = tend-tstart;

11

cout << myid << " Elapsed Time " << elapsetime << endl;

if(myid == 0)

{

vector<double> proctime(numprocs);

vector<int> imagecounter(numprocs);

proctime[0] = elapsetime;

imagecounter[0] = 0;

for(int i = 1; i < numprocs; i++) {

MPI_Recv(&num_images_processed, 1, MPI_INT, i, 0, MPI_COMM_WORLD, &mpi_status);

imagecounter[i] = num_images_processed;

MPI_Recv(&elapsetime, 1, MPI_DOUBLE, i, 1, MPI_COMM_WORLD, &mpi_status);

proctime[i] = elapsetime;

}

string file2 = "proctime" + boost::lexical_cast<string>(numprocs) + ".dat";

ofstream ofile2(file2.c_str(), ios::out);

cout << " ProcID " << "# of Images Processed " << endl;

for(int i = 0; i < numprocs; i++) {

ofile2 << i << " " << proctime[i] << endl;

cout << i << " " << imagecounter[i] << endl;

}

} else {

MPI_Send(&num_images_processed, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

MPI_Send(&elapsetime, 1, MPI_DOUBLE, 0, 1, MPI_COMM_WORLD);

}

MPI_Barrier(MPI_COMM_WORLD);

tend = MPI_Wtime();

MPI_Finalize();

if(myid == 0)

{

cout << "Total Execution time for KeyMatching : " << (tend - tstart) << endl;

}

#endif

return 0;

}

References

[1] Noah Snavely, Steven M. Seitz, Richard Szeliski. Photo tourism: Exploring
photo collections in 3D ACM Transactions on Graphics (SIGGRAPH Proceed-
ings), 25(3), 2006, 835-846. Multi-View Stereo for Community Photo Collections

12

[2] Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, Steven M. Seitz
Multi-View Stereo for Community Photo Collections Proceedings of ICCV 2007,
Rio de Janeiro, Brasil, October 14-20, 2007

[3] Building Rome in a Day Sameer Agarwal, Noah Snavely, Ian Simon, Steven M.
Seitz and Richard Szeliski International Conference on Computer Vision, 2009,
Kyoto, Japan.

[4] Modeling the world from Internet photo collections Noah Snavely, Steven M.
Seitz, and Richard Szeliski Microsoft Research November 2008

13

