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HEXAGON DSP: AN ARCHITECTURE
OPTIMIZED FOR MOBILE MULTIMEDIA

AND COMMUNICATIONS
.................................................................................................................................................................................................................

THE QUALCOMM HEXAGON DSP IS USED FOR BOTH MODEM PROCESSING AND

MULTIMEDIA ACCELERATION. BY OFFLOADING MULTIMEDIA TASKS FROM THE CPU TO THE

DSP, SIGNIFICANT POWER SAVINGS CAN BE ACHIEVED. THIS ARTICLE PROVIDES AN

OVERVIEW OF THE HEXAGON ARCHITECTURE. THE PROCESSOR IS DESIGNED TO DELIVER

SUPERIOR ENERGY EFFICIENCY COMPARED TO MOBILE CPU ALTERNATIVES AND THEREBY

HELP ACHIEVE LONG BATTERY LIFE FOR IMPORTANT MOBILE APPLICATIONS.

......To be competitive, a modern
mobile product must provide a rich user expe-
rience and long battery life. Chips for these
ecosystems integrate multiple subsystems,
each customized for a particular application
domain. By specializing a subsystem to a task,
performance and power can be enhanced
beyond what is possible with a homogenous
CPU-based computing platform.

Figure 1 shows a block diagram of the
Snapdragon 800. This chip contains dedicated
subsystems for camera, display, video, audio/
voice, sensors, graphics, cellular modem, Wi-
Fi, and more. Each subsystem contains dedi-
cated hardware, and many contain special-
purpose processing engines and software cus-
tomized to the task.

The Snapdragon 800 has two instances of
the Hexagon digital-signal processor (DSP).
The modem (mDSP) is dedicated and
customized for modem processing, whereas
the application DSP (aDSP) is used for mul-
timedia acceleration. The modem processor
is a closed subsystem and is programmed
only within Qualcomm Technologies. The

multimedia DSP, however, is licensed for
programming by OEMs and third-party soft-
ware vendors. This article provides an over-
view of the multimedia DSP and builds on
the presentation from HotChips 25.1

Figure 2 shows the various Hexagon gen-
erations. Version 2 (V2) was the first pro-
duction version and appeared in the initial
Snapdragon mobile products in 2007. V3
featured an improved implementation with
better power consumption. These early ver-
sions of Hexagon targeted voice and audio
processing. Example functions include wide-
band vocoders, echo cancellation, audio
postprocessing filters, MP3/AAC play-
back, speaker protection algorithms, and
so on.

V4 and V5 expanded the application tar-
gets to include image processing for camera
and video; computer vision tasks such as
hand, gesture, and face recognition; and
processing of sensor input (gyro, accelerome-
ter, fingerprint, and so on). Unless otherwise
noted, this article will focus on the latest
Hexagon V5 core.
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Figure 1. Snapdragon 800 block diagram. The chip contains dedicated subsystems for camera, display, video, audio/voice,

sensors, graphics, cellular modem, and Wi-Fi.
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Figure 2. Hexagon digital-signal processor (DSP) evolution. The figure shows the evolution from Version 1 in October 2006

through Version 5 in December 2012.
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Hexagon is a multithreaded very long
instruction word (VLIW) DSP. The design
philosophy is to maximize work per cycle for
performance, but target the microarchitec-
ture to modest clock speeds and low power.

Instruction-set architecture overview
The architecture’s foundation is a stati-

cally scheduled four-way VLIW. The VLIW
approach puts the burden of instruction par-
allelism on the compiler and thereby avoids
costly and power-hungry dynamic-scheduling
hardware.2 The VLIW approach is popular
among commercial DSPs. Figure 3 shows a
block diagram of Hexagon.

Registers and memory
The Hexagon processor features a unified

byte-addressable memory. This memory has
a single 32-bit virtual address space that holds
both instructions and data. It operates in
little-endian mode. A full-featured memory
management unit (MMU) translates virtual
to physical addresses.

All user-level registers are replicated per
thread. There are two sets of user registers:
general registers and control registers. The
general registers include thirty-two 32-bit
registers that can be accessed either as single
registers or as aligned 64-bit register pairs.
The general registers contain all pointer, sca-
lar, vector, and accumulator data. The con-
trol registers include special-purpose registers
such as the program counter, status register,
and loop registers.

Data-processing instructions
There are two identical 64-bit single-

instruction, multiple-data (SIMD) execution
units. Each unit supports all multiply, shift,
arithmetic logic unit (ALU), and bit manipu-
lation instructions. Supported data types
include

� 8-, 16-, 32-, and 64-bit integer;
� 16- and 32-bit fractional with optional

rounding and saturation;
� 16-bit complex; and
� single-precision IEEE-compatible float-

ing point.

Each unit is capable of supporting:

� four 16� 16 multiplies;
� two 32� 16 multiplies; or
� one 32 � 32 multiply, one complex

multiply, or one floating-point fused
multiply-add (FMA).

Many of the instructions are complex and
application specific. Complex instructions
targeted to a particular application domain
can provide high performance and energy
efficiency. For example, Figure 4 depicts a
complex multiply instruction used in a
16-bit fixed-point fast-Fourier transform
(FFT). Without such an instruction, it would
take four multiplies, four shifts, four adds,
and two saturates to perform the operation.
It should be clear that packing all the work in
a single instruction executed in a single pipe-
lined execution unit provides large efficiency
gains.

The Hexagon instruction set architecture
(ISA) contains numerous special-purpose
instructions designed to accelerate key multi-
media kernels. Multimedia algorithms with
special instruction support include

Instruction unit

L2
cache/ 

TCM

Data unit
(load/
store/
ALU)

Data Unit
(load/
store/
ALU)

Execution
unit

(64-bit
vector)

Execution
unit

(64-bit
vector)

Data cache

Register file/thread

Instruction
cache

Figure 3. Hexagon block diagram. The architecture features a four-wide very

long instruction word (VLIW) with dual load/store and dual single-instruction,

multiple-data (SIMD) execution units and supports hardware multithreading.
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� variable-length encode/decode, such
as context-adaptive binary-arithmetic-
coding processing in H.264 video;

� features from accelerated segment
test (FAST) corner detection image
processing;

� FFTalgorithms;
� sliding-window filters;
� linear-feedback shift;
� table lookup from an arbitrary bit

field index;
� elliptic curve cryptography; and
� cyclic redundancy check (CRC)

calculation.

Load/store instructions
Dual load/store units access signed or

unsigned 8-, 16-, 32-, and 64-bit values in
memory. There is a rich variety of addressing
modes, including

� absolute 32-bit,
� base plus scaled immediate and base

plus scaled register,
� auto-incrementing by register and

immediate,
� circular addressing, and
� bit reversed.

To increase the number of instruction
combinations allowed in packets, the load/
store units also support 32-bit ALU
instructions.

Conditional execution and program flow
The Hexagon ISA includes conditional

execution. Conditional execution is useful to
remove branches through if-conversion and
is helpful for a VLIW processor. Compare
instructions target one of four predicate regis-
ters. These predicate registers can then be
used to conditionally execute certain instruc-
tions. Not all instructions can be condi-
tional—only the most common load/store
and ALU instructions.

A unique feature of Hexagon conditional
execution is that the processor can generate
and use a predicate in the same VLIW in-
struction packet. This reduces packet count
and creates denser packets, both of which
improve performance and reduce energy con-
sumption. Consider the following C state-
ment and the corresponding assembly code

that is generated from it by the compiler. The
“.new” suffix implies the source predicate is
generated in the same packet. In this exam-
ple, the dot-new construct enables the work
to be done in one instruction packet instead
of two.

The C statement is as follows:
if (R2 == 4)

R3 = *R4;

else

R5 = 5;

Assembly code with braces delineate
packet boundaries:
{

P0 = cmp.eq(R2,#4)

if (P0.new) R3 = memw(R4)

if (!P0.new) R5 = #5

}

Similar to many DSP processors, Hexa-
gon includes a zero-overhead hardware
counted looping mechanism with support
for two levels of nesting. An instruction is
used to initialize the loop count and the start
address. Bits encoded in the last packet of the
loop delineate the end of the loop. This
architecture allows execution of loops with
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Figure 4. Complex multiply instruction. Such an instruction executed in a

single pipelined execution unit provides large efficiency gains for

applications that use complex arithmetic.
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no branch mispredicts or stalls, and no hard-
ware devoted to loop branch prediction.

Compound and memop instructions
Compound instructions combine two or

more dependent operations in a single instruc-
tion. These instructions improve code size and
save power by reducing register file and for-
warding power. Hexagon includes many such
instructions, including shift-add, shift-or, add-
add, compare-branch, shift-xor, and many fla-
vors of the classic DSP multiply-add.

Another class of instruction performs sim-
ple operations directly on memory, including
add, subtract, logical–or, and logical–and.
Without these memory operations (mem-
ops), three instructions would be necessary to
perform the same task: one to load the value,
one to perform the arithmetic or logical oper-
ation on the value, and one to store the result.
Memops improve code size and reduce power
because intermediate register access is not
needed.

VLIW instruction grouping
VLIW instruction packets are variable

sized and contain one to four instructions. If
a packet contains more than one instruction,
the instructions execute in parallel. The
instruction combinations allowed in a packet
are limited to the instruction types that can
be executed in parallel in the four execution
units. The processor uses parallel execution
semantics. All registers are read, then all
instructions are executed, then all registers
are written.

Duplex instructions
Low code size is advantageous for an

embedded processor. Hexagon instructions
are fixed size and 32 bits in length. To
improve code size, the Duplex feature enables
some use of 16-bit instructions by creating a
32-bit subpacket containing two 16-bit
instructions. These subpackets are called
duplexes. Figure 5 shows a visualization of a
duplex.

Because duplexes are always 32 bits,
packet sizes continue to be multiples of 32
bits. This leads to a simpler and lower-power
implementation as compared to instruction
sets with a mixed 16-/32-bit instruction set.
Additionally, duplexes must always end a
packet, and are always dispatched to the same
two execution units, which further simplifies
the implementation. The instructions allowed
in duplexes, called subinstructions, are the most
common subset of normal Hexagon instruc-
tions, with reduced ranges of registers and
immediate operands.

Multithreading and microarchitecture
The Hexagon processor is multithreaded.

The number of threads varies by implemen-
tation. Early implementations included six
hardware threads, but more recent cores
include three hardware threads. There are
many trade-offs in choosing the number of
threads. Additional threads provide more
latency tolerance and enable power-saving
opportunities in the microarchitecture by
serializing work rather than speculating
work. On the other hand, additional threads
increase cache pressure and increase the soft-
ware programming burden. Our experience
is that three or four threads are a sweet spot
in the design space.

Hexagon is designed to look like a multi-
core architecture with communication
through shared memory. Figure 6 shows how
the processor appears to the programmer.
Software threads are mapped to hardware
threads by the operating system.

In the physical implementation, however,
there is only one processor, which the three
hardware threads share. Hexagon V1 through
V4 implemented a simple round-robin inter-
leaved multithreading (IMT) approach.3 On
every clock tick, a different thread is given a
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Figure 5. Visualization of a duplex. A duplex

is a 32-bit subpacket containing two 16-bit

instructions.

..............................................................................................................................................................................................

HOT CHIPS

............................................................

38 IEEE MICRO



turn at each pipe stage. Figure 7 shows a
three-stage execution pipeline and with three
threads taking turns dispatching packets.

With the number of threads matched to
the execution pipe depth, all of a thread’s
instructions from a VLIW packet are com-
plete before the next VLIW packet starts.

Because there is no observable latency, the
compiler is not concerned with instruction
latency and scheduling for latency. This
yields higher VLIW packet density. When
instructions are no longer needed to hide
latency, they can be used instead to fill the
packets.

Thread 0 Thread 1 Thread 2

Shared instruction cache

DU DU L2
cache/ 
TCM

XU DU XUDU XU

Register file Register file Register file

Shared data cache

DU DU XUXU XU

Figure 6. The programmer’s view of multithreading. To the programmer, it appears as three

VLIW cores with shared caches. Software threads are mapped to hardware threads by the

Hexagon operating system.
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Figure 7. Interleaved multithreading. The figure shows a three-stage execution pipeline with three threads taking turns

dispatching packets.
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The simple IMT model and simple in-
order pipeline yield a small, low-power pro-
cessor that is critical to meeting the aggressive
area and power targets.

The obvious problem with IMT is that
when threads are idle or stalled, their slice
of the processor goes unused. Starting with
Hexagon V5, a more dynamic approach to
thread scheduling has been implemented.
Often, packets contain only simple instruc-
tions and can be completed in fewer than
three cycles. With Hexagon V5, the pro-
cessor will opportunistically execute packets
faster if threads are idle or stalled and simple
packets are available. The design philosophy
is not to shoot for the best single-thread
performance, but rather to provide some
performance boost when it is easy to do
so and without compromising energy
efficiency.

Figure 8 shows the instructions per
cycle (IPCs) for various multimedia
benchmarks. The benchmarks are sorted
into multithreaded applications on the
left, and single-threaded on the right. The
boost from the V5 dynamic multithreading

(DMT) is shown as the additional (striped)
bar on top of the baseline (solid) IMT bar.

In the Snapdragon 800 implementation,
the DSP runs up to 800 MHz. The instruc-
tion cache is 16 Kbytes, the data cache is 32
Kbytes, and the level-2 (L2) cache is 256
Kbytes. Connection to main memory is pro-
vided over a 64-bit system bus that runs at
240 MHz.

System programming model
Communication between the DSP and

CPU is done through a traditional shared-
memory-plus-interrupt mechanism. Both the
DSP and CPU can access the full physical
address space and share the external memory.
Access to memory is cache based, and there is
no explicit data mover. The DSP includes an
extensive prefetching capability to help hide
cache latency. The CPU and DSP are not
cache coherent with each other, so coherency
must be maintained in software with explicit
cache maintenance operations.

A software remote procedure call (RPC)
interface lets a CPU application offload work
to the DSP. When an RPC is made, any data
associated with the call is flushed to main
memory from the CPU caches and mapped
into the DSP virtual address space. The DSP
is then interrupted to process the RPC call,
after which any results are flushed from the
DSP caches back to main memory, and a
completion interrupt is sent to the CPU.

The overheads of software-managed
coherency preclude offloading very small tasks
to the DSP. Large kernels that run continu-
ously or process large data (full image frames)
are typically needed to amortize the overhead.

Power
Battery life is extremely important in

mobile computing. Offloading applications
from the CPU to a specialized low-power
processing engine such as Hexagon is critical
to achieving the power goals. In addition to
the ISA and microarchitecture for efficient
multimedia processing, Hexagon is imple-
mented with aggressive low-power design
techniques, including hierarchical clock gat-
ing with a custom clock tree, voltage scaling
with split-grid memories, pulse latches
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instead of flip-flops, and full-custom caches
and register files designed for low power. A
more complete description of the low-power
techniques used by Hexagon is available
elsewhere.4

An important power benchmark for
mobile phones is MP3 playback. Figure 9
compares current measured at the battery for
various competitive smartphones. Battery
current includes all components of system
power, such as the CPU, DSP, memory, and
I/O. The data is presented as (battery current
in mA for the device divided by battery cur-
rent in mA for the Hexagon-based chip). A
2� delta on this chart represents twice the
hours of music playback, which is a key mar-
keting and user-experience metric.

Google recently announced support for
DSP offload of audio playback in the
Android 4.4 (KitKat). Quoting from the
“Audio Tunneling to DSP” section on Goo-
gle’s Android developer webpage:5

For high-performance, lower-power audio play-
back, Android 4.4 adds platform support for
audio tunneling to a digital signal processor (DSP)
in the device chipset. With tunneling, audio
decoding and output effects are off-loaded to the
DSP, waking the application processor less often
and using less battery.

Audio tunneling can dramatically improve bat-
tery life for use-cases such as listening to music
over a headset with the screen off. For example,
with audio tunneling, Nexus 5 offers a total off-
network audio playback time of up to 60 hours,
an increase of over 50% over non-tunneled audio.

The Nexus 5 device uses Snapdragon 800,
and the audio offload is done to the Hexagon
V5 aDSP.

Figure 10 shows another example of off-
loading a computer-vision-object detection
algorithm from the CPU to the Hexagon
DSP. Initially, the algorithm is run on the
CPU. The algorithm is fully optimized with
Neon SIMD instructions. After offloading to
the DSP, the same algorithm is called via an
RPC. Because the algorithm is no longer run-
ning on the CPU, the CPU load is reduced.
In terms of speed, the algorithm is marginally
faster on the DSP. This includes all RPC
overheads. But, significantly, the total system
power as measured at the battery has been
reduced by 32 percent.
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Figure 11 provides additional examples of
performance and power, comparing the Hex-
agon V5 DSP to the CPU used in the Snap-
dragon 200 chip. Each chart features a
different algorithm used in a computer vision
application. For the CPU, all code is fully
optimized using Neon SIMD instructions.
Both single-CPU and quad-CPU data is
shown. The x-axis shows latency in units of
time/pixel, and the y-axis shows energy/pixel.
The origin is (0,0) in all charts. Power is
measured at the battery and includes all sys-
tem power. When compared to the quad
CPU in Snapdragon 200, the Hexagon V5
DSP provides similar or better performance
and lower power in all cases.

T his article provides an overview of the
Hexagon DSP architecture. The

demand for low-power signal processing in
mobile applications continues unabated.
Camera and video applications require
sophisticated signal processing at ultra-high
definition resolution. At the same time,
“always-on” voice activation features are
pushing power requirements to new lows.
Future versions of Hexagon DSP will be
enhanced and specialized to tackle these
upcoming challenges.

For readers who would like to explore
further, the Hexagon Software Developer’s
Kit (https://developer.qualcomm.com/mobile-
development/maximize-hardware/multimedia-
optimization-hexagon-sdk/multimedia-
optimization-h-2) provides everything
needed to program the DSP, including
full documentation, software tools, a
cycle-approximate simulator, and example
code. MICRO
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