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This Unit: Dynamic Scheduling I

¢ Dynamic scheduling
¢ Out-of-order execution
e Scoreboard
* Dynamic scheduling with WAW/WAR
Memory e Tomasulo’ s algorithm
* Add register renaming to fix WAW/WAR

Digital Circuits

Gates & Transistors

o Next unit
* Adding speculation and precise state
¢ Dynamic load scheduling
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The Problem With In-Order Pipelines

1 2 3456 7 8910111213141516
addf £0,£1,£2 [F D E+E+E+ W
mulf £2,£3,£2 F--D-d*-d*E* E* B EXEX W,
subf £0,fl,f4 F p* p* D E+E+E+ W

e What’ s happening in cycle 4?
¢ mulf stalls due to RAW hazard
* OK, this is a fundamental problem
* subf stalls due to pipeline (structural) hazard
* Why? subf can’t proceed into D because addf is there
« That is the only reason, and it isn’ t a fundamental one

e Why can’t sub£ go into D in cycle 4 and E+ in cycle 6?
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Dynamic Scheduling: The Big Picture

add p2,p3,p4
sub p%S
mul p27p5,p6 regfile

div p4,4,p7 ,_| —

insn buffer D$|
s —

Ready Table
P2 |P3 |P4 [P5 |P6 |P7
Yes|Yes| add p2,p3,p4 Time
Yes|Yes Yes| Yes| sub p2,p4,p5 and div p4,4,p7
Yes|Yes Yes|Yes| Yes| mul p2,p5,p6
Yes|Yes Yes|Yes|Yes|Yes|

¢ Instructions fetch/decoded/renamed into Instruction Buffer
o Also called “instruction window” or “instruction scheduler”
¢ Instructions (conceptually) check ready bits every cycle

¢ Execute when ready
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Register Renaming

¢ To eliminate WAW and WAR hazards
e Example
e Names: r1,r2,r3
e Locations: p1,p2,p3,p4,p5,pP6,pP7
« Original mapping: r1—pl, r2—p2, r3—p3, p4—p7 are “free”

MapTable FreeList Raw insns Renamed insns
rl |r2 |r3

pl |[p2 |p3 p4,p5,p6,p7 add r2,r3,x1 add p2,p3,p4
p4 |p2 |p3 p5,p6,p7 sub r2,rx; ‘}31 sub p2,p4,p5
p4 |p2 [p5 p6,p7 mul r2,/r5.r3 mul p27/p5,p6
|p4_[p2 |p6 p7 div rl,4,rl div p4,4,p7

¢ Renaming
+ Removes WAW and dependences

+ Leaves RAW intact!
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Dynamic Scheduling - 00O Execution

* Dynamic scheduling

e Totally in the hardware

e Also called “out-of-order execution” (000)
¢ Fetch many instructions into instruction window

¢ Use branch prediction to speculate past (multiple) branches

e Flush pipeline on branch misprediction
* Rename to avoid false dependencies (WAW and WAR)
» Execute instructions as soon as possible

« Register dependencies are known

« Handling memory dependencies more tricky (much more later)
¢ Commit instructions in order

¢ Any strange happens before commit, just flush the pipeline
¢ Current machines: 64-200+ instruction scheduling window
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Static Instruction Scheduling

Motivation Dynamic Scheduling

» Issue: time at which insns execute
¢ Schedule: order in which insns execute
¢ Related to issue, but the distinction is important

¢ Scheduling: re-arranging insns to enable rapid issue
« Static: by compiler
* Requires knowledge of pipeline and program dependences
« Pipeline scheduling: the basics
« Requires large scheduling scope full of independent insns
* Loop unrolling, software pipelining: increase scope for loops
* Trace scheduling: increase scope for non-loops

Anything software can do ... hardware can do better
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* Dynamic scheduling (out-of-order execution)
* Execute insns in non-sequential (non-VonNeumann) order...
+ Reduce RAW stalls
+ Increase pipeline and functional unit (FU) utilization
« Original motivation was to increase FP unit utilization
+ Expose more opportunities for parallel issue (ILP)
« Not in-order — can be in parallel
o ...but make it appear like sequential execution
* Important
— But difficult
* Next unit
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Before We Continue

Going Forward: What’ s Next

o If we can do this in software...

¢ ...why build complex (slow-clock, high-power) hardware?
+ Performance portability
« Don’ t want to recompile for new machines
+ More information available
* Memory addresses, branch directions, cache misses
+ More registers available (??)
* Compiler may not have enough to fix WAR/WAW hazards
+ Easier to speculate and recover from mis-speculation
* Flush instead of recover code
— But compiler has a larger scope
* Compiler does as much as it can (not much)
* Hardware does the rest
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o We’ll build this up in steps over the next few weeks
e “Scoreboarding” - first 000, no register renaming
« “Tomasulo’ s algorithm” - adds register renaming
* Handling precise state and speculation
* P6-style execution (Intel Pentium Pro)
* R10k-style execution (MIPS R10k)
¢ Handling memory dependencies
» Conservative and speculative

e Let’s get started!
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Dynamic Scheduling as Loop Unrolling

Loop Example: SAX (SAXPY — PY)

¢ Three steps of loop unrolling
e Step I: combine iterations
« Increase scheduling scope for more flexibility
e Step II: pipeline schedule
* Reduce impact of RAW hazards
o Step III: rename registers
* Remove WAR/WAW violations that result from scheduling
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e SAX (Single-precision A X)
¢ Only because there won’t be room in the diagrams for SAXPY

for (i=0;i<N;i++)
Z[i]=A*X[i];

0: 1df X(rl),fl // loop
1: mulf £0,£f1,£f2 // A in £0
2: stf £2,Z(rl)
3: addi r1l,4,rl // i in rl
4: blt rl,r2,0 // N*4 in r2

« Consider two iterations, ignore branch

1df, mulf, stf, addi, 1df, mulf, stf
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New Pipeline Terminology

¢ In-order pipeline
« Often written as F,D,X,W (multi-cycle X includes M)
« Example pipeline: 1-cycle int (including mem), 3-cycle pipelined FP
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New Pipeline Diagram

[Tnsn D[ X[ W
|1af x(r1),£1 [ c1| c2 | 3
|mure £0,£1,£2] c3 [ cat]| c7
stf £2,7Z(rl) c7| c8 | c9
addi rl,4,rl c8 | c9 | cl0
1df X(rl) £l | cl0|cll|cl2
mulf £0,£f1,f2| c12|cl3+ cl6
stf £2,7Z(rl) clé| cl7| cl8

¢ Alternative pipeline diagram
Down: insns

Across: pipeline stages

In boxes: cycles

Basically: stages < cycles
Convenient for out-of-order
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The Problem With In-Order Pipelines

,_| regfile

¢ In-order pipeline
e Structural hazard: 1 insn register (latch) per stage
« 1insn per stage per cycle (unless pipeline is replicated)
« Younger insn can’ t “pass” older insn without “clobbering” it
¢ Out-of-order pipeline
« Implement “passing” functionality by removing structural hazard
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Instruction Buffer

insn buffer

regfile

e Trick: insn buffer (many names for this buffer)

* Basically: a bunch of latches for holding insns

¢ Implements iteration fusing ... here is your scheduling scope
e Split D into two pieces

¢ Accumulate decoded insns in buffer in-order

« Buffer sends insns down rest of pipeline out-of-order
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Dispatch and Issue

regfile

D$
D s —

[0 |

¢ Dispatch (D): first part of decode

e Allocate slot in insn buffer

— New kind of structural hazard (insn buffer is full)

« In order: stall back-propagates to younger insns
¢ Issue (S): second part of decode

¢ Send insns from insn buffer to execution units

+ Out-of-order: wait doesn’ t back-propagate to younger insns
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Dispatch and Issue with Floating-Point

insn buffer

regfile
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Dynamic Scheduling Algorithms

Scheduling Algorithm I: Scoreboard

» Three parts to loop unrolling
e Scheduling scope: insn buffer
¢ Pipeline scheduling and register renaming: scheduling algorithm

» Look at two register scheduling algorithms
¢ Register scheduler: scheduler based on register dependences
¢ Scoreboard
* No register renaming — limited scheduling flexibility
¢ Tomasulo
* Register renaming — more flexibility, better performance

» Big simplification in this unit: memory scheduling
« Pretend register algorithm magically knows memory dependences

¢ A little more realism next unit
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e Scoreboard
¢ Centralized control scheme: insn status explicitly tracked
o Insn buffer: Functional Unit Status Table (FUST)

o First implementation: CDC 6600 [1964]

« 16 separate non-pipelined functional units (7 int, 4 FP, 5 mem)
* No register bypassing

e Our example: “Simple Scoreboard”
e 5FU: 1 ALU, 1 load, 1 store, 2 FP (3-cycle, non-pipelined)
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Scoreboard Data Structures

Simple Scoreboard Data Structures

e FU Status Table

* FU, busy, op, R, R1, R2: destination/source register names

o T: destination register tag (FU producing the value)

e T1,T2: source register tags (FU producing the values)
¢ Register Status Table

e T: tag (FU that will write this register)
e Tags interpreted as ready-bits

e Tag == 0 — Value is ready in register file

e Tag != 0 — Value is not ready, will be supplied by T
¢ Insn status table

« S,X bits for all active insns
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Redfile
x sl Reg Status
1]
1

insns

FU Status

¢ Insn fields and status bits
e Tags
¢ Values
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Scoreboard Pipeline

Scoreboard Dispatch (D)

¢ New pipeline structure: F, D, S, X, W
o F (fetch)
* Same as it ever was
« D (dispatch)
o Structural or WAW hazard ? stall : allocate scoreboard entry
e S (issue)
* RAW hazard ? wait : read registers, go to execute
* X (execute)
* Execute operation, notify scoreboard when done
¢ W (writeback)
* WAR hazard ? wait : write register, free scoreboard entry
* W and RAW-dependent S in same cycle
* W and structural-dependent D in same cycle
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Regfil
%Insn Reg Status e= ﬁ'e

insns

FU Status

o Stall for WAW or structural (Scoreboard, FU) hazards
o Allocate scoreboard entry
e Copy Reg Status for input registers
e Set Reg Status for output register
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Scoreboard Issue (S)

Redfile

s x L& Reg Slatus
-

FU Status

¢ Wait for RAW register hazards
o Read registers
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Issue Policy and Issue Logic

e Issue
o If multiple insns ready, which one to choose? Issue policy
 Oldest first? Safe
* Longest latency first? May yield better performance
¢ Select logic: implements issue policy
* W—1 priority encoder
* W: window size (number of scoreboard entries)
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Scoreboard Execute (X)

Redfile
s x Sl Reg Status
H 1]
11

[FWl R1 R2 R
insns i
Insns

 —— —
FU Status

e Execute insn
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Scoreboard Writeback (W)

iReifile

s x Sl Reg Status
1]

insns

FU Status

¢ Wait for WAR hazard
e Write value into regfile, clear Reg Status entry
e Compare tag to waiting insns input tags, match ? clear input tag
* Free scoreboard entry
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Scoreboard Data Structures

Insn Status Reg Status

Insn DI S| X[ W Reg|T

1df X(rl),fl £0

|mulf £0,£f1,f2 f1

stf £2,2(rl) £2

addi rl,4,rl rl

1df X(rl) ,f1

mulf £0,£f1,£2

stf £2,2(xrl) \ Doesn't exist in actual hardware

Serves as Tag

FU Status
FU” |busylop |R |R1 |R2 [T1 [T2
[ALU no
LD no
ST no
FP1 |no
[FP2_|no
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Scoreboard: Cycle 1

Insn Status Reg Status
Insn DI S| X|W Reg|T
1df X(rl),f1 | cl £0

[mulf fo,f£1,£2 £1 |1D
stf £2,2Z(rl) £2

addi rl,4,rl rl

1df X(rl) ,fl

mulf £0,£f1,£f2

stf £2,2(rl)

FU Status
FU |busylop |[R |R1 |R2 |T1 |T2
ALU |no
ID |yes |1df [f1 |- rl |- - allocate
ST no
FP1 |no
|ER2 [no
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Scoreboard: Cycle 2

Scoreboard: Cycle 3

Insn Status Reg Status
Insn D|S|X|W Reg|T

1df X(rl),fl |cl|c2 £0

|mulf f£0,f£1,£2] c2 £1 |ILD

stf £2,2Z(rl) £2 [FP1
addi rl,4,rl rl

1df X(rl),fl

mulf £0,f1,£2

stf £2,Z(rl)

FU Status

FU |busylop |R |R1 |R2 [T1 [T2

[ALU no

LD yes |1df |fl1 |- rl-- |- =

ST no

FP1 |yes |mulf[f2 [f0 [f1 |- LD 1l
FP2 |no
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Scoreboard: Cycle 4

Insn Status |Reg Status
Insn D| S| X|W |Reg | T

1df X(rl) ,f1 cl|c2|c3| c4 £0

mulf £0,£f1,£2| c2| c4 £1 |LD £1 written — clear
stf £2,Z(rl) | c3 £2 |FP1

addi rl,4,rl | c4 rl |ALU

1df X(rl),fl

mulf £0,f£1,£2

stf £2,Z(rl)

FU Status

FU |busylop |R |R1 |R2 [T1 [T2

ALU |yes |addi|rl |rl |- - - allocate
1D [no free

ST yes |[stf |- f2 |rl |FP1 |-

FP1 |yes |mulf|f2 |f0 |f1 |- 1D £0 (LD) is ready — issue mulf
FP2 |no
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Scoreboard: Cycle 6

Insn Status Reg Status

Insn DI S| X[ W Reg|T

1df X(rl) ,f1 | cl|c2|c3| c4 £0

|mulf £0,£1,£2| c2| c4 |c5+ £1 |LD

stf £2,2(rl) | c3 £2 |FP1

addi rl,4,rl | c4| c5]|c6 rl |ALU

1df X(rl) ,£f1 | c5

mulf £0,£f1,£2 D stall: WAW hazard w/ mulf (£2)
stf £2,z(rl) How to tell? RegStatus[£2] non-empty
FU Status

FU |busylop |R |R1 |R2 |[T1 [T2

ALU |yes |addi |rl |rl |- - -

LD yes [1df [f1 |- rl |- ALU

ST yes |[stf |- f2 |rl |FP1 -

FP1 |yes |mulf |f2 |f0 |f1 |- -

FP2 |no
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Insn Status Reg Status
Insn D|S|X|W Reg|T

1df X(rl),fl | cl|c2]|c3 £0

[mulf f0,£1,£2] c2 £1 |ID

stf £2,2(rl) | c3 £2 |FP1

addi rl,4,rl rl

1df X(rl),fl

mulf £0,f1,£2

stf £2,Z(rl)

Functional unit status

FU |busy|op R1 |R2 |T1 [T2

ALU |no

LD yes |1df |fl |- rl-- |- -

ST yes [stf |- f2 |rl |FP1 - allocate
FPl |yes |mulf [£2 |£0 [f1 |- 1D

FP2 |no
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Scoreboard: Cycle 5

Insn Status |Reg Status
Insn D| S| X|W |Reg |T

1df X(rl),f1 cl|c2|c3|c4 £0

mulf £0,£f1,£f2| c2| c4 | c5 £1 |LD

stf £2,z(rl) | c3 £2 |FP1
addi r1,4,rl | c4]c5 rl |ALU

1df X(rl),fl | c5

mulf £0,f£1,£2

stf £2,2(rl)

FU Status

FU |busylop |[R |R1 |R2 [T1 [T2

ALU |yes |addi [rl |rl |- - -

LD |yes |1df [f1 |- rl |- ALU |l

ST yes [stf |- f2 |rl |FP1 -

FPl |yes |mulf f2 |f0 |fl1 |- -

FP2 |no
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Scoreboard: Cycle 7

Insn Status Reg Status
Insn S| X | W Reg|T

1df X(rl) ,fl |cl|c2|c3|c4 £0
[mulf £0,£1,£2]| c2| c4|c5+ £1 |LD

stf £2,2(rl) | c3 £2 |FP1

addi rl,4,rl | c4| c5]| c6 rl |ALU

1df X(rl),fl1 | c5 W wait: WAR hazard w/ stf (rl)
mulf £0,f1,£f2 How to tell? Untagged r1l in Fustatus
stf £2,2(rl) Requires CAM
FU Status

FU |busylop |[R |R1 |R2 |T1

ALU |yes |addi [r1l |rl |- - =

LD yes [1df [f1 |- rl |- ALU

ST |ves [stf |- [f£2 [r1“FP1 |- ~

FPl |yes |mulf [f2 |£f0 [f1 |- -
[FP2_|no
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Scoreboard: Cycle 8

Insn Status Reg Status
Insn D|S|X|W Reg|T
1df X(rl) ,f1 |cl|c2|c3|ca £0
|mulf £0,£1,£2] c2| c4|[c5+| c8 £1 |1D

mulf £0,£f1,£2| c8
stf £2 z(rl)

FU Status

FU |busylop |R |R1 |R2 [T1 [T2

ALU |yes |addi |rl |rl |- - -

LD yes |1df |fl1 |- rl-- |- ALU

ST |yes |stf |- |f2 |rl |FP1 |- £1 (FP1) is ready —» issue stf
FP1 |no free

FP2 |yes |mulf|f2 |f0 [f1 |- LD Il t
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stf £2,2(rl) c3| c8 £2 |FP1 FP2 | first mulf done (FP1)
addi rl,4,rl | c4| c5]|c6 rl |ALU
1df X(rl) ,f1 c5 W wait

Scoreboard: Cycle 9

Insn Status Reg Status
Insn DI S| X|W Reg|T
1df X(rl) ,fl |cl|c2|c3|ca £0
[mulf £0,£1,£2]| c2| c4|c5+| c8 £1 |ID
stf £2,2(rl) | c3| c8] c9 £2 |FP2
addi rl,4,rl c4| c5| c6| co rl |ALU rl written — clear
1df X(rl),fl | c5] c9
mulf £0,f1,£f2| c8

stf £2,2(rl) D stall: structural hazard Fustatus [ST]
FU Status

FU |busylop |[R |R1 |R2 [T1 [T2

ALU |no free

LD |yes |1df |f1 |- = e ALU | rl (ALU) is ready — issue 1df
ST yes |[stf |- £2 |rl |- =

FP1 |no
[Fp2_lves |murflf2 [f0 [£1 |- [mp
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Scoreboard: Cycle 10

Insn Status |Reg Status
Insn D| S| X|W |Reg | T

1df X(rl) ,f1 cl|c2|c3|c4 £0
mulf £0,£f1,£2| c2 | c4 |c5+ c8 £1 |LD
stf £2,2(rl) c3|c8| c9|cl0 £2 |FP2
addi rl,4,rl c4|c5| c6| c9 rl
1df X(rl),fl c5| c9|cl0
mulf £0,f1,£f2| c8

stf £2,Z(rl) [cl0 W & structural-dependent D in same cycle
FU Status

FU |busylop |R |R1 |R2 [T1 [T2

ALU |no

LD yes |[1df [f1 |- rl |- -

ST |yes |stf |- f2 [rl |FP2 |- free, then all

FP1 |no

FP2 |yes |mulf f2 |f0 |f1 |- LD
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In-Order vs. Scoreboard

In-Order Scoreboard

Insn D| X|W|D|S|X[W
1df X(rl),f1 cl| c2| c3|cl| c2| c3]| c4
mulf £0,f1,£f2]| c3 |cd4+| c7 | c2 | c4 | c5+| c8
stf £2,z(rl) c7 c8 c9 | c3 | c8 c9 | cl0
addi rl,4,rl c8 c9 |cl0| c4 | e5| c6 | c9
1df X(rl) , f1 cl0|cll| cl2| c5 | €9 | cl0]| cl1
mulf £0,f1,f2]|cl2|cl3+ cl6| c8 | cll|cl24 cl5
stf £2,2(rl) |c16|cl7|cl8] cl0| cl5]|cl6] cl?

¢ Big speedup?
— Only 1 cycle advantage for scoreboard
¢ Why? addi WAR hazard
* Scoreboard issued addi earlier (c8 — ¢5)
* But WAR hazard delayed W until c9
* Delayed issue of second iteration
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In-Order vs. Scoreboard II: Cache Miss

In-Order Scoreboard

Insn DI X|W|D|S|X|W
1df X(rl), f1l cl | e2+| c7 cl | c2 | c3+| c8
|mulf £0,f1,f2]| c7 | c8+| cll| c2 | c8 | c9+| cl2
stf £2,Z(rl) cll| cl2| cl3| c3 | cl2| cl3| cld
addi rl,4,rl |cl2|cl3|cl4]| c4 | c5 | c6 | cl3
1df X(rl) ,fl |cl4|cl5| cl6| c5 | cl3| cld| cl5
mulf £0,f1,£f2| c16|cl7H c20| c6 | c15|cl6H cl9
stf £2,z(xl) c20| c21| c22| c7 | €19 c20| c21

e Assume
e 5 cycle cache miss on first 1df
o Ignore FUST structural hazards
— Little relative advantage
* addi WAR hazard (c7 — c13) stalls second iteration
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Scoreboard Redux

e The good
+ Cheap hardware
* InsnStatus + FuStatus + RegStatus ~ 1 FP unit in area
+ Pretty good performance
* 1.7X for FORTRAN (scientific array) programs
e The less good
— No bypassing
 Is this a fundamental problem?
— Limited scheduling scope
* Structural/ WAW hazards delay dispatch
— Slow issue of truly-dependent (RAW) insns
* WAR hazards delay writeback
¢ Fix with hardware register renaming
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Scoreboard Pipeline Recap

Register Renaming

e New pipeline structure: F, D, S, X, W
« D (dispatch)
o Structural or WAW hazard ? stall : allocate scoreboard entry
e S (issue)
* RAW hazard ? wait : read registers, go to execute
* Detect? FUStatus.Ti != 0 = waiting for write
o W (writeback)
* WAR hazard ? wait : write register, free scoreboard entry
* Detect WAR hazard? FUStatus.Ri matches && FUStatus.Ti ==
o Detect RAW hazard? FUStatus.Ti matches
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* Register renaming (in hardware)
« Change register names to eliminate WAR/WAW hazards
¢ An elegant idea (like caching & pipelining)
e Key: think of registers (r1,£0...) as names, not storage locations
+ Can have more locations than names
+ Can have multiple active versions of same name

¢ How does it work?
* Map-table: maps names to most recent locations
* SRAM indexed by name
« On a write: allocate new location, note in map-table
* On a read: find location of most recent write via map-table lookup
* Small detail: must de-allocate locations at some point
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Register Renaming Example

Scheduling Algorithm II: Tomasulo

e Parameters
e Names: rl,r2,r3
e Locations: p1,p2,p3,p4,p5,p6,p7
« Original mapping: r1—pl, r2—p2, r3—p3, p4—p7 are “free”

MapTable FreeList Raw insns Renamed insns
[z1 [x2 [x3
|_p1 p2 |p3 4,p5,p6,p7 add r2,r3,rl add p2,p3,p4
p4 |p2 [p3 5,p6,p7 sub 12%31 sub p2,p, kp5
|p4 p2 |p5 6,p7 mul r2,/x5,r3 mul p2/p5,p6
|p4 [p2 [p6 7 div rl,4,rl div p4,4,p7
¢ Renaming
+ Removes WAW and dependences
+ Leaves RAW intact!
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e Tomasulo’s algorithm
« Reservation stations (RS): instruction buffer
« Common data bus (CDB): broadcasts results to RS
¢ Register renaming: removes WAR/WAW hazards

e First implementation: IBM 360/91 [1967]
¢ Dynamic scheduling for FP units only
¢ Bypassing

e Our example: “Simple Tomasulo”
« Dynamic scheduling for everything, including load/store
* No bypassing (for comparison with Scoreboard)
e 5RS: 1ALU, 1 load, 1 store, 2 FP (3-cycle, pipelined)
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Tomasulo Data Structures

* Reservation Stations (RS#)

FU, busy, op, R: destination register name
T: destination register tag (RS# of this RS)
T1,T2: source register tags (RS# of RS that will produce value)
V1,V2: source register values
e That's new

e Map Table

T: tag (RS#) that will write this register

e Common Data Bus (CDB)

Broadcasts <RS#, value> of completed insns

e Tags interpreted as ready-bits++
e T==0 — Value is ready somewhere
e T!=0 — Value is not ready, wait until CDB broadcasts T
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Simple Tomasulo Data Structures

Regfi
Map Table E ﬁ e

CDB.V

Fetched
insns

Ml CDB.T

¢ Insn fields and status bits
e Tags
¢ Values
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Simple Tomasulo Pipeline

» Pipeline structure: F, D, S, X, W
« D (dispatch)
* Structural hazard ? stall : allocate RS entry
e S (issue)
* RAW hazard ? wait (monitor CDB) : go to execute
o W (writeback)
* Wait for CDB
* Write register, free RS entry
* W and RAW-dependent S in same cycle
* W and structural-dependent D in same cycle
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Tomasulo Dispatch (D)

1
1
~ >
a a
Fetched R op T T T2 i o
B L1 | l==1==}
insns ==
| ==}
— 1 1

L 1
Reservation Statfons

:

o Stall for structural (RS) hazards
* Allocate RS entry
o Input register ready ? read value into RS : read tag into RS

* Set register status (i.e., rename) for output register
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Tomasulo Issue (S)

Map Table E ﬁRe e

CDB.V

Fetched
insns

R op|T T T2
L1 | I==1==1

T
Reservation Statfo

* Wait for RAW hazards

¢ Read register values from RS
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Tomasulo Execute (X)

Redfile
Map Table E E
[ 1
|
1
= >
&
a8 a
Fetched © e
insns
— T 1
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Tomasulo Writeback (W)

Map Table E

CDB.V

Fetched R op T T1 T2
insns —— —

1
Reservation Stal

o Wiait for structural (CDB) hazards
e Output Reg Status tag still matches? clear, write result to register
e CDB broadcast to RS: tag match ? clear tag, copy value
¢ Free RS entry
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Difference Between Scoreboard...

Reg Status
-

ﬁReiﬂle
% Insn

Fetched [l
insns

I
FU Status
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...And Tomasulo

Map Table ﬁ ﬁRe ile

CDB.V

Fetched
insns

ul CDB.T

¢ What in Tomasulo implements register renaming?
* Value copies in RS (V1, V2)
« Insn stores correct input values in its own RS entry
+ Future insns can overwrite master copy in regfile, doesn’ t matter
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Value/Copy-Based Register Renaming

* Tomasulo-style register renaming
o Called “value-based” or “copy-based”
« Names: architectural registers
« Storage locations: register file and reservation stations
* Values can and do exist in both
* Register file holds master (i.e., most recent) values
+ RS copies eliminate WAR hazards
* Storage locations referred to internally by RS# tags
* Register table translates names to tags
* Tag == 0 value is in register file
* Tag != 0 value is not ready and is being computed by RS#
* CDB broadcasts values with tags attached
* So insns know what value they are looking at
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Value-Based Renaming Example

1df X(rl), £l (allocated RS#2)
e MT[r1] == 0 — RS[2].V2 = RF[r1]
o MT[£1] = RS#2
mulf £0,£1,£2 (allocate RS#4)
e MT[£0] == 0 — RS[4].V1 = RF[£0]
o MT[£1] == RS#2 — RS[4].T2 = RS#2

o MT[£2] = RS#4 Map Table
addf £7,£8,£0 IReg|T

« Can write RF[£0] before mul£ executes, why?  [£0
1df X(rl),£1 |£1 |RS#2 |
L |£2 [Rs#a |

« Can write RF[£1] before mul£ executes, why?  [;1

* Can write RF[£1] before first 1d£, why?

Reservation Stations

T |FU |busylop [R |T1 [T2

2 |ID yes [1df [f1 |- - - [rl]
4 |FP1 |yes |mulf|f2 |- RS#2 [[£0] | ]
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Tomasulo Data Structures

Insn Status Map Table CDB
Insn D| S| X|W |Reg |T T
1df X(rl),f1 £0

mulf £0,£f1,£2 £1
stf £2,z(rl) £2
addi rl,4,rl rl

1df X(rl) ,f1
mulf £0,f1,£f2
stf £2,2(rl)

Reservation Stations
FU |busylop |[R |T1 |T2

ALU |no
1D no
ST |no
FP1 |no
FP2 |no

ERRNEE
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Tomasulo: Cycle 1

Insn Status Map Table CDB
Insn D| S| X|W Reg|T T
1df X(rl) f1 | cl £0

|mulf £0,£f1,f2 £f1 |RS#2
stf £2,2(rl) £2
addi rl,4,rl rl
1df X(rl) ,f1
mulf £0,£f1,£2
stf £2,2(rl)

Reservation Stations

FU |busylop |R |T1 |T2

ALU |no
ID |yes |1df |f1 |- - - [r1] |allocate
ST no
FP1l |no
FP2 |no

G (GO ==
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Tomasulo: Cycle 2

Insn Status Map Table CDB
Insn D| S| X|W Reg|T T
1df X(rl) £l | cl]| c2 £0

|mulf £0,f1,£2| c2 £f1 |RS#2
stf £2,2(rl) £2 |RS#4
addi rl,4,rl rl

1df X(rl) £l
mulf £0,£1,£2
stf £2,2(rl)

Reservation Stations

FU |busylop |[R |T1 |T2

ALU |no
LD |yes [1df [f1 |- - = [r1]
ST no
FPl |yes |mulf [f2 |- RS#2 |[£0] |- allocate
FP2 |no

RN
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Tomasulo: Cycle 3

Insn Status Map Table CDB
Insn DI S| X|W Reg|T T
1df X(rl),f1 |cl|c2|c3 £0

|mulf f£0,f£1,£2] c2 |£1 |Rs#2

stf £2,2(rl) | c3 |£2 |Rs#4

addi rl,4,rl rl

1df X(rl) ,f1
mulf £0,£f1,£2
stf £2 z(rl)

Reservation Stations

FU |busylop |R |T1 |T2

—

ALU |no

LD yes |1df |fl |- —

= [rl]

ST |yes |stf |- RS#4 |-

— [r1] |allocate

FPl |yes |mulf|f2 |- RS#2 |[£0] |-

RN

FP2 |no
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Tomasulo: Cycle 4

Tomasulo: Cycle 5

Insn Status |Map Table CDB
Insn D| S| X|W |Reg | T T
1df X(rl) ,f1 cl|c2|c3|c4 £0

mulf £0,f1,£f2| c2| c4|c5 |£1 |Rs#2

stf £2,Z(rl) | c3 £2 |RS#4

addi r1,4,rl | c4]|c5 lrl |Rs#1

1df X(rl) ,f1 | c5
mulf £0,f1,£2
stf £2,2(rl)

Insn Status Map Table CDB

Insn D|S|X|W Reg|T

1df X(rl),fl cl|c2| c3|c4 £0

|mulf £0,f1,£2| c2| c4 |£1 |RS#2 T

stf £2,2(rl) | c3 |£2 |Rs#4

addi rl,4,rl1 | c4 lz1 [Rrs#1

1df X(rl) ,f1

mulf £0,f1,f2

stf £2,2(rl) 1df finished (W)

'— clear £1 RegStatus
- - CDB broad

Reservation Stations

T |[FU |busylop |R [T1 [T2

1 |ALU |yes |addi [rl |- - [r1l] |- allocate

2 |ID |no free

3 [ST |yes |stf |- |RS#4 |- = [r1l]

4 |FP1 |yes |mulf[f2 |- RS#2 |[£0] [CDB.V|RS#2 ready —

5 |FP2 |no grab CDB value
values ready = issue
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Tomasulo: Cycle 6

Insn Status |Map Table CDB

Insn D| S| X|W |Reg |T T

1df X(rl),f1 cl|c2|c3|c4 £0

mulf £0,£f1,£f2| c2 | c4 |c5+ |£1 |RS#2

stf £2,2(rl) c3 |£2 |RS#4RS#5|

addi rl,4,rl c4| c5]| c6 |r1l |RS#1

1df X(rl),fl c5

mulf £0,f1,£2| c6 no D stall on WAW: scoreboard would

stf £2,2(rl) overwrite £2 RegStatus —————

anyone who needs old £2 tag has it

Reservation Stations

T |[FU |busylop [R [T1 [T2

1 |ALU |yes |addi |rl |- - [rl] |-

2 |ID |yes |1df |f1 |- RS#1 |- - allocate

3 |ST |yes |stf |- RS#4 |- - [r1l]

4 |FPl |yes |mulf |f2 |- - [£0] |[£f1]

5 |FP2 |no
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Tomasulo: Cycle 7

Insn Status Map Table

Insn D|S|X|W Reg|T

1df X(rl),fl cl|c2|c3| c4 £0
|mulf f£0,f£1,£2] c2 ] c4[e5+ [£1 [rs#2

stf £2,2(rl) | c3 |£2 [rs#5

addi rl,4,rl | c4|c5]|c6| cT [zl |RS#1

1df X(rl),fl1 | c5] c7 no W wait on WAR: scoreboard would
mulf £0,£f1,£f2| c6 anyone who needs old r1 has RS copy
stf £2,2(rl) D stall on store RS: structural

addi finished (W)

Reservation Stations

clear r1 RegStatus

—

FPl |yes |mulf |f2 |- -

[£0] |[f1]

FP2 |yes |mulf|f2 |- RS#2 [[£0] |-

T |[FU_|busy|op R [T1 T2 CDB broadcast

1 |ALU |no

2 |LD yes |1df |fl1 |- RS#1 |- CDB.V|RS#1 ready —

3 |ST |yes |stf |- RS#4 |- - [r1] |grab CDB value, issue
4

5
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Reservation Stations

T |[FU |busylop |R [T1 [T2

1 |ALU |yes |addi [r1l |- - [rl] |-

2 |ID yes [1df [f1 |- RS#1 |- -

3 |ST |yes |stf |- RS#4 |- - [rl]

4 |FP1 |yes |mulf[f2 |- - [£0] |[f1]

5 |FP2 |yes [mulf|f2 |- RS#2 |[fO] |- allocate
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Tomasulo: Cycle 8

Insn Status Map Table CDB

Insn D] S| X[W]| [Reg|T T W
1df X(rl) f1 | cl|c2|c3|c4 £0 [Rs#4 [[£2]]
[mulf £0,£1,£2]| c2| c4|c5+| c8 |£1 |Rs#2

stf £2,2(rl) | c3| c8 £2 |RS#5

addi rl,4,rl | c4| c5|c6]| c7 rl

1df X(rl) ,f1 | c5| c7| c8 mul finished (W)

mulf £0,£1,£2) c6 don’ t clear £2 RegStatus
stf £2,7(rl)

already overwritten by 2nd mulf (RS#5)
CDB broadcast

Reservation Stations

FU |busylop |R |T1

sz

ALU |no

LD yes [1df [f1 |- -

= [rl]

ST yes [stf |- RS#4 |-

FP1 [no

CDB.V|[rl] |RS#4 ready —
grab CDB value

RN

FP2 |yes |mulf f2 |- RS#2 |[fO] |-
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Tomasulo: Cycle 9

Insn Status Map Table CDB

Insn D|S|X|W Reg|T

1df X(rl),fl cl|c2|c3| c4 £0

|mulf £0,£f1,f2| c2 | c4 |c5+| c8 |£1 |RS#2

stf £2,2(rl) c3|c8| co |£2 |RS#5

addi rl,4,rl c4| c5|c6]| c7 rl

1df X(rl) ,f1 c5|c7| c8]| c9 2nd 14f finished (W)

mulf £0,fl1,£f2| c6| c9 clear £1 Reg 1

Stf £2,2(rl) CDB broadcast

Reservation Stations

T |[FU |busylop [R [T1 [T2

1 |ALU |no

2 |LD no

3 [sT |yes [stf |- [- - [£2] |[r1]

4 |FP1l |no

5 |FP2 |yes |mulf |f2 |- RS#2 |[£0] |CDB.V|RS#2 ready —
grab CDB value, issue
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Tomasulo: Cycle 10

Insn Status Map Table CDB
Insn DI S| X|W Reg|T T
1df X(rl) ,£f1 | cl|c2|c3| ca £0

|mulf £0,f1,£2| c2| c4 |c5+| c8 £1
stf £2,2(rl) c3| c8| c9cl0 |£2 |RS#5
addi rl,4,rl | c4| c5|c6]| c? ]l
1df X(rl1) ,f1 c5| c7| e8| c9| .if finished (W)
mulf £0,f1,f2| c6| c9 |cl0
stf £2,2(rl) |cl0

Reservation Stations

T |[FU |busylop |[R [T1 [T2

ALU |no
LD no
ST |yes |stf |- RS#5 |- - [r1] |free — allocate
FP1 |no
FP2 |yes |mulf [f2 |- - [£0] |[£f1]

aANERE
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Scoreboard vs. Tomasulo

Scoreboard Tomasulo

Insn D|S|X|W|D|S|X|W
1df X(rl) ,f1 cl| c2 | c3| c4|cl|c2| c3]| c4
mulf £0,f1,f2| c2 | c4 |c5+| c8 | c2 | c4 | c5+| c8
stf £2,Z(rl) c3 c8 c9 [ cl0| e3 c8 c9 | cl0
addi rl,4,rl c4 c5 c6| c9| c4 c5 c6 | c7
1df X(rl) , f1l c5 c9 [cl0|cll| c5 c7 c8 c9
mulf £0,f1,f2]| e8 | c11|cl12+ c15| c6 | c9 [cl0+4 c13
stf £2,2(rl) | cl0]|cl5]|cl6|cl7|clO| cl3| cld]| cl5

Hazard Scoreboard Tomasulo
Insn buffer stall in D stall in D
FU wait in S wait in S
RAW wait in S wait in S
WAR wait in W none
WAW stall in D none
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Scoreboard vs. Tomasulo II: Cache Miss

no output register — no CDB broadcast

Scoreboard Tomasulo

Insn D|S|X|W|D|S|X|W
1df X(rl) ,fl cl| c2|c3+| c8| cl | c2 |c3+| c8
mulf £0,f1,f2| c2 | c8 | c9+| cl2| c2 | c8 | c9+| cl2
stf £2,Z(rl) c3 [ cl2| cl3| cld4| c3 | cl2| cl3| cl4
addi rl,4,rl cd c5 c6 | cl3| c4 c5 c6 | c7
1df X(rl) , f1 c8 | cl3| cl4| cl5| c5 c7 c8 c9
mulf £0,f1,£f2] cl2| c15|cl64 c19| c6 | c9 |cl0+H c13
stf £2,2(rl) | cl3|cl9]| c20|c21] c7 |cl3]|cld| cl5

e Assume
¢ 5 cycle cache miss on first 1df
¢ Ignore FUST and RS structural hazards
+ Advantage Tomasulo
* No addi WAR hazard (c7) means iterations run in parallel
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Can We Add Superscalar?

» Dynamic scheduling and multiple issue are orthogonal
* E.g., Pentium4: dynamically scheduled 5-way superscalar
¢ Two dimensions
* N: superscalar width (number of parallel operations)
* W: window size (number of reservation stations)

¢ What do we need for an N-by-W Tomasulo?
RS: N tag/value w-ports (D), 2Nvalue r-ports (S), 2N tag CAMs
(W)

Select logic: W—=N priority encoder (S)

MT: 2N r-ports (D), N w-ports (D)

RF: 2N r-ports (D), N w-ports (W)

CDB: N (W)

Which are the expensive pieces?
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Superscalar Select Logic

e Superscalar select logic: W—N priority encoder
— Somewhat complicated (N2 logW)
¢ Can simplify using different RS designs
» Split design
« Divide RS into N banks: 1 per FU?
o Implement N separate W/N—1 encoders
+ Simpler: N * logW/N
— Less scheduling flexibility
¢ FIFO design [Palacharla+]
« Can issue only head of each RS bank
+ Simpler: no select logic at all
— Less scheduling flexibility (but surprisingly not that bad)
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Can We Add Bypassing?

Map Table ﬁ ﬁRe e
=
1
= >
a 2
Fetched © e
insns | — T |
! 1 1 —> 1 1
L 1 1 — 1 1
Reservation Statfons
¢ Yes, but it’s more complicated than you might think
« In fact: requires a completely new pipeline
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Why Out-of-Order Bypassing Is Hard

No Bypassing Bypassing
Insn D| S| X|W|]D|S|X|W

1df X(rl),fl cl c2 c3 | c4 cl c2 c3 c4
|mulf £0,f1,f2| c2 | c4 |c5+| c8 | c2 | c3 | cd+| c7
stf £2,Z(rl) c3| c8| c9|cl0| c3 | c6| c7 | c8
addi rl,4,rl c4 | c5| c6| c7| c4| c5| c6| c7
1df X(rl),f1 c5 | c7| c8| c9]| c5] c7| 7| c9
mulf £0,f1,f2| c6 | c9 |cl0+ c13| c6 | c9 | c8+| c13
stf £2,z(rl) cl0| c13| cl4| c15]| c10) cl13]| cll| cl15

e Bypassing: 1df X in c3 — mulf X in ¢4 — mulf Sinc3
e But how can mulf Sin c3 if 1df W in c4? Must change pipeline
e Modern scheduler
« Split CDB tag and value, move tag broadcast to S
* 1df tag broadcast now in cycle 2 — mulf S in cycle 3
¢ How do multi-cycle operations work? How do cache misses work?
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Dynamic Scheduling Summary

¢ Dynamic scheduling: out-of-order execution
« Higher pipeline/FU utilization, improved performance
« Easier and more effective in hardware than software
+ More storage locations than architectural registers
+ Dynamic handling of cache misses
¢ Instruction buffer: multiple F/D latches
« Implements large scheduling scope + “passing” functionality
« Split decode into in-order dispatch and out-of-order issue
 Stall vs. wait
¢ Dynamic scheduling algorithms
e Scoreboard: no register renaming, limited out-of-order
* Tomasulo: copy-based register renaming, full out-of-order
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