U. Wisconsin CS/ECE 752
Advanced Computer Architecture I

Prof. David A. Wood

Unit 5: Dynamic Scheduling I

Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

Slides enhanced by Milo Martin, Mark Hill, and David Wood
with sources that included Profs. Asanovic, Falsafi, Hoe,
Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood

CS/ECE 752 (Wood): Dynamic Scheduling T 1

This Unit: Dynamic Scheduling I

¢ Dynamic scheduling
¢ Out-of-order execution
e Scoreboard
* Dynamic scheduling with WAW/WAR
Memory e Tomasulo’ s algorithm
* Add register renaming to fix WAW/WAR

Digital Circuits

Gates & Transistors

o Next unit
* Adding speculation and precise state
¢ Dynamic load scheduling

CS/ECE 752 (Wood): Dynamic Scheduling T 2

The Problem With In-Order Pipelines

1 2 3456 7 8910111213141516
addf £0,£1,£2 [F D E+E+E+ W
mulf £2,£3,£2 F--D-d*-d*E* E* B EXEX W,
subf £0,fl,f4 F p* p* D E+E+E+ W

e What’ s happening in cycle 4?
¢ mulf stalls due to RAW hazard
* OK, this is a fundamental problem
* subf stalls due to pipeline (structural) hazard
* Why? subf can’t proceed into D because addf is there
« That is the only reason, and it isn’ t a fundamental one

e Why can’t sub£ go into D in cycle 4 and E+ in cycle 6?

CS/ECE 752 (Wood): Dynamic Scheduling T 3

Dynamic Scheduling: The Big Picture

add p2,p3,p4
sub p%S
mul p27p5,p6 regfile

div p4,4,p7 ,_| —

insn buffer D$|
s —

Ready Table
P2 |P3 |P4 [P5 |P6 |P7
Yes|Yes| add p2,p3,p4 Time
Yes|Yes Yes| Yes| sub p2,p4,p5 and div p4,4,p7
Yes|Yes Yes|Yes| Yes| mul p2,p5,p6
Yes|Yes Yes|Yes|Yes|Yes|

¢ Instructions fetch/decoded/renamed into Instruction Buffer
o Also called “instruction window” or “instruction scheduler”
¢ Instructions (conceptually) check ready bits every cycle

¢ Execute when ready
CS/ECE 752 (Wood): Dynamic Scheduling I 4

Register Renaming

¢ To eliminate WAW and WAR hazards
e Example
e Names: r1,r2,r3
e Locations: p1,p2,p3,p4,p5,pP6,pP7
« Original mapping: r1—pl, r2—p2, r3—p3, p4—p7 are “free”

MapTable FreeList Raw insns Renamed insns
rl |r2 |r3

pl |[p2 |p3 p4,p5,p6,p7 add r2,r3,x1 add p2,p3,p4
p4 |p2 |p3 p5,p6,p7 sub r2,rx; ‘}31 sub p2,p4,p5
p4 |p2 [p5 p6,p7 mul r2,/r5.r3 mul p27/p5,p6
|p4_[p2 |p6 p7 div rl,4,rl div p4,4,p7

¢ Renaming
+ Removes WAW and dependences

+ Leaves RAW intact!

CS/ECE 752 (Wood): Dynamic Scheduling T 5

Dynamic Scheduling - 00O Execution

* Dynamic scheduling

e Totally in the hardware

e Also called “out-of-order execution” (000)
¢ Fetch many instructions into instruction window

¢ Use branch prediction to speculate past (multiple) branches

e Flush pipeline on branch misprediction
* Rename to avoid false dependencies (WAW and WAR)
» Execute instructions as soon as possible

« Register dependencies are known

« Handling memory dependencies more tricky (much more later)
¢ Commit instructions in order

¢ Any strange happens before commit, just flush the pipeline
¢ Current machines: 64-200+ instruction scheduling window

CS/ECE 752 (Wood): Dynamic Scheduling T 6

Static Instruction Scheduling

Motivation Dynamic Scheduling

» Issue: time at which insns execute
¢ Schedule: order in which insns execute
¢ Related to issue, but the distinction is important

¢ Scheduling: re-arranging insns to enable rapid issue
« Static: by compiler
* Requires knowledge of pipeline and program dependences
« Pipeline scheduling: the basics
« Requires large scheduling scope full of independent insns
* Loop unrolling, software pipelining: increase scope for loops
* Trace scheduling: increase scope for non-loops

Anything software can do ... hardware can do better

CS/ECE 752 (Wood): Dynamic Scheduling T 7

* Dynamic scheduling (out-of-order execution)
* Execute insns in non-sequential (non-VonNeumann) order...
+ Reduce RAW stalls
+ Increase pipeline and functional unit (FU) utilization
« Original motivation was to increase FP unit utilization
+ Expose more opportunities for parallel issue (ILP)
« Not in-order — can be in parallel
o ...but make it appear like sequential execution
* Important
— But difficult
* Next unit

CS/ECE 752 (Wood): Dynamic Scheduling T 8

Before We Continue

Going Forward: What’ s Next

o If we can do this in software...

¢ ...why build complex (slow-clock, high-power) hardware?
+ Performance portability
« Don’ t want to recompile for new machines
+ More information available
* Memory addresses, branch directions, cache misses
+ More registers available (??)
* Compiler may not have enough to fix WAR/WAW hazards
+ Easier to speculate and recover from mis-speculation
* Flush instead of recover code
— But compiler has a larger scope
* Compiler does as much as it can (not much)
* Hardware does the rest

CS/ECE 752 (Wood): Dynamic Scheduling T 9

o We’ll build this up in steps over the next few weeks
e “Scoreboarding” - first 000, no register renaming
« “Tomasulo’ s algorithm” - adds register renaming
* Handling precise state and speculation
* P6-style execution (Intel Pentium Pro)
* R10k-style execution (MIPS R10k)
¢ Handling memory dependencies
» Conservative and speculative

e Let’s get started!

CS/ECE 752 (Wood): Dynamic Scheduling I 10

Dynamic Scheduling as Loop Unrolling

Loop Example: SAX (SAXPY — PY)

¢ Three steps of loop unrolling
e Step I: combine iterations
« Increase scheduling scope for more flexibility
e Step II: pipeline schedule
* Reduce impact of RAW hazards
o Step III: rename registers
* Remove WAR/WAW violations that result from scheduling

CS/ECE 752 (Wood): Dynamic Scheduling T 11

e SAX (Single-precision A X)
¢ Only because there won’t be room in the diagrams for SAXPY

for (i=0;i<N;i++)
Z[i]=A*X[i];

0: 1df X(rl),fl // loop
1: mulf £0,£f1,£f2 // A in £0
2: stf £2,Z(rl)
3: addi r1l,4,rl // i in rl
4: blt rl,r2,0 // N*4 in r2

« Consider two iterations, ignore branch

1df, mulf, stf, addi, 1df, mulf, stf

CS/ECE 752 (Wood): Dynamic Scheduling T 12

New Pipeline Terminology

¢ In-order pipeline
« Often written as F,D,X,W (multi-cycle X includes M)
« Example pipeline: 1-cycle int (including mem), 3-cycle pipelined FP

CS/ECE 752 (Wood): Dynamic Scheduling T 13

New Pipeline Diagram

[Tnsn D[X[W
|1af x(r1),£1 [c1| c2 | 3
|mure £0,£1,£2] c3 [cat]| c7
stf £2,7Z(rl) c7| c8 | c9
addi rl,4,rl c8 | c9 | cl0
1df X(rl) £l | cl0|cll|cl2
mulf £0,£f1,f2| c12|cl3+ cl6
stf £2,7Z(rl) clé| cl7| cl8

¢ Alternative pipeline diagram
Down: insns

Across: pipeline stages

In boxes: cycles

Basically: stages < cycles
Convenient for out-of-order

CS/ECE 752 (Wood): Dynamic Scheduling T 14

The Problem With In-Order Pipelines

,_| regfile

¢ In-order pipeline
e Structural hazard: 1 insn register (latch) per stage
« 1insn per stage per cycle (unless pipeline is replicated)
« Younger insn can’ t “pass” older insn without “clobbering” it
¢ Out-of-order pipeline
« Implement “passing” functionality by removing structural hazard

CS/ECE 752 (Wood): Dynamic Scheduling T 15

Instruction Buffer

insn buffer

regfile

e Trick: insn buffer (many names for this buffer)

* Basically: a bunch of latches for holding insns

¢ Implements iteration fusing ... here is your scheduling scope
e Split D into two pieces

¢ Accumulate decoded insns in buffer in-order

« Buffer sends insns down rest of pipeline out-of-order

CS/ECE 752 (Wood): Dynamic Scheduling I 16

Dispatch and Issue

regfile

D$
D s —

[0 |

¢ Dispatch (D): first part of decode

e Allocate slot in insn buffer

— New kind of structural hazard (insn buffer is full)

« In order: stall back-propagates to younger insns
¢ Issue (S): second part of decode

¢ Send insns from insn buffer to execution units

+ Out-of-order: wait doesn’ t back-propagate to younger insns
CS/ECE 752 (Wood): Dynamic Scheduling I 17

Dispatch and Issue with Floating-Point

insn buffer

regfile

CS/ECE 752 (Wood): Dynamic Scheduling T 18

Dynamic Scheduling Algorithms

Scheduling Algorithm I: Scoreboard

» Three parts to loop unrolling
e Scheduling scope: insn buffer
¢ Pipeline scheduling and register renaming: scheduling algorithm

» Look at two register scheduling algorithms
¢ Register scheduler: scheduler based on register dependences
¢ Scoreboard
* No register renaming — limited scheduling flexibility
¢ Tomasulo
* Register renaming — more flexibility, better performance

» Big simplification in this unit: memory scheduling
« Pretend register algorithm magically knows memory dependences

¢ A little more realism next unit

CS/ECE 752 (Wood): Dynamic Scheduling T 19

e Scoreboard
¢ Centralized control scheme: insn status explicitly tracked
o Insn buffer: Functional Unit Status Table (FUST)

o First implementation: CDC 6600 [1964]

« 16 separate non-pipelined functional units (7 int, 4 FP, 5 mem)
* No register bypassing

e Our example: “Simple Scoreboard”
e 5FU: 1 ALU, 1 load, 1 store, 2 FP (3-cycle, non-pipelined)

CS/ECE 752 (Wood): Dynamic Scheduling I 20

Scoreboard Data Structures

Simple Scoreboard Data Structures

e FU Status Table

* FU, busy, op, R, R1, R2: destination/source register names

o T: destination register tag (FU producing the value)

e T1,T2: source register tags (FU producing the values)
¢ Register Status Table

e T: tag (FU that will write this register)
e Tags interpreted as ready-bits

e Tag == 0 — Value is ready in register file

e Tag != 0 — Value is not ready, will be supplied by T
¢ Insn status table

« S,X bits for all active insns

CS/ECE 752 (Wood): Dynamic Scheduling T 21

Redfile
x sl Reg Status
1]
1

insns

FU Status

¢ Insn fields and status bits
e Tags
¢ Values

CS/ECE 752 (Wood): Dynamic Scheduling I 22

Scoreboard Pipeline

Scoreboard Dispatch (D)

¢ New pipeline structure: F, D, S, X, W
o F (fetch)
* Same as it ever was
« D (dispatch)
o Structural or WAW hazard ? stall : allocate scoreboard entry
e S (issue)
* RAW hazard ? wait : read registers, go to execute
* X (execute)
* Execute operation, notify scoreboard when done
¢ W (writeback)
* WAR hazard ? wait : write register, free scoreboard entry
* W and RAW-dependent S in same cycle
* W and structural-dependent D in same cycle

CS/ECE 752 (Wood): Dynamic Scheduling T 23

Regfil
%Insn Reg Status e= ﬁ'e

insns

FU Status

o Stall for WAW or structural (Scoreboard, FU) hazards
o Allocate scoreboard entry
e Copy Reg Status for input registers
e Set Reg Status for output register

CS/ECE 752 (Wood): Dynamic Scheduling I 24

Scoreboard Issue (S)

Redfile

s x L& Reg Slatus
-

FU Status

¢ Wait for RAW register hazards
o Read registers

CS/ECE 752 (Wood): Dynamic Scheduling T 25

Issue Policy and Issue Logic

e Issue
o If multiple insns ready, which one to choose? Issue policy
 Oldest first? Safe
* Longest latency first? May yield better performance
¢ Select logic: implements issue policy
* W—1 priority encoder
* W: window size (number of scoreboard entries)

CS/ECE 752 (Wood): Dynamic Scheduling I 26

Scoreboard Execute (X)

Redfile
s x Sl Reg Status
H 1]
11

[FWl R1 R2 R
insns i
Insns

 —— —
FU Status

e Execute insn

CS/ECE 752 (Wood): Dynamic Scheduling T 27

Scoreboard Writeback (W)

iReifile

s x Sl Reg Status
1]

insns

FU Status

¢ Wait for WAR hazard
e Write value into regfile, clear Reg Status entry
e Compare tag to waiting insns input tags, match ? clear input tag
* Free scoreboard entry

CS/ECE 752 (Wood): Dynamic Scheduling I 28

Scoreboard Data Structures

Insn Status Reg Status

Insn DI S| X[W Reg|T

1df X(rl),fl £0

|mulf £0,£f1,f2 f1

stf £2,2(rl) £2

addi rl,4,rl rl

1df X(rl) ,f1

mulf £0,£f1,£2

stf £2,2(xrl) \ Doesn't exist in actual hardware

Serves as Tag

FU Status
FU” |busylop |R |R1 |R2 [T1 [T2
[ALU no
LD no
ST no
FP1 |no
[FP2_|no

CS/ECE 752 (Wood): Dynamic Scheduling T 29

Scoreboard: Cycle 1

Insn Status Reg Status
Insn DI S| X|W Reg|T
1df X(rl),f1 | cl £0

[mulf fo,f£1,£2 £1 |1D
stf £2,2Z(rl) £2

addi rl,4,rl rl

1df X(rl) ,fl

mulf £0,£f1,£f2

stf £2,2(rl)

FU Status
FU |busylop |[R |R1 |R2 |T1 |T2
ALU |no
ID |yes |1df [f1 |- rl |- - allocate
ST no
FP1 |no
|ER2 [no

CS/ECE 752 (Wood): Dynamic Scheduling I 30

Scoreboard: Cycle 2

Scoreboard: Cycle 3

Insn Status Reg Status
Insn D|S|X|W Reg|T

1df X(rl),fl |cl|c2 £0

|mulf f£0,f£1,£2] c2 £1 |ILD

stf £2,2Z(rl) £2 [FP1
addi rl,4,rl rl

1df X(rl),fl

mulf £0,f1,£2

stf £2,Z(rl)

FU Status

FU |busylop |R |R1 |R2 [T1 [T2

[ALU no

LD yes |1df |fl1 |- rl-- |- =

ST no

FP1 |yes |mulf[f2 [f0 [f1 |- LD 1l
FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling I 31
Scoreboard: Cycle 4

Insn Status |Reg Status
Insn D| S| X|W |Reg | T

1df X(rl) ,f1 cl|c2|c3| c4 £0

mulf £0,£f1,£2| c2| c4 £1 |LD £1 written — clear
stf £2,Z(rl) | c3 £2 |FP1

addi rl,4,rl | c4 rl |ALU

1df X(rl),fl

mulf £0,f£1,£2

stf £2,Z(rl)

FU Status

FU |busylop |R |R1 |R2 [T1 [T2

ALU |yes |addi|rl |rl |- - - allocate
1D [no free

ST yes |[stf |- f2 |rl |FP1 |-

FP1 |yes |mulf|f2 |f0 |f1 |- 1D £0 (LD) is ready — issue mulf
FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling T

Scoreboard: Cycle 6

Insn Status Reg Status

Insn DI S| X[W Reg|T

1df X(rl) ,f1 | cl|c2|c3| c4 £0

|mulf £0,£1,£2| c2| c4 |c5+ £1 |LD

stf £2,2(rl) | c3 £2 |FP1

addi rl,4,rl | c4| c5]|c6 rl |ALU

1df X(rl) ,£f1 | c5

mulf £0,£f1,£2 D stall: WAW hazard w/ mulf (£2)
stf £2,z(rl) How to tell? RegStatus[£2] non-empty
FU Status

FU |busylop |R |R1 |R2 |[T1 [T2

ALU |yes |addi |rl |rl |- - -

LD yes [1df [f1 |- rl |- ALU

ST yes |[stf |- f2 |rl |FP1 -

FP1 |yes |mulf |f2 |f0 |f1 |- -

FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling T

Insn Status Reg Status
Insn D|S|X|W Reg|T

1df X(rl),fl | cl|c2]|c3 £0

[mulf f0,£1,£2] c2 £1 |ID

stf £2,2(rl) | c3 £2 |FP1

addi rl,4,rl rl

1df X(rl),fl

mulf £0,f1,£2

stf £2,Z(rl)

Functional unit status

FU |busy|op R1 |R2 |T1 [T2

ALU |no

LD yes |1df |fl |- rl-- |- -

ST yes [stf |- f2 |rl |FP1 - allocate
FPl |yes |mulf [£2 |£0 [f1 |- 1D

FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling I 32
Scoreboard: Cycle 5

Insn Status |Reg Status
Insn D| S| X|W |Reg |T

1df X(rl),f1 cl|c2|c3|c4 £0

mulf £0,£f1,£f2| c2| c4 | c5 £1 |LD

stf £2,z(rl) | c3 £2 |FP1
addi r1,4,rl | c4]c5 rl |ALU

1df X(rl),fl | c5

mulf £0,f£1,£2

stf £2,2(rl)

FU Status

FU |busylop |[R |R1 |R2 [T1 [T2

ALU |yes |addi [rl |rl |- - -

LD |yes |1df [f1 |- rl |- ALU |l

ST yes [stf |- f2 |rl |FP1 -

FPl |yes |mulf f2 |f0 |fl1 |- -

FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling I 34
Scoreboard: Cycle 7

Insn Status Reg Status
Insn S| X | W Reg|T

1df X(rl) ,fl |cl|c2|c3|c4 £0
[mulf £0,£1,£2]| c2| c4|c5+ £1 |LD

stf £2,2(rl) | c3 £2 |FP1

addi rl,4,rl | c4| c5]| c6 rl |ALU

1df X(rl),fl1 | c5 W wait: WAR hazard w/ stf (rl)
mulf £0,f1,£f2 How to tell? Untagged r1l in Fustatus
stf £2,2(rl) Requires CAM
FU Status

FU |busylop |[R |R1 |R2 |T1

ALU |yes |addi [r1l |rl |- - =

LD yes [1df [f1 |- rl |- ALU

ST |ves [stf |- [f£2 [r1“FP1 |- ~

FPl |yes |mulf [f2 |£f0 [f1 |- -
[FP2_|no

CS/ECE 752 (Wood): Dynamic Scheduling T

Scoreboard: Cycle 8

Insn Status Reg Status
Insn D|S|X|W Reg|T
1df X(rl) ,f1 |cl|c2|c3|ca £0
|mulf £0,£1,£2] c2| c4|[c5+| c8 £1 |1D

mulf £0,£f1,£2| c8
stf £2 z(rl)

FU Status

FU |busylop |R |R1 |R2 [T1 [T2

ALU |yes |addi |rl |rl |- - -

LD yes |1df |fl1 |- rl-- |- ALU

ST |yes |stf |- |f2 |rl |FP1 |- £1 (FP1) is ready —» issue stf
FP1 |no free

FP2 |yes |mulf|f2 |f0 [f1 |- LD Il t

CS/ECE 752 (Wood): Dynamic Scheduling I 37

stf £2,2(rl) c3| c8 £2 |FP1 FP2 | first mulf done (FP1)
addi rl,4,rl | c4| c5]|c6 rl |ALU
1df X(rl) ,f1 c5 W wait

Scoreboard: Cycle 9

Insn Status Reg Status
Insn DI S| X|W Reg|T
1df X(rl) ,fl |cl|c2|c3|ca £0
[mulf £0,£1,£2]| c2| c4|c5+| c8 £1 |ID
stf £2,2(rl) | c3| c8] c9 £2 |FP2
addi rl,4,rl c4| c5| c6| co rl |ALU rl written — clear
1df X(rl),fl | c5] c9
mulf £0,f1,£f2| c8

stf £2,2(rl) D stall: structural hazard Fustatus [ST]
FU Status

FU |busylop |[R |R1 |R2 [T1 [T2

ALU |no free

LD |yes |1df |f1 |- = e ALU | rl (ALU) is ready — issue 1df
ST yes |[stf |- £2 |rl |- =

FP1 |no
[Fp2_lves |murflf2 [f0 [£1 |- [mp

CS/ECE 752 (Wood): Dynamic Scheduling I 38

Scoreboard: Cycle 10

Insn Status |Reg Status
Insn D| S| X|W |Reg | T

1df X(rl) ,f1 cl|c2|c3|c4 £0
mulf £0,£f1,£2| c2 | c4 |c5+ c8 £1 |LD
stf £2,2(rl) c3|c8| c9|cl0 £2 |FP2
addi rl,4,rl c4|c5| c6| c9 rl
1df X(rl),fl c5| c9|cl0
mulf £0,f1,£f2| c8

stf £2,Z(rl) [cl0 W & structural-dependent D in same cycle
FU Status

FU |busylop |R |R1 |R2 [T1 [T2

ALU |no

LD yes |[1df [f1 |- rl |- -

ST |yes |stf |- f2 [rl |FP2 |- free, then all

FP1 |no

FP2 |yes |mulf f2 |f0 |f1 |- LD

CS/ECE 752 (Wood): Dynamic Scheduling T 39

In-Order vs. Scoreboard

In-Order Scoreboard

Insn D| X|W|D|S|X[W
1df X(rl),f1 cl| c2| c3|cl| c2| c3]| c4
mulf £0,f1,£f2]| c3 |cd4+| c7 | c2 | c4 | c5+| c8
stf £2,z(rl) c7 c8 c9 | c3 | c8 c9 | cl0
addi rl,4,rl c8 c9 |cl0| c4 | e5| c6 | c9
1df X(rl) , f1 cl0|cll| cl2| c5 | €9 | cl0]| cl1
mulf £0,f1,f2]|cl2|cl3+ cl6| c8 | cll|cl24 cl5
stf £2,2(rl) |c16|cl7|cl8] cl0| cl5]|cl6] cl?

¢ Big speedup?
— Only 1 cycle advantage for scoreboard
¢ Why? addi WAR hazard
* Scoreboard issued addi earlier (c8 — ¢5)
* But WAR hazard delayed W until c9
* Delayed issue of second iteration

CS/ECE 752 (Wood): Dynamic Scheduling I 40

In-Order vs. Scoreboard II: Cache Miss

In-Order Scoreboard

Insn DI X|W|D|S|X|W
1df X(rl), f1l cl | e2+| c7 cl | c2 | c3+| c8
|mulf £0,f1,f2]| c7 | c8+| cll| c2 | c8 | c9+| cl2
stf £2,Z(rl) cll| cl2| cl3| c3 | cl2| cl3| cld
addi rl,4,rl |cl2|cl3|cl4]| c4 | c5 | c6 | cl3
1df X(rl) ,fl |cl4|cl5| cl6| c5 | cl3| cld| cl5
mulf £0,f1,£f2| c16|cl7H c20| c6 | c15|cl6H cl9
stf £2,z(xl) c20| c21| c22| c7 | €19 c20| c21

e Assume
e 5 cycle cache miss on first 1df
o Ignore FUST structural hazards
— Little relative advantage
* addi WAR hazard (c7 — c13) stalls second iteration

CS/ECE 752 (Wood): Dynamic Scheduling T 41

Scoreboard Redux

e The good
+ Cheap hardware
* InsnStatus + FuStatus + RegStatus ~ 1 FP unit in area
+ Pretty good performance
* 1.7X for FORTRAN (scientific array) programs
e The less good
— No bypassing
 Is this a fundamental problem?
— Limited scheduling scope
* Structural/ WAW hazards delay dispatch
— Slow issue of truly-dependent (RAW) insns
* WAR hazards delay writeback
¢ Fix with hardware register renaming

CS/ECE 752 (Wood): Dynamic Scheduling T 42

Scoreboard Pipeline Recap

Register Renaming

e New pipeline structure: F, D, S, X, W
« D (dispatch)
o Structural or WAW hazard ? stall : allocate scoreboard entry
e S (issue)
* RAW hazard ? wait : read registers, go to execute
* Detect? FUStatus.Ti != 0 = waiting for write
o W (writeback)
* WAR hazard ? wait : write register, free scoreboard entry
* Detect WAR hazard? FUStatus.Ri matches && FUStatus.Ti ==
o Detect RAW hazard? FUStatus.Ti matches

CS/ECE 752 (Wood): Dynamic Scheduling T 43

* Register renaming (in hardware)
« Change register names to eliminate WAR/WAW hazards
¢ An elegant idea (like caching & pipelining)
e Key: think of registers (r1,£0...) as names, not storage locations
+ Can have more locations than names
+ Can have multiple active versions of same name

¢ How does it work?
* Map-table: maps names to most recent locations
* SRAM indexed by name
« On a write: allocate new location, note in map-table
* On a read: find location of most recent write via map-table lookup
* Small detail: must de-allocate locations at some point

CS/ECE 752 (Wood): Dynamic Scheduling T 44

Register Renaming Example

Scheduling Algorithm II: Tomasulo

e Parameters
e Names: rl,r2,r3
e Locations: p1,p2,p3,p4,p5,p6,p7
« Original mapping: r1—pl, r2—p2, r3—p3, p4—p7 are “free”

MapTable FreeList Raw insns Renamed insns
[z1 [x2 [x3
|_p1 p2 |p3 4,p5,p6,p7 add r2,r3,rl add p2,p3,p4
p4 |p2 [p3 5,p6,p7 sub 12%31 sub p2,p, kp5
|p4 p2 |p5 6,p7 mul r2,/x5,r3 mul p2/p5,p6
|p4 [p2 [p6 7 div rl,4,rl div p4,4,p7
¢ Renaming
+ Removes WAW and dependences
+ Leaves RAW intact!
CS/ECE 752 (Wood): Dynamic Scheduling T 45

e Tomasulo’s algorithm
« Reservation stations (RS): instruction buffer
« Common data bus (CDB): broadcasts results to RS
¢ Register renaming: removes WAR/WAW hazards

e First implementation: IBM 360/91 [1967]
¢ Dynamic scheduling for FP units only
¢ Bypassing

e Our example: “Simple Tomasulo”
« Dynamic scheduling for everything, including load/store
* No bypassing (for comparison with Scoreboard)
e 5RS: 1ALU, 1 load, 1 store, 2 FP (3-cycle, pipelined)

CS/ECE 752 (Wood): Dynamic Scheduling I 46

Tomasulo Data Structures

* Reservation Stations (RS#)

FU, busy, op, R: destination register name
T: destination register tag (RS# of this RS)
T1,T2: source register tags (RS# of RS that will produce value)
V1,V2: source register values
e That's new

e Map Table

T: tag (RS#) that will write this register

e Common Data Bus (CDB)

Broadcasts <RS#, value> of completed insns

e Tags interpreted as ready-bits++
e T==0 — Value is ready somewhere
e T!=0 — Value is not ready, wait until CDB broadcasts T

CS/ECE 752 (Wood): Dynamic Scheduling T 47

Simple Tomasulo Data Structures

Regfi
Map Table E ﬁ e

CDB.V

Fetched
insns

Ml CDB.T

¢ Insn fields and status bits
e Tags
¢ Values

CS/ECE 752 (Wood): Dynamic Scheduling T 48

Simple Tomasulo Pipeline

» Pipeline structure: F, D, S, X, W
« D (dispatch)
* Structural hazard ? stall : allocate RS entry
e S (issue)
* RAW hazard ? wait (monitor CDB) : go to execute
o W (writeback)
* Wait for CDB
* Write register, free RS entry
* W and RAW-dependent S in same cycle
* W and structural-dependent D in same cycle

CS/ECE 752 (Wood): Dynamic Scheduling T 49

Tomasulo Dispatch (D)

1
1
~ >
a a
Fetched R op T T T2 i o
B L1 | l==1==}
insns ==
| ==}
— 1 1

L 1
Reservation Statfons

:

o Stall for structural (RS) hazards
* Allocate RS entry
o Input register ready ? read value into RS : read tag into RS

* Set register status (i.e., rename) for output register
CS/ECE 752 (Wood): Dynamic Scheduling T 50

Tomasulo Issue (S)

Map Table E ﬁRe e

CDB.V

Fetched
insns

R op|T T T2
L1 | I==1==1

T
Reservation Statfo

* Wait for RAW hazards

¢ Read register values from RS

CS/ECE 752 (Wood): Dynamic Scheduling 1 51

Tomasulo Execute (X)

Redfile
Map Table E E
[1
|
1
= >
&
a8 a
Fetched © e
insns
— T 1
CS/ECE 752 (Wood): Dynamic Scheduling I 52

Tomasulo Writeback (W)

Map Table E

CDB.V

Fetched R op T T1 T2
insns —— —

1
Reservation Stal

o Wiait for structural (CDB) hazards
e Output Reg Status tag still matches? clear, write result to register
e CDB broadcast to RS: tag match ? clear tag, copy value
¢ Free RS entry

CS/ECE 752 (Wood): Dynamic Scheduling T 53

Difference Between Scoreboard...

Reg Status
-

ﬁReiﬂle
% Insn

Fetched [l
insns

I
FU Status

CS/ECE 752 (Wood): Dynamic Scheduling [54

...And Tomasulo

Map Table ﬁ ﬁRe ile

CDB.V

Fetched
insns

ul CDB.T

¢ What in Tomasulo implements register renaming?
* Value copies in RS (V1, V2)
« Insn stores correct input values in its own RS entry
+ Future insns can overwrite master copy in regfile, doesn’ t matter

CS/ECE 752 (Wood): Dynamic Scheduling T 55

Value/Copy-Based Register Renaming

* Tomasulo-style register renaming
o Called “value-based” or “copy-based”
« Names: architectural registers
« Storage locations: register file and reservation stations
* Values can and do exist in both
* Register file holds master (i.e., most recent) values
+ RS copies eliminate WAR hazards
* Storage locations referred to internally by RS# tags
* Register table translates names to tags
* Tag == 0 value is in register file
* Tag != 0 value is not ready and is being computed by RS#
* CDB broadcasts values with tags attached
* So insns know what value they are looking at

CS/ECE 752 (Wood): Dynamic Scheduling T 56

Value-Based Renaming Example

1df X(rl), £l (allocated RS#2)
e MT[r1] == 0 — RS[2].V2 = RF[r1]
o MT[£1] = RS#2
mulf £0,£1,£2 (allocate RS#4)
e MT[£0] == 0 — RS[4].V1 = RF[£0]
o MT[£1] == RS#2 — RS[4].T2 = RS#2

o MT[£2] = RS#4 Map Table
addf £7,£8,£0 IReg|T

« Can write RF[£0] before mul£ executes, why? [£0
1df X(rl),£1 |£1 |RS#2 |
L |£2 [Rs#a |

« Can write RF[£1] before mul£ executes, why? [;1

* Can write RF[£1] before first 1d£, why?

Reservation Stations

T |FU |busylop [R |T1 [T2

2 |ID yes [1df [f1 |- - - [rl]
4 |FP1 |yes |mulf|f2 |- RS#2 [[£0] |]
CS/ECE 752 (Wood): Dynamic Scheduling T 57

Tomasulo Data Structures

Insn Status Map Table CDB
Insn D| S| X|W |Reg |T T
1df X(rl),f1 £0

mulf £0,£f1,£2 £1
stf £2,z(rl) £2
addi rl,4,rl rl

1df X(rl) ,f1
mulf £0,f1,£f2
stf £2,2(rl)

Reservation Stations
FU |busylop |[R |T1 |T2

ALU |no
1D no
ST |no
FP1 |no
FP2 |no

ERRNEE

CS/ECE 752 (Wood): Dynamic Scheduling I 58

Tomasulo: Cycle 1

Insn Status Map Table CDB
Insn D| S| X|W Reg|T T
1df X(rl) f1 | cl £0

|mulf £0,£f1,f2 £f1 |RS#2
stf £2,2(rl) £2
addi rl,4,rl rl
1df X(rl) ,f1
mulf £0,£f1,£2
stf £2,2(rl)

Reservation Stations

FU |busylop |R |T1 |T2

ALU |no
ID |yes |1df |f1 |- - - [r1] |allocate
ST no
FP1l |no
FP2 |no

G (GO ==

CS/ECE 752 (Wood): Dynamic Scheduling T 59

Tomasulo: Cycle 2

Insn Status Map Table CDB
Insn D| S| X|W Reg|T T
1df X(rl) £l | cl]| c2 £0

|mulf £0,f1,£2| c2 £f1 |RS#2
stf £2,2(rl) £2 |RS#4
addi rl,4,rl rl

1df X(rl) £l
mulf £0,£1,£2
stf £2,2(rl)

Reservation Stations

FU |busylop |[R |T1 |T2

ALU |no
LD |yes [1df [f1 |- - = [r1]
ST no
FPl |yes |mulf [f2 |- RS#2 |[£0] |- allocate
FP2 |no

RN

CS/ECE 752 (Wood): Dynamic Scheduling T 60

Tomasulo: Cycle 3

Insn Status Map Table CDB
Insn DI S| X|W Reg|T T
1df X(rl),f1 |cl|c2|c3 £0

|mulf f£0,f£1,£2] c2 |£1 |Rs#2

stf £2,2(rl) | c3 |£2 |Rs#4

addi rl,4,rl rl

1df X(rl) ,f1
mulf £0,£f1,£2
stf £2 z(rl)

Reservation Stations

FU |busylop |R |T1 |T2

—

ALU |no

LD yes |1df |fl |- —

= [rl]

ST |yes |stf |- RS#4 |-

— [r1] |allocate

FPl |yes |mulf|f2 |- RS#2 |[£0] |-

RN

FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling T

Tomasulo: Cycle 4

Tomasulo: Cycle 5

Insn Status |Map Table CDB
Insn D| S| X|W |Reg | T T
1df X(rl) ,f1 cl|c2|c3|c4 £0

mulf £0,f1,£f2| c2| c4|c5 |£1 |Rs#2

stf £2,Z(rl) | c3 £2 |RS#4

addi r1,4,rl | c4]|c5 lrl |Rs#1

1df X(rl) ,f1 | c5
mulf £0,f1,£2
stf £2,2(rl)

Insn Status Map Table CDB

Insn D|S|X|W Reg|T

1df X(rl),fl cl|c2| c3|c4 £0

|mulf £0,f1,£2| c2| c4 |£1 |RS#2 T

stf £2,2(rl) | c3 |£2 |Rs#4

addi rl,4,rl1 | c4 lz1 [Rrs#1

1df X(rl) ,f1

mulf £0,f1,f2

stf £2,2(rl) 1df finished (W)

'— clear £1 RegStatus
- - CDB broad

Reservation Stations

T |[FU |busylop |R [T1 [T2

1 |ALU |yes |addi [rl |- - [r1l] |- allocate

2 |ID |no free

3 [ST |yes |stf |- |RS#4 |- = [r1l]

4 |FP1 |yes |mulf[f2 |- RS#2 |[£0] [CDB.V|RS#2 ready —

5 |FP2 |no grab CDB value
values ready = issue

CS/ECE 752 (Wood): Dynamic Scheduling T 62

Tomasulo: Cycle 6

Insn Status |Map Table CDB

Insn D| S| X|W |Reg |T T

1df X(rl),f1 cl|c2|c3|c4 £0

mulf £0,£f1,£f2| c2 | c4 |c5+ |£1 |RS#2

stf £2,2(rl) c3 |£2 |RS#4RS#5|

addi rl,4,rl c4| c5]| c6 |r1l |RS#1

1df X(rl),fl c5

mulf £0,f1,£2| c6 no D stall on WAW: scoreboard would

stf £2,2(rl) overwrite £2 RegStatus —————

anyone who needs old £2 tag has it

Reservation Stations

T |[FU |busylop [R [T1 [T2

1 |ALU |yes |addi |rl |- - [rl] |-

2 |ID |yes |1df |f1 |- RS#1 |- - allocate

3 |ST |yes |stf |- RS#4 |- - [r1l]

4 |FPl |yes |mulf |f2 |- - [£0] |[£f1]

5 |FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling T 63
Tomasulo: Cycle 7

Insn Status Map Table

Insn D|S|X|W Reg|T

1df X(rl),fl cl|c2|c3| c4 £0
|mulf f£0,f£1,£2] c2] c4[e5+ [£1 [rs#2

stf £2,2(rl) | c3 |£2 [rs#5

addi rl,4,rl | c4|c5]|c6| cT [zl |RS#1

1df X(rl),fl1 | c5] c7 no W wait on WAR: scoreboard would
mulf £0,£f1,£f2| c6 anyone who needs old r1 has RS copy
stf £2,2(rl) D stall on store RS: structural

addi finished (W)

Reservation Stations

clear r1 RegStatus

—

FPl |yes |mulf |f2 |- -

[£0] |[f1]

FP2 |yes |mulf|f2 |- RS#2 [[£0] |-

T |[FU_|busy|op R [T1 T2 CDB broadcast

1 |ALU |no

2 |LD yes |1df |fl1 |- RS#1 |- CDB.V|RS#1 ready —

3 |ST |yes |stf |- RS#4 |- - [r1] |grab CDB value, issue
4

5

CS/ECE 752 (Wood): Dynamic Scheduling T

Reservation Stations

T |[FU |busylop |R [T1 [T2

1 |ALU |yes |addi [r1l |- - [rl] |-

2 |ID yes [1df [f1 |- RS#1 |- -

3 |ST |yes |stf |- RS#4 |- - [rl]

4 |FP1 |yes |mulf[f2 |- - [£0] |[f1]

5 |FP2 |yes [mulf|f2 |- RS#2 |[fO] |- allocate
CS/ECE 752 (Wood): Dynamic Scheduling I 64
Tomasulo: Cycle 8

Insn Status Map Table CDB

Insn D] S| X[W]| [Reg|T T W
1df X(rl) f1 | cl|c2|c3|c4 £0 [Rs#4 [[£2]]
[mulf £0,£1,£2]| c2| c4|c5+| c8 |£1 |Rs#2

stf £2,2(rl) | c3| c8 £2 |RS#5

addi rl,4,rl | c4| c5|c6]| c7 rl

1df X(rl) ,f1 | c5| c7| c8 mul finished (W)

mulf £0,£1,£2) c6 don’ t clear £2 RegStatus
stf £2,7(rl)

already overwritten by 2nd mulf (RS#5)
CDB broadcast

Reservation Stations

FU |busylop |R |T1

sz

ALU |no

LD yes [1df [f1 |- -

= [rl]

ST yes [stf |- RS#4 |-

FP1 [no

CDB.V|[rl] |RS#4 ready —
grab CDB value

RN

FP2 |yes |mulf f2 |- RS#2 |[fO] |-

CS/ECE 752 (Wood): Dynamic Scheduling T

Tomasulo: Cycle 9

Insn Status Map Table CDB

Insn D|S|X|W Reg|T

1df X(rl),fl cl|c2|c3| c4 £0

|mulf £0,£f1,f2| c2 | c4 |c5+| c8 |£1 |RS#2

stf £2,2(rl) c3|c8| co |£2 |RS#5

addi rl,4,rl c4| c5|c6]| c7 rl

1df X(rl) ,f1 c5|c7| c8]| c9 2nd 14f finished (W)

mulf £0,fl1,£f2| c6| c9 clear £1 Reg 1

Stf £2,2(rl) CDB broadcast

Reservation Stations

T |[FU |busylop [R [T1 [T2

1 |ALU |no

2 |LD no

3 [sT |yes [stf |- [- - [£2] |[r1]

4 |FP1l |no

5 |FP2 |yes |mulf |f2 |- RS#2 |[£0] |CDB.V|RS#2 ready —
grab CDB value, issue

CS/ECE 752 (Wood): Dynamic Scheduling I 67

Tomasulo: Cycle 10

Insn Status Map Table CDB
Insn DI S| X|W Reg|T T
1df X(rl) ,£f1 | cl|c2|c3| ca £0

|mulf £0,f1,£2| c2| c4 |c5+| c8 £1
stf £2,2(rl) c3| c8| c9cl0 |£2 |RS#5
addi rl,4,rl | c4| c5|c6]| c?]l
1df X(rl1) ,f1 c5| c7| e8| c9| .if finished (W)
mulf £0,f1,f2| c6| c9 |cl0
stf £2,2(rl) |cl0

Reservation Stations

T |[FU |busylop |[R [T1 [T2

ALU |no
LD no
ST |yes |stf |- RS#5 |- - [r1] |free — allocate
FP1 |no
FP2 |yes |mulf [f2 |- - [£0] |[£f1]

aANERE

CS/ECE 752 (Wood): Dynamic Scheduling T 68

Scoreboard vs. Tomasulo

Scoreboard Tomasulo

Insn D|S|X|W|D|S|X|W
1df X(rl) ,f1 cl| c2 | c3| c4|cl|c2| c3]| c4
mulf £0,f1,f2| c2 | c4 |c5+| c8 | c2 | c4 | c5+| c8
stf £2,Z(rl) c3 c8 c9 [cl0| e3 c8 c9 | cl0
addi rl,4,rl c4 c5 c6| c9| c4 c5 c6 | c7
1df X(rl) , f1l c5 c9 [cl0|cll| c5 c7 c8 c9
mulf £0,f1,f2]| e8 | c11|cl12+ c15| c6 | c9 [cl0+4 c13
stf £2,2(rl) | cl0]|cl5]|cl6|cl7|clO| cl3| cld]| cl5

Hazard Scoreboard Tomasulo
Insn buffer stall in D stall in D
FU wait in S wait in S
RAW wait in S wait in S
WAR wait in W none
WAW stall in D none
CS/ECE 752 (Wood): Dynamic Scheduling 69

Scoreboard vs. Tomasulo II: Cache Miss

no output register — no CDB broadcast

Scoreboard Tomasulo

Insn D|S|X|W|D|S|X|W
1df X(rl) ,fl cl| c2|c3+| c8| cl | c2 |c3+| c8
mulf £0,f1,f2| c2 | c8 | c9+| cl2| c2 | c8 | c9+| cl2
stf £2,Z(rl) c3 [cl2| cl3| cld4| c3 | cl2| cl3| cl4
addi rl,4,rl cd c5 c6 | cl3| c4 c5 c6 | c7
1df X(rl) , f1 c8 | cl3| cl4| cl5| c5 c7 c8 c9
mulf £0,f1,£f2] cl2| c15|cl64 c19| c6 | c9 |cl0+H c13
stf £2,2(rl) | cl3|cl9]| c20|c21] c7 |cl3]|cld| cl5

e Assume
¢ 5 cycle cache miss on first 1df
¢ Ignore FUST and RS structural hazards
+ Advantage Tomasulo
* No addi WAR hazard (c7) means iterations run in parallel

CS/ECE 752 (Wood): Dynamic Scheduling I 70

Can We Add Superscalar?

» Dynamic scheduling and multiple issue are orthogonal
* E.g., Pentium4: dynamically scheduled 5-way superscalar
¢ Two dimensions
* N: superscalar width (number of parallel operations)
* W: window size (number of reservation stations)

¢ What do we need for an N-by-W Tomasulo?
RS: N tag/value w-ports (D), 2Nvalue r-ports (S), 2N tag CAMs
(W)

Select logic: W—=N priority encoder (S)

MT: 2N r-ports (D), N w-ports (D)

RF: 2N r-ports (D), N w-ports (W)

CDB: N (W)

Which are the expensive pieces?

CS/ECE 752 (Wood): Dynamic Scheduling I 71

Superscalar Select Logic

e Superscalar select logic: W—N priority encoder
— Somewhat complicated (N2 logW)
¢ Can simplify using different RS designs
» Split design
« Divide RS into N banks: 1 per FU?
o Implement N separate W/N—1 encoders
+ Simpler: N * logW/N
— Less scheduling flexibility
¢ FIFO design [Palacharla+]
« Can issue only head of each RS bank
+ Simpler: no select logic at all
— Less scheduling flexibility (but surprisingly not that bad)

CS/ECE 752 (Wood): Dynamic Scheduling T 72

Can We Add Bypassing?

Map Table ﬁ ﬁRe e
=
1
= >
a 2
Fetched © e
insns | — T |
! 1 1 —> 1 1
L 1 1 — 1 1
Reservation Statfons
¢ Yes, but it’s more complicated than you might think
« In fact: requires a completely new pipeline
CS/ECE 752 (Wood): Dynamic Scheduling I 73

Why Out-of-Order Bypassing Is Hard

No Bypassing Bypassing
Insn D| S| X|W|]D|S|X|W

1df X(rl),fl cl c2 c3 | c4 cl c2 c3 c4
|mulf £0,f1,f2| c2 | c4 |c5+| c8 | c2 | c3 | cd+| c7
stf £2,Z(rl) c3| c8| c9|cl0| c3 | c6| c7 | c8
addi rl,4,rl c4 | c5| c6| c7| c4| c5| c6| c7
1df X(rl),f1 c5 | c7| c8| c9]| c5] c7| 7| c9
mulf £0,f1,f2| c6 | c9 |cl0+ c13| c6 | c9 | c8+| c13
stf £2,z(rl) cl0| c13| cl4| c15]| c10) cl13]| cll| cl15

e Bypassing: 1df X in c3 — mulf X in ¢4 — mulf Sinc3
e But how can mulf Sin c3 if 1df W in c4? Must change pipeline
e Modern scheduler
« Split CDB tag and value, move tag broadcast to S
* 1df tag broadcast now in cycle 2 — mulf S in cycle 3
¢ How do multi-cycle operations work? How do cache misses work?

CS/ECE 752 (Wood): Dynamic Scheduling T 74

Dynamic Scheduling Summary

¢ Dynamic scheduling: out-of-order execution
« Higher pipeline/FU utilization, improved performance
« Easier and more effective in hardware than software
+ More storage locations than architectural registers
+ Dynamic handling of cache misses
¢ Instruction buffer: multiple F/D latches
« Implements large scheduling scope + “passing” functionality
« Split decode into in-order dispatch and out-of-order issue
 Stall vs. wait
¢ Dynamic scheduling algorithms
e Scoreboard: no register renaming, limited out-of-order
* Tomasulo: copy-based register renaming, full out-of-order

CS/ECE 752 (Wood): Dynamic Scheduling T 75

