
CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING
COMPUTER SCIENCES DEPARTMENT

UNIVERSITY OF WISCONSIN-MADISON

Prof. Mark D. Hill & Prof. Mikko H. Lipasti
TAs Sanghamitra Roy, Eric Hill, Samuel Javner, Natalie Enright Jerger, & Guoliang Jin

Midterm Examination 4

In Class (50 minutes)
Friday, December 14, 2007

Weight: 15%

CLOSED BOOK, NOTE, CALCULATOR, PHONE, & COMPUTER.

The exam in two-sided and has TEN pages, including two blank pages and a copy of the
Standard ASCII Table, some Trap Service Routines description and the LC-3 Instruction
Set handout on the final page (please feel free to detach this final page, but insert it into
your exam when you turn it in).

Plan your time carefully, since some problems are longer than others.

NAME: __

SECTION:___

ID# __

1

Problem
Number

Maximum
Points

Points
Awarded

1 4 EH
2 2 SR
3 7 SJ
4 8 NEJ
5 7 GJ
6 2 SR

Total 30

2

Problem 1 (4 points): Short Answers

a. What is the problem with using the string STI as a label in an LC-3 assembly
language program?

Using an instruction as a label confuses the assembler because it treats the
label as the opcode itself so the label STI will not be entered into the symbol
table. Instead the assembler will give an error in the second pass.

b. What single instruction is equivalent to the following two LC-3 instructions?

 LEA R7, #1
 JMP R4, #0

JSRR R4

c. The LC-3 assembly process is done in two complete passes through the entire assembly
language program. What is the objective of the first pass?

To identify the actual binary addresses corresponding to the symbolic names
(or labels). This set of correspondences is known as the symbol table.

d. What is the purpose of .ORIG pseudo-op?

.ORIG tells the assembler where in memory to place the LC-3 program.

Problem 2 (2 points): Memory-Mapped I/O

Suppose an ISA has a 16-bit address space. All addresses wherein bits[15:14] = 11 are
allocated to I/O device registers.

a. What is the minimum address of I/O device registers?

1100000000000000

b. What is the maximum address of I/O device registers?

1111111111111111

3

Problem 3 (7 points): Two-Pass Assembly Process

An assembly language LC-3 program is given below:

 1 .ORIG x3200
 2 ONE LD R0, B
 3 ADD R1, R1, R0
 4 TWO LD R0, A
 5 ADD R1, R1, R0
 6 ST R1, RESULT
 7 TRAP x25
 8 A .FILL xFFFF
 9 B .FILL xFFFF
 10 C .FILL xFFFF
 11 .END

a. Fill in the symbol table for the program:

Symbol Address
ONE x3200
TWO x3202

A x3206
B x3207
C x3208

b. Assuming that both passes of the assembler were to execute, write the binary
word (machine language instruction) that would be generated by the assembler for
the first instruction of the program.

0010 0o0 000000110

c. The programmer intended the program to add the values stored in memory
locations A and B, and store the result into memory. There are two errors in the
code. For each, describe the error and indicate whether it will be detected at
assembly time or at run time.

Error 1:
Line 6: ST R1, RESULT
RESULT is an undefined label. This error will be detected at assembly time.
Error 2:
Line 3: ADD R1, R1, R0
R1 was not initialized before it was used; therefore, the result of this ADD
instruction may not be correct. This error will be detected at run time.

4

Problem 4 (8 points): Trap Routines and Save/Restore Problem

Suppose we define a new service routine starting at memory location x4300. This routine
reads in a character and echoes it to the screen. Suppose memory location x0067 contains
the value x4300. The service routine is shown below.

 01 .ORIG x4300
 02 ST R0, SAVERA
 03 ST R7 , SAVERB
 04 GETC
 05 OUT
 06 LD R0, SAVERA
 07 LD R7 , SAVERB
 08 RET
 09 SAVERA .FILL x0000
 10 SAVERB .FILL x0000

a. Fill the blanks in the above program.

b. Identify the instruction that will invoke this routine.

TRAP x67

c. Line 10 is the RET instruction, will a BR (Unconditional branch) instruction work
instead? Why or why not?

No. TRAP routines need to be able to return to the instruction after the
TRAP initiation. The location of this instruction will differ between TRAP
instances, and could be anywhere. The RET instruction solves this problem
by using the address stored in R7, which is the next PC address that was
saved when the TRAP occurred. The BR instruction will always jump to the
same PC-relative address, which cannot work in the general case. Also note
that the RET instruction is base + offset and the BR instruction is
PC-relative, so the BR instruction might have insufficient reach (partial
credit answer).

d. What do instructions in line 02 and 06 do? Will the service routine work without
these two lines? Why or why not?

Save and Restore R0.

Yes, this routine will work. But whatever value was in R0 before TRAP x67
is executed will be overwritten during the subroutine, so caller needs to save
and restore R0 if the value in R0 will be used by caller after TRAP x67.

5

Problem 5 (7 points): I/O Basic

An assembly language LC-3 program is given below:

 .ORIG x3000
 LD R0, ASCII
 LD R1, NEG
 LOOP LDI R2, DSR
 BRzp LOOP
 STI R0, DDR
 ADD R0, R0, #1
 ADD R3, R0, R1
 BRnz LOOP
 HALT
 ASCII .FILL x0061
 NEG .FILL xFF95
 DSR .FILL xFE04 ; Address of DSR
 DDR .FILL xFE06 ; Address of DDR
 .END

a. What does this program do?

The program displays the letters abcdefghijk in the screen (LC3 Console).

b. What is the purpose of the Display Status Register (DSR)?

The Display Status Register (DSR) controls the synchronization of the fast
processor and the slow monitor display. Bit[15] of the DSR is 1 when the
device is ready to display another character on screen. When data is written
to DDR, DSR[15] is set to 0 and remains at 0 until monitor finishes
processing the character on screen.

c. What problem could occur if the display hardware does not check the DSR before

writing to the DDR?

If DSR[15] is 1, the data contained in the DDR has not been displayed by the
monitor. Thus, if the display hardware does not check the DSR before
writing to the DDR, the previous value in DDR could be lost.

d. Circle the correct combination that describes this program?

 a. Special opcode for I/O and interrupt driven
 ○b . Memory mapped and polling
 c. Special opcode for I/O and polling
 d. Memory mapped and interrupt driven

6

Problem 6 (2 points): Professional Ethics

Regarding the assigned reading "RFID Inside" on RFID implants, do you support RFID
implants? Why or why not? Give two different reasons to support your position.

Support. RFID implants can be used as a life saving device in an emergency.
RFID implants can be used as a source of authentication for security.

Do not support. RFID implants are Invasion of employee’s privacy. An
employee should have the right to bodily integrity.

7

8

Scratch Sheet 1 (in case you need additional space for some of your answers)

ASCII Table

Character Hex Character Hex CharacterHexCharacterHex
 nul 00 sp 20 @ 40 ` 60
 soh 01 ! 21 A 41 a 61
 stx 02 ʺ 22 B 42 b 62
 etx 03 # 23 C 43 c 63
 eot 04 $ 24 D 44 d 64
 enq 05 % 25 E 45 e 65
 ack 06 & 26 F 46 f 66
 bel 07 ʹ 27 G 47 g 67
 bs 08 (28 H 48 h 68
 ht 09) 29 I 49 i 69
 lf 0A * 2A J 4A j 6A
vt 0B + 2B K 4B k 6B
 ff 0C , 2C L 4C l 6C
 cr 0D ‐ 2D M 4D m 6D
 so 0E . 2E N 4E n 6E
 si 0F / 2F O 4F o 6F
 dle 10 0 30 P 50 p 70
 dc1 11 1 31 Q 51 q 71
 dc2 12 2 32 R 52 r 72
 dc3 13 3 33 S 53 s 73
 dc4 14 4 34 T 54 t 74
 nak 15 5 35 U 55 u 75
 syn 16 6 36 V 56 v 76
 etb 17 7 37 W 57 w 77
 can 18 8 38 X 58 x 78
 em 19 9 39 Y 59 y 79
 sub 1A : 3A Z 5A z 7A
 esc 1B ; 3B [5B { 7B
 fs 1C < 3C \ 5C | 7C
 gs 1D = 3D] 5D } 7D
 rs 1E > 3E ^ 5E ~ 7E
 us 1F ? 3F _ 5F del 7F

Trap Service Routines

Trap Vector Assembler Name Description
x20 GETC Read a single character from the keyboard. The Character
 is not echoed onto the console. Its ASCII code is copied
 into R0. The high eight bits of R0 are cleared.
x21 OUT Write a character in R0[7:0] to the console display.
 … … …

x25 HALT Halt execution and print a message on the console.

9

 9

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.
SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

Page 2 has an ASCII character table.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx, label (where x = {n,z,p,zp,np,nz,nzp}) ; Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO ���� ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if (GO is true) then PC ���� PC’ + SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ���� BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ���� PC’, PC ���� PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp ���� PC’, PC ���� BaseR, R7 ���� temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� mem[mem[PC’ + SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ���� NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ���� R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)] ���� SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] ���� SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)] ���� SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ���� PC’, PC ���� mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

	sol2.pdf
	sol1
	exam4_f07_draftA.pdf
	exam4_sol.pdf

	exam4_f07_draftB.pdf
	sol1
	exam4_f07_draftA.pdf
	exam4_sol.pdf

	sol3.pdf
	sol2.pdf
	sol1
	exam4_f07_draftA.pdf
	exam4_sol.pdf

	exam4_f07_draftB.pdf
	sol1
	exam4_f07_draftA.pdf
	exam4_sol.pdf

