

 1

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

COMPUTER SCIENCES DEPARTMENT

UNIVERSITY OF WISCONSIN-MADISON

Prof. Mark D. Hill & Prof. Mikko H. Lipasti

TAs Sanghamitra Roy, Eric Hill, Samuel Javner, Natalie Enright Jerger, & Guoliang Jin

Midterm Examination 3

In Class (50 minutes)

Friday, November 16, 2007

Weight: 15%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, & COMPUTER.

The exam in two-sided and has TEN pages, including two blank pages and a copy of the LC-3

Instruction Set handout on the final page (please feel free to detach this final page, but insert it
into your exam when you turn it in).

Plan your time carefully, since some problems are longer than others.

NAME: __

SECTION:___

ID# __

 2

Problem

Number

Maximum

Points
Graded By

1 4 NEJ

2 4 NEJ

3 6 SJ

4 4 EH

5 4 SR

6 4 GJ

7 4 EH

Total 30

 3

Problem 1 (4 points)

The following LC-3 instruction is located at memory address x7000.

x7000: 0000 101 000000100

R0 contains 4

R1 contains 3

R2 contains 0

R3 contains 5

a. If the preceding instruction is the one shown below, what is the value of the PC after

the instruction at 0x7000 is executed?

x6fff: 0001 000 001 1 00001

x7000: 0000 101 000000100

0x7005

b. If the preceding instruction is the one shown below, what is the value of the PC after

the instruction at 0x7000 is executed?

x6fff: 0101 010 011 1 00000

x7000: 0000 101 000000100

 0x7001

Problem 2 (4 points)

Imagine the DR and BaseR fields of the LDR instruction are each 4 bits wide

If the instruction is 0110 0001 0010 xxxx

R0 x0

R1 x0

R2 x0308

R3 xFF

R4 x123

a. What is the maximum and minimum address that the above instruction could load

from?

0x0300 to 0x030F

b. What is the maximum number of registers for DR?

16

 4

Problem 3 (6 points)

The program below checks to see if the value stored in R0 is greater than or equal to the value

stored in R5. If R0 is smaller than R5, the value of R5 is copied to R0. Otherwise nothing is

done. Insert the missing LC-3 machine language instructions. Adding comments to each

machine language instruction will assist in awarding partial credit.

Address ISA Instruction

x3000 1001 010 1 0111 1111 ; NOT R2, R5
x3001 0001 0100 1010 0001 ; ADD R2, R2, #1
x3002 0001 0110 0000 0010 ; ADD R3, R0, R2
x3003 0000 0110 0000 0001 ; BRzp x3005
x3004 0001 0001 0110 0000 ; ADD R0, R5, #0
x3005 1111 0000 0010 0101 ; HLT

Problem 4 (4 points)

There is something wrong with the following code sequence. This code is supposed to

continuously decrement the value stored in R5 until it is equal to zero, and then exit. Explain

what happens when we try to execute this code. Comments are provided to save you the effort

of decoding the machine language.

Address ISA Instruction

x3000 0001 1011 0111 1111 ; ADD R5, R5, #-1
x3001 0000 0111 1111 1110 ; BRzp x3000
x3002 1111 0000 0010 0101 ; HLT

Explanation of what is wrong:

Because the instruction at location x3001 branches on the zero condition code, the loop will
have an extra iteration.

 5

Problem 5 (4 points)

a. Briefly describe 2 ways to partially execute a program while debugging it.

(Any 2 of 3)

Single Step: execute 1 instruction at a time

Breakpoint: tell simulator/program to stop executing when it reaches a specific

instruction

Watchpoint: tell simulator/program to stop executing when the value in specific

register or memory location changes

b. Briefly describe the 3 ways to decompose a program into subtasks

Sequential: do subtask 1 followed by subtask 2

Conditional: if condition is true, do subtask 1. If condition is false, do subtask 2

Iterative: repeat subtask over and over until test condition is false

 6

Problem 6 (4 points)

We are about to execute the following program:

Address ISA Instruction

x3000 0010 0000 0000 0101 ; LD R0, x005
x3001 0110 0000 0000 0000 ; LDR R0, R0, x0
x3002 0010 0010 1111 0000 ; LD R1, x0F0
x3003 0110 0100 0000 1110 ; LDR R2, R0, x0E
x3004 1111 0000 0010 0101 ; HALT

The state of the machine before the program starts is given below:

Memory Address Memory Contents

x3006 xABCD

xABCD x3220

x2FFF x4567

x322E x7564

xABDB x0001

x30F3 x0020

x200E x3258

x2257 x0000

x300E x92FE

x3005 x3010

What will be the final contents of registers R0-R3 when we reach the HALT instruction? Write

your answers in hexadecimal format.

Register Initial contents Final contents

R0 x200E 0x3220

R1 x200E 0x0020

R2 x3001 0x7564

R3 x3001 0x3001

 7

Problem 7 (4 points)

a. If the value stored in R0 is 1 at the end of the execution of the following

instructions, what can be inferred about R5?

Address Instruction

0x3000 0101 000 000 1 00000 ; R0 ß R0 AND #0

0x3001 0101 100 101 1 000001 ; R4 ß R5 AND #1

0x3002 0000 010 000000001 ; BRz, #1

0x3003 0001 000 000 1 00001 ; R0 ß R0 + #1

a. R5 is equal to 1

b. R5 is even

c. R5 is odd

d. R5 is equal to 0

Answer: c

b. Which of the following LC-3 instructions at address 0x0200 will always clear

register R5 (i.e. set the contents of R5 to all zeroes) ?

a. 1110 101 000 000000

b. 0010 101 000 000000

c. 0101 101 101 100000

d. 0001 101 101 100000

Answer: c

 8

Scratch Sheet 1 (in case you need additional space for some of your answers)

 9

Scratch Sheet 2 (in case you need additional space for some of your answers)

 10

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N , Z, and P. mem[A]:memory contents at address A.
SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.
Page 2 has an ASCII character table.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ ADD DR, SR1, SR2 ; Addition
| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ DR ßßßß SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ ADD DR, SR1, imm5 ; Addition with Im mediate
| 0 0 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ DR ßßßß SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND
| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ DR ßßßß SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ AND DR, SR1, imm5 ; Bit-wise AND wit h Immediate
| 0 1 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ DR ßßßß SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ BRx, label (where x = {n,z,p,zp,np,n z,nzp}) ; Branch
| 0 0 0 0 | n | z | p | PCoffset 9 | GO ßßßß ((n and N) OR (z AND Z) OR (p AND P))
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ if (GO is true) then PC ßßßß PC’ + SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ JMP BaseR ; Jump
| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ PC ßßßß BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ JSR label ; Jump to Subroutine
| 0 1 0 0 | 1 | PCoffset11 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ R7 ßßßß PC’, PC ßßßß PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ JSRR BaseR ; Jump to Subroutine in R egister
| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ temp ßßßß PC’, PC ßßßß BaseR, R7 ßßßß temp

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ LD DR, label ; Load PC-Relative
| 0 0 1 0 | DR | PCoffset 9 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ DR ßßßß mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ LDI DR, label ; Load Indirect
| 1 0 1 0 | DR | PCoffset 9 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ DR ßßßß mem[mem[PC’ + SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+O ffset
| 0 1 1 0 | DR | BaseR | of fset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ DR ßßßß mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ LEA, DR, label ; Load Effective Addr ess
| 1 1 1 0 | DR | PCoffset 9 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ DR ßßßß PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ NOT DR, SR ; Bit-wise Complement
| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ DR ßßßß NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ RET ; Return from Subroutine
| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ PC ßßßß R7

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ RTI ; Return from Interrupt
| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ See textbook (2 nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ ST SR, label ; Store PC-Relative
| 0 0 1 1 | SR | PCoffset 9 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ mem[PC’ + SEXT(PCoffset9)] ßßßß SR

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ STI, SR, label ; Store Indirect
| 1 0 1 1 | SR | PCoffset 9 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] ßßßß SR

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ STR SR, BaseR, offset6 ; Store Base+ Offset
| 0 1 1 1 | SR | BaseR | of fset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ mem[BaseR + SEXT(offset6)] ßßßß SR

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ TRAP ; System Call
| 1 1 1 1 | 0 0 0 0 | trapvec t8 |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ R7 ßßßß PC’, PC ßßßß mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ ; Unused Opcode
| 1 1 0 1 | |
+---+---+---+---+---+---+---+---+---+---+---+---+-- -+---+---+---+ Initiate illegal opcode exception
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

