U. Wisconsin CS/ECE 752
Advanced Computer Architecture I

Prof. David A. Wood

Unit 6: Dynamic Scheduling II

Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

Slides enhanced by Milo Martin, Mark Hill, and David Wood
with sources that included Profs. Asanovic, Falsafi, Hoe,
Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood

CS/ECE 752 (Wood): Dynamic Scheduling T 1

This Unit: Dynamic Scheduling II

e Previously: dynamic scheduling
« Insn buffer + scheduling algorithms
* Scoreboard: no register renaming
* Tomasulo: register renaming

Memory

¢ Now: add speculation, precise state
¢ Re-order buffer

Gates & Transistors « PentiumPro vs. MIPS R10000

¢ Also: dynamic load scheduling
« Out-of-order memory operations

Digital Circuits

CS/ECE 752 (Wood): Dynamic Scheduling IT 2

Superscalar + Out-of-Order + Speculation

* Three great tastes that taste great together
e CPI>1?
* Go superscalar
o Superscalar increases RAW hazards?
* Go out-of-order (OoO)
¢ RAW hazards still a problem?
* Build a larger window
* Branches a problem for filling large window?
* Add control speculation

CS/ECE 752 (Wood): Dynamic Scheduling 1T 3

Speculation and Precise Interrupts

e Why are we discussing these together?

* Sequential (vN) semantics for interrupts
« All insns before interrupt should be complete
« All insns after interrupt should look as if never started (abort)
« Basically want same thing for mis-predicted branch

* What makes precise interrupts difficult?
* 000 completion — must undo post-interrupt writebacks
* Same thing for branches
* In-order — branches complete before younger insns writeback
* 000 — not necessarily

e Precise interrupts, mis-speculation recovery: same problem
¢ Same problem — same solution

CS/ECE 752 (Wood): Dynamic Scheduling IT 4

Precise State

e Speculative execution requires
¢ (Ability to) abort & restart at every branch
« Abort & restart at every load useful for load speculation (later)
* And for shared memory multiprocessing (much later)
» Precise synchronous (program-internal) interrupts require
o Abort & restart at every load, store, ??
» Precise asynchronous (external) interrupts require
e Abort & restart at every ??

» Bite the bullet

¢ Implement abort & restart at every insn
e Called “precise state”

CS/ECE 752 (Wood): Dynamic Scheduling T 5

Precise State Options

¢ Imprecise state: ignore the problem!
— Makes page faults (any restartable exceptions) difficult
— Makes speculative execution almost impossible
« [EEE standard strongly suggests precise state
« Compromise: Alpha implemented precise state only for integer ops
e Force in-order completion (W): stall pipe if necessary
— Slow
¢ Precise state in software: trap to recovery routine
— Implementation dependent
« Trap on every mis-predicted branch (you must be joking)
¢ Precise state in hardware
+ Everything is better in hardware (except policy)

CS/ECE 752 (Wood): Dynamic Scheduling IT 6

The Problem with Precise State

insn buffer

57

¢ Problem: writeback combines two separate functions
¢ Forwards values to younger insns: OK for this to be out-of-order
« Write values to registers: would like this to be in-order

¢ Similar problem (decode) for OoO execution: solution?
« Split decode (D) — in-order dispatch (D) + out-of-order issue (S)
* Separate using insn buffer: scoreboard or reservation station

CS/ECE 752 (Wood): Dynamic Scheduling T 7

Re-Order Buffer (ROB)

Reorder | buffer (ROB)

regfile

¢ Insn buffer — re-order buffer (ROB)
« Buffers completed results en route to register file
* May be combined with RS or separate
* Combined in picture: register-update unit RUU (Sohi’s method)
* Separate (more common today): P6-style
o Split writeback (W) into two stages
« Why is there no latch between W1 and W2?
CS/ECE 752 (Wood): Dynamic Scheduling IT 8

Complete and Retire

Reorder | buffer (ROB)

regfile

e Complete (C): first part of writeback (W)

¢ Completed insns write results into ROB

+ Out-of-order: wait doesn't back-propagate to younger insns
¢ Retire (R): aka commit, graduate

* ROB writes results to register file

« In order: stall back-propagates to younger insns

CS/ECE 752 (Wood): Dynamic Scheduling 1T 9

Load/Store Queue (LSQ)

* ROB makes register writes in-order, but what about stores?

e Asusual, i.e., write to D$ in X stage?
« Not even close, imprecise memory worse than imprecise registers
« Especially in a multiprocessor!

¢ Load/store queue (LSQ)
e Completed stores write to LSQ
« When store retires, write head of LSQ to D$
« When loads execute, access LSQ and D$ in parallel
* Forward from LSQ if older store with matching address
* More modern design: loads and stores in separate queues
* More on this later

CS/ECE 752 (Wood): Dynamic Scheduling IT 10

ROB + LSQ

ROB

regfile

1
i EHs

store data

load/store

¢ Modulo gross simplifications, this picture is almost realistic!

CS/ECE 752 (Wood): Dynamic Scheduling T 11

P6

e P6: Start with Tomasulo’s algorithm... add ROB
¢ Separate ROB and RS

e Simple-P6
e Our old RS organization: 1 ALU, 1 load, 1 store, 2 3-cycle FP

CS/ECE 752 (Wood): Dynamic Scheduling IT 12

P6 Data Structures

¢ Reservation Stations are same as before
¢ ROB

« head, tail: pointers maintain sequential order

« R: insn output register, V: insn output value
» Tags are different

¢ Tomasulo: RS# — P6: ROB#
e Map Table is different

e T+: tag + “ready-in-ROB” bit

e T==0 — Value is ready in regfile

e T!=0 — Value is not ready

e T!=0+ — Value is ready in the ROB

CS/ECE 752 (Wood): Dynamic Scheduling T 13

P6 Data Structures

Redfil
ooy | i |
I | Hegd
] Retire
= > Tail
8 g Dispatch
@] o ROB |
Dispatcl
 Insn fields and status bits
e Tags
o Values
CS/ECE 752 (Wood): Dynamic Scheduling IT 14

P6 Data Structures

ROB |Map Table CDB
ht[#[Insn R M s [X C| [Reg[T+ T
1[1df X(r1),f1 £0
2 \mulf £0,f1,f2 f1
3 |stf £2,2(rl) f2
4 |addi rl,4,rl1 »1
5 |1df X(rl),fl
| 6 |mulf f0,£1,£2
7 |stf £2,Z(rl)
Reservation Stations
|[FU |busylop |T T1 T2
1 |ALU |no
2 |ID |no
3 |sT no
4 |FP1l |no
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling 1T 15

P6 Pipeline

¢ New pipeline structure: F, D, S, X, C, R
« D (dispatch)
 Structural hazard (ROB/LSQ/RS) ? Stall
» Allocate ROB/LSQ/RS
* Set RS tag to ROB#
* Set Map Table entry to ROB# and clear “ready-in-ROB” bit
« Read ready registers into RS (from either ROB or Regdfile)
¢ X (execute)
* Free RS entry
* Use to be at W, can be earlier because RS# are not tags

CS/ECE 752 (Wood): Dynamic Scheduling IT 16

P6 Pipeline

e C (complete)

o Structural hazard (CDB)? wait

* Write value into ROB entry indicated by RS tag

* Mark ROB entry as complete

« If not overwritten, mark Map Table entry “ready-in-ROB" bit (+)
¢ R (retire)

« Insn at ROB head not complete ? stall

« Handle any exceptions

* Write ROB head value to register file

« If store, write LSQ head to D$

« Free ROB/LSQ entries

CS/ECE 752 (Wood): Dynamic Scheduling T 17

P6 Dispatch (D): Part I

Redfill

I Hei?d
] Retire
[>
& o Tg\\
a o Dispatch
@]) ROB 4

Dispatcl

¢ RS/ROB full ? stall
¢ Allocate RS/ROB entries, assign ROB# to RS output tag
* Set output register Map Table entry to ROB#, clear “ready-in-ROB”

CS/ECE 752 (Wood): Dynamic Scheduling IT 18

P6 Dispatch (D): Part II

iReiﬁle l
I Head
|
1

—J—Refire

Map Table e

P6 Complete (C)

Map Table =

iReifile l
Head

1 —] Retire
1 I 1 1
[> .
& o Ta_ul
Q [a} Dispatch
(8] o

ROB

Dispatch

e Structural hazard (CDB) ? Wait: broadcast <value,tag> on CDB
o Write result into ROB, if still valid set MapTable “ready-in-ROB” bit
e Match tags, write CDB.V into RS slots of dependent insns

CS/ECE 752 (Wood): Dynamic Scheduling IT 20

— > i
5 : =
[a} aQ Dispatch
&)) ROB
(==
Dispatch
« Read tags for register inputs from Map Table
* Tag==0 — copy value from Regfile (not shown)
e Tag!=0 — copy Map Table tag to RS
* Tag!=0+ — copy value from ROB
CS/ECE 752 (Wood): Dynamic Scheduling T 19
P6 Retire (R)
Redfil
Map Table E .
Head
] Retire
& = Tail
a [=) Dispatch
() o ROB
Dispatcl
¢ ROB head not complete ? stall : free ROB entry
¢ Write ROB head result to Redfile
o If still valid, clear Map Table entry
CS/ECE 752 (Wood): Dynamic Scheduling 1T 21

P6: Cycle 1

ROB |Map Table CbB
ht |# |Insn R A s | x| C| [Rea[T+ T
ht|l [1df X(rl) f1 | f1 £0
2 |mulf £0,£1,£2 £1 |ROB#1
3 |stf £2,2z(xl) £2
4 |addi rl,4,rl »1
5 [1df x(rl) ,f1
| |6 |mulf f£0,f1,£2 Null r1 tag,
7 |stf £2,7(rl) copy value

Reservation Stations

FU |busylop [T |T1 |T2 @Jet ROB# tag
ALU |no |

LD |yes |1df |[ROB#1 [r11” allocate

ST |no

FP1 |no

G [(W [N [|5

FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling IT 22

P6: Cycle 2

ROB Map Table CDB
ht [#[Insn R S| X[C| [Reg[T+ T
h 1df X(rl),fl f1 c2 f0

[t |2 [mulf f£0,£1,£2] £2 £1 |ROB#1
stf £2,7(rl) £2 |ROB#2

addi rl,4,rl P

1df X(rl),f1

mulf £0,£f1,£2

\lmunu‘r\n—-:&

stf £2,2(rl)

Reservation Stations
FU |busylop |T T1 |12 set ROB# tag
| —

ALU |no
LD |yes [1df |ROB#1 [r1]
ST |no
FP1l |yes |mulf |ROB#2 ROB#1|[£0] allocate
FP2 |no

RN

CS/ECE 752 (Wood): Dynamic Scheduling T 23

P6: Cycle 3

ROB Map Table CDB
ht [#[Insn R S| X[C| [Reg[T+ T
h |1 |1df X(rl),f1 |f£1 c2| c3 £0
| |2 |mu1lf f0,f1,£2]£2 £1 |ROB#1
t |3 |stf £2,2(xl) |£2 |roB#2
4 |addi r1,4,r1 r1
5 [1df X(r1) ,f1
6 [mulf £0,f1,£2
7 |stf £2,2(rl)
Reservation Stations m
|[FU |busylop |T 1 [T2
1 |ALU |no
2 |ID |no free
3 |ST |yes |stf |ROB#3|ROB#2 [r1]
4 |FP1 |yes |mulf |ROB#2 ROB#1|[£0]
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling IT 24

P6: Cycle 4

P6: Cycle 5

ROB Map Table
ht [#[Insn R S| X] C| [Rea]T+
h |1 [1df X(rl) ,f1 | f1|[f1]| c2| e3]| ca] [£0
| |2 |mulf f0,£1,£2] £2 c4 |£1 |ROB#1+
3 |stf £2,z(rl) |£2 |ROB#2
t |4 |addi rl,4,r1 |rl rl |ROB#4
5 |1df X(rl),fl Idf finished
6 lmulf £0,f1,£2 1. set “ready-in-ROB” bit
7 |stf £2,Z(rl) 2. write result to ROB
3. CDB broadcast
Reservation Stations
busylop |T T1 T2
1 |ALU |yes |add |ROB#4 [rl] allocate
2 |LD no
3 [ST |yes |stf |[ROB#3|ROB#2 [rl]
4 |FP1 |yes |mulf |ROB#2 ROB#1| [£0] CDB.V__|ROB#1 ready
5 |FP2 |no grab CDB.V
CS/ECE 752 (Wood): Dynamic Scheduling T 25
P6: Cycle 6
ROB |Map Table CDB
ht [#[Insn R S| X[C| [Reg[T+ T
1 |1df X(rl),f1 | £1[[f1]| c2| c3| c4a| [£0
h |2 mulf £0,£f1,f2]f2 c4 |c5+ |£1 |ROB#5
3 |stf £2,2z(rl) £2 |ROB#6
4 |addi rl,4,r1 |rl c5 | c6 |[r1 |ROB#4
5 |1df x(rl),f1 | f1
|t |6 mulf f0,£1,£2] £2
7 |stf £2,2Z(rl)
Reservation Stations m
|[FU |busylop |T T1 [T2
1 |ALU |no free
2 |1LD yes |[1df |ROB#5 ROB#4
3 |ST |yes |stf |ROB#3|ROB#2 [rl]
4 |FP1 |yes |mulf [ROB#6 ROB#5| [£0] allocate
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling 1T 27
P6: Cycle 8
ROB Map Table
ht [#[Insn R S| X[C| |Reg[T+
1[1df X(rl),f1 | f1[[f1]] c2| c3| ca] [£fO
Ih |2 mulf £0,£1,f£2]| £2|[£2]] c4 [c5+| c8| [£1 |ROB#S5
3 |stf £2,z(rl) c8 £2 |ROB#6
4 |addi rl,4,rl |rl|[rl]| c5)|c6| c7 rl |ROB#4+
5 |1df X(rl),fl1 | f1 c7| c8 stall R for addi
t |6 |lmulf £0,£f1,£2| £2 (in-order commit)
7 |stf £2,2(rl) ROB#2 invalid in MapTable

don’t set “ready-in-ROB”

Reservation Stations

FU |busylop [T T1

ALU |no

sz

1D no

ST |yes |stf

ROB#3|ROB#2

[£2]

[£1] ROB#2 ready

FP1 |yes |mulf |ROB#6

ROB#5

[£0]

grab CDB.V

RN

FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling T

ROB Map Table CDB
ht [#[Insn R S| X[C| [Rea[T+ T
1|1df X(rl),fl |f1|[f1]| c2| c3| c4 £0
Ih [2 [mulf £0,£1,£2]£2] ~J ca| c5 £1 |ROB#5
3 [stf £2,27(z1) £2 |ROB#2
4 |addi rl1,4,rl1 |rl c5 |r1 |ROB#4 |
t |5 [1df x(r1) ,£1 | f£1 \df retires
6 mulf £0,£1,£2 1. write ROB result to regfile
7 |stf £2,Z(rl)
Reservation Stations
busylop [T Ti T2
1 |ALU |yes |add |ROB#4 [r1]
2 |1D |yes |1df |ROB#5 ROB#4 allocate
3 |sT yes |stf |ROB#3|ROB#2 [x1]
4 |FP1 |no free
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling 1 26
P6: Cycle 7
ROB |Map Table
ht [#[Insn R S| X[C| [Reg[T+
1 |1df X(rl),f1 | £f1|[f1]| c2| c3| c4]| [£O
h |2 mulf £0,f1,f2]| f2 c4 | c5+ |£1 |ROB#5
3 |stf £2,Z(rl) £2 |ROB#6
4 |addi rl,4,rl rl|[rl]| 5| c6| c7 |rl |[ROB#4+
5 |1df X(rl) , fl | f1 ci
|t |6 mulf £0,f1,£2] £2
7 |stf £2,Z(rl) stall D (no free ST RS)
Reservation Stations
|[FU |busylop [T T1 T2
1 |ALU |no ROB#4 ready
2 |LD |yes [1df |ROB#5 ROB#4 CDB.V grab CDB.V
3 |ST |yes |stf |ROB#3|ROB#2 [rl]
4 |FP1l |yes |mulf |[ROB#6 ROB#5|[£0]
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling IT 28
P6: Cycle 9
ROB Map Table
ht [#[Insn R S| X[C| |Reg[T+
1|1df X(rl),fl | f1|[f1]| c2| c3| c4 £0
| |2 |mulf f0,f1,£2[£2[[£2]] c4[c5+] e8| |1 |ROB#5+
h [3[stf £2,2(rl) e8] c9 £2 |ROB#6
4 |addi rl,4,rl |rl|[rl]| c5| c6]| c7 rl |ROB#4+]
5 |1df X(rl) ,fl1 | £1|[£1]| c7 | ¢8| c9 | retire mulf
6 mulf £0,f1,£2| £2 c9
t |7 |stf £2 7 (rl) all pipe stages active at once!
Reservation Stations m
|FU_|busyjop |T T1 T2
1 |ALU |no
2 |LD no
3 |ST |yes [stf |ROB#7|ROB#6 ROB#4.V]| free, re-allocate
4 |FP1 |yes |mulf |ROB#6 ROB#5|[£0] CDB.V | ROB#5 ready
5 |FP2 |no grab CDB.V

CS/ECE 752 (Wood): Dynamic Scheduling IT

30

P6: Cycle 10

ROB Map Table CDB
ht [#[Insn R S| X] C| [Rea]T+ T
1[1df x(xl),£f1 | £1[[f1]] c2| 3] c4| [£0
| [2 [mulf f£0,£1,£2[£2][£2][c4 [c5+] c8| [£1 |ROB#5+
h |3 [stf £2,2(rl) c8| c9[c10| [£2 |roB#6
4 |addi rl,4,r1 |rl|[rl]| c5| c6| c7| |rl |ROB#4+
5 [1df X(r1) ,£1 [f£1|[f1][c7 [c8] co
6 \mulf £0,f1,£2| £2 c9|cl0
t |7 |stf £2,2(xl)

Reservation Stations

|[FU |busylop |T T1 T2

ALU |no
LD no
ST |yes |stf |ROB#7|ROB#6 ROB#4.V|
FP1l |no free
FP2 |no

ENRIRNE

CS/ECE 752 (Wood): Dynamic Scheduling T 31

P6: Cycle 11

ROB Map Table CDB
ht [#[Insn R S| X[C| [Rea[T+ T
1[1df X(rl),£1 | £1|[£1]] c2| c3| ca| [£0
| [2 [mulf f0,£1,£2] £2|[£2][ca| c5] c8| |1 |ROB#S+
3 [stf £2,7(c1) c8 | c9|c10| [£2 |RoB#6
h |4 |addi rl,4,rl1 |rl|[rl]| c5| c6| c7| |rl |ROB#4+
5 [1df X(r1) £1 | £1][£1]] c7| c8| co]
6 lmulf £0,£1,£2]£2 c9 |10 retire stf
t |7 |stf £2,2(r1)

Reservation Stations

|[FU |busylop [T Ti T2

ALU [no
LD no
ST |yes |stf |ROB#7|ROB#6| ROB#4 .V
FP1 |no
FP2 |no

ENRIRE

CS/ECE 752 (Wood): Dynamic Scheduling IT 32

Precise State in P6

¢ Point of ROB is maintaining precise state
¢ How does that work?
e FEasyas 1,23
1. Wait until last good insn retires, first bad insn at ROB head
2. Clear contents of ROB, RS, and Map Table
3. Start over
* Works because zero (0) means the right thing...
* 0in ROB/RS — entry is empty
* Tag == 0in Map Table — register is in regfile
e ..and because redfile and D$ writes take place at R
¢ Example: page fault in first st £

CS/ECE 752 (Wood): Dynamic Scheduling 1T 33

P6: Cycle 9 (with precise state)

ROB |Map Table
ht [#[Insn R A s| x| C| [Rea[T+

1|1df x(r1) ,f1 | f1|[f1]| c2| 3| c4]| |£O

2 \mulf £0,f1,£f2| £2|[£2]| c4 |c5+| c8| |f1 |ROB#5+
h |3 |stf £2,Z(rl) c8| c94 £2 |ROB#6

4 |addi rl,4,rl rl|[rl]| 5| c6 B\\LROB#M'

5 |1df X(rl) ,fl | f1|[£f1]] c7| c8| c9
| [6 [mulf £0,£1,£2] £2 <9
t |7 |stf £2,Z(rl)

PAGE FAULT

Reservation Stations
|[FU |busylop [T T1 T2
1 |ALU |no
2 |ID |no
3 |ST |yes [stf |ROB#7|ROB#6 ROB#4.V
4 |FP1l |yes |mulf |[ROB#6 ROB#5|[£0] CDB.V
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling IT 34

P6: Cycle 10 (with precise state)

ROB Map Table CDB
ht [#[Insn R S| X[C| [Reg[T+ T
1[1df x(r1),£1 | £1[[£1]] c2| c3] c4| [£0
| |2 [mulf £0,£1,£2] £2[[£2] c4 |c5+] c8| [£1
3 [stf £2,2(rl) £2 z
4 |addi r1,4,r1 rl \
5 [1df x(rl) £l \
6 \mulf £0,£1,£2 faulting insn at ROB head?
7 [stf £2,2(rl) CLEAR EVERYTHING

Reservation Stations

FU |busylop |T T1 T2

ALU |no
LD no /
ST no

FP1 |no
FP2 |no

RN

CS/ECE 752 (Wood): Dynamic Scheduling T 35

P6: Cycle 11 (with precise state)

ROB Map Table CDB
ht [#[Insn R S| X[C| [Reg[T+ T
1[1df x(xl),£f1 | f1[[f1]] c2| c3]| c4] [£0
| [2 [mulf f0,f1,£2] £2|[£2][c4[c5+ c8] [£1
ht[3 [stf £2,2(rl) £2
4 |addi r1,4,r1 rl
5 [1df X(rl),f1
6 |mulf £0,£1,£2 START OVER
7 |stf £2,2(r1) (after OS fixes page fault)
Reservation Stations m
|[FU |busylop [T Ti T2
1 |ALU |no
2 |LD no
3 [sT |yes |stf [RoB#3 [£4] [r1]
4 |FP1 |no
5 |FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling IT 36

P6: Cycle 12 (with precise state)

ROB Map Table CDB
ht [#[Insn R WA S| X[C| [Rea[T+ T
1[1df x(xl),£f1 | £1[[f1]] c2| 3] c4| [£0
| |2 |mulf £0,£1,f£2] £2|[£2]] c4 |c5+| c8] [£1
h |3 [stf £2,2(rl) cl2 £2
t |4 |addi rl,4,r1 |rl rl |ROB#4
5 [1df X(r1),£1
6 |mulf £0,£1,£2
7 [stf £2,2(xl)
Reservation Stations
|[FU_ |busylop |T T1 T2
1 |ALU |yes |addi [ROB#4 [rl]
2 |LD no
3 [sT |yes |stf |ROB#3 [£4] [r1]
4 |FP1 |no
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling IT 37

P6 Performance

o In other words: what is the cost of precise state?
+ In general: same performance as “plain” Tomasulo
* ROB is not a performance device
* Maybe a little better (RS freed earlier — fewer struct hazards)
— Unless ROB is too small
« In which case ROB struct hazards become a problem
¢ Rules of thumb for ROB size
* At least N (width) * number of pipe stages between D and R
o Atleast N * t.; (o
* Can add a factor of 2 to both if you want
* What is the rationale behind these?

CS/ECE 752 (Wood): Dynamic Scheduling IT 38

P6 (Tomasulo+ROB) Redux

¢ Popular design for a while
* (Relatively) easy to implement correctly
« Anything goes wrong (mispredicted branch, fault, interrupt)?
* Just clear everything and start again
* Examples: Intel PentiumPro, IBM/Motorola PowerPC, AMD K6

¢ Actually making a comeback...
¢ Examples: Intel PentiumM

« But went away for a while, why?

CS/ECE 752 (Wood): Dynamic Scheduling 1T 39

The Problem with P6

Map Table ﬁ ﬁRe fle a

I | Hegd
] Retire
— > ;
o @ wTail
a [=) Dispatch
© © RroB

Dispatcl

¢ Problem for high performance implementations
— Too much value movement (regfile/ROB—RS—~ROB—regfile)
— Multi-input muxes, long buses complicate routing and slow clock

CS/ECE 752 (Wood): Dynamic Scheduling IT 40

MIPS R10K: Alternative Implementation

Map Table ﬁ

Head
| Retire
Tail
Free Dispatch
op ' T Ti+T2+ List ROB
T [==T==]
==1
Dispatch
=
o
o

* One big physical register file holds all data no copies
+ Register file close to FUs — small fast data path
* ROB and RS “on the side” used only for control and tags

CS/ECE 752 (Wood): Dynamic Scheduling T 41

Register Renaming in R10K

o Architectural register file? Gone
¢ Physical register file holds all values
« #physical registers = #architectural registers + #ROB entries
* Map architectural registers to physical registers
* Removes WAW, WAR hazards (physical registers replace RS copies)
e Fundamental change to map table
« Mappings cannot be 0 (there is no architectural register file)
¢ Free list keeps track of unallocated physical registers
* ROB is responsible for returning physical registers to free list

Conceptually, this is “true register renaming”
* Have already seen an example

CS/ECE 752 (Wood): Dynamic Scheduling IT 42

Register Renaming Example

o Parameters
e Names: r1,r2,r3
o Locations: 11,12,13,14,15,16,17
¢ Original mapping: r1—11, r2—12, r3—13, 14-17 are “free”

MapTable FreelList Raw insns Renamed insns
rl |r2 |r3

11 |12 13 14,15,16,17 add r2,r3,rl add 12,13,14
14 12 13 15,16,17 sub r2,rl,r3 sub 12,14,15
14 12 15 16,17 mul r2,r3,rl mul 12,15,16
16 (12 |15 17 div rl,r3,r2 div 14,15,17

¢ Question: how is the insn after div renamed?
« We are out of free locations (physical registers)
* Real question: how/when are physical registers freed?

CS/ECE 752 (Wood): Dynamic Scheduling T 43

Freeing Registers in P6 and R10K

e P6
« No need to free storage for speculative (“in-flight”) values explicitly
e Temporary storage comes with ROB entry
e R: copy speculative value from ROB to register file, free ROB entry

e R10K
« Can't free physical register when insn retires
« No architectural register to copy value to
e But...
« Can free physical register previously mapped to same logical register
« Why? All insns that will ever read its value have retired

CS/ECE 752 (Wood): Dynamic Scheduling IT 44

Freeing Registers in R10K

‘MapTable FreeList Raw insns Renamed insns
rl |r2 |r3

11 |12 13 14,15,16,17 add r2,r3,rl add 12,13,14
14 12 13 15,16,17 sub r2,rl,r3 sub 12,14,15
14 12 15 16,17 mul r2,r3,rl mul 12,15,16
16 (12 |15 17 div rl,r3,r2 div 14,15,17

When add retires, free 11
When sub retires, free 13
When mul retires, free ?
When div retires, free ?
See the pattern?

CS/ECE 752 (Wood): Dynamic Scheduling 1T 45

R10K Data Structures

¢ New tags (again)

¢ P6: ROB# — R10K: PR#
* ROB

¢ R: logical output register

« Told: physical register previously mapped to insn’s logical output
¢ RS

e T, T1, T2: output, input physical registers
e Map Table

e T+: PR# (never empty) + “ready” bit
e Free List

e T: PR#

¢ No values in ROB, RS, or on CDB
* Yeager paper uses different names, what are they?

CS/ECE 752 (Wood): Dynamic Scheduling IT 46

R10K Data Structures

ROB Map Table
ht |# |Insn R [Told| S| X | C| |Reg|T+

1|1df X(rl),fl £0 |PR#1+
| |2 |[mulf £0,f1,6£2 £f1 |PR#2+

3 |stf £2,z(rl) £2 |PR#3+

4 |addi rl,4,rl [z [pR#ta+

5 [1df X(rl),f£1

6 |mulf £0,£1,£2 Free List

7 |stf £2,2Z(rl) PR#5, PR#6,

PR#7, PR#8

Reservation Stations
|FU |busylop |T T1 T2 Notice I: no values anywhere
1 |ALU |no
; Is-lz :: Notice Il: MapTable is never empty
4 |FP1l |no
5 |FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling T 47

R10K Pipeline

e R10K pipeline structure: F, D, S, X, C, R
¢ D (dispatch)
* Structural hazard (RS, ROB, LSQ, physical registers) ? stall
* Allocate RS, ROB, LSQ entries and new physical register (T)
« Record previously mapped physical register (Told)
« Update map table
¢ C (complete)
* Write destination physical register, set Ready in MT
¢ R (retire)
* ROB head not complete ? Stall
« Handle any exceptions
* Store write LSQ head to D$
* Free ROB, LSQ entries
« Free previous physical register (Told)
CS/ECE 752 (Wood): Dynamic Scheduling IT 48

R10K Dispatch (D)

Map Table E

Hea_d
Retire

Tail
Free m‘Fspatch

List ROB

op T T1+T2+
[T==1==1]

Dispatch

* Read preg (physical register) tags for input registers, store in RS
* Read preg tag for output register, store in ROB (Told)
o Allocate new preg (free list) for output register, store in RS, Map Table

CS/ECE 752 (Wood): Dynamic Scheduling T 49

R10K Complete (C)

R10K Retire (R)

Map Table E
Head
| Retire
Tail
Free Dispatch
op T T1+T2+ List ROB
T T==T==1
Dispatch
=
o
[&]
e Set insn’s output register ready bit in map table
* Set ready bits for matching input tags in RS
CS/ECE 752 (Wood): Dynamic Scheduling IT 50
R10K: Cycle 1
ROB Map Table
ht |# |Insn R _|Told| S| X | C| |Reg|T+
ht|l |1df X(rl) £1 | f1 |PR#2 £0 |PR#1+
2 \mulf £0,f1,f2 £1 |PR#5
3 |stf £2,Z(rl) £2 ;PR#EH-
4 |addi rl,4,rl rl l PR#4+
5 |1df X(rl), fl
|6 [mulf £0,£1,£2 Frée List
7 |stf £2,Z(rl) PR#5, PR#6,

PR#7,PR#8

Reservation Stations
FU |busylop |T T1 T2 Allocate new preg (PR#5) to f1

ALU |no

LD |yes [1df |PR#5 PR#4+

ST |no Remember old preg mapped to

FP1 |no f1 (PR#2) in ROB

G [(W [N [|5

FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling IT 52

Map Table E
Head
| Retire
Tail
Free Dispatch
op T T1+T2+ List ROB
Dispatch
=
o
o
e Return Told of ROB head to free list
CS/ECE 752 (Wood): Dynamic Scheduling 1T 51
R10K: Cycle 2
ROB Map Table
ht |# |Insn R [Told| S| X | C| |Reg|T+
h [1[1df x(rl),f1 | £f1 |PR#2 c2 £0 |pr#1+ | [|
|t |2 [mulf £0,f1,f2| £2 |PR#3 £1 |PR#5
3 |stf £2,z(rl) £2 |PR#6
4 |addi r1,4,rl rl [PR#4+
5 [1df X(rl) £l
6 [mulf £0,£1,£2 Frée List
7 |stf £2,7(rl) PR#6, PR#7,
PR#8
Reservation Stations
|[FU |busylop |T 11 127 Allocate new preg (PR#6) to f2
1 |ALU |no
2 |ID |yes |1df |PR#5 PR#4+
3 |stT ho B Remembe_r old preg mapped to
4 |FP1 |yes |mulf |[PR#6 |PR#1+|PR#5 f3 (PR#3) in ROB
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling T 53

R10K: Cycle 3

ROB Map Table
ht |# |Insn R |Told| S| X | C| |Reg|T+
h |1[1df X(r1),f1 | £1 [PR#2 c2| c3 g0 [er#1+ | [|
| |2 |mulf f0,f1,f£2| £2 [PR#3 |£1 |PR#5
t |3 |stf £2,2Z(xrl) £2 |PR#6

4 |addi r1,4,r1 [z1 [PR#4+

5 |1df X(rl),£1

6 |mulf £0,f£1,f2 Free List

7 [stf £2,7(rl) PR#7, PR#8
Reservation Stations
|FU_|busylop [T T1 T2 Stores are not allocated pregs
1 |ALU |no
2 |ID |no Free
3 |ST |yes |stf PR#6 |PR#4+|
4 |FP1 |yes |mulf |PR#6 |PR#1+ PR#5
5 |FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling IT 54

R10K: Cycle 4

ROB Map Table
ht [# [Insn R_[Told[S| X[C| [Reg[T+
h |1 [1df X(rl),f1 | £1 |[PR#2] c2| c3] c4
| [2 [mulf f£0,£1,£2] £2 |PR#3 c4

3 |stf £2,2z(rl)
t |4 |addi rl,4,r1 | rl [PR#4

5 [1df X(r1),£1

6 |mulf £0,f1,f2 Free List

7 |stf £2,2(xl) PR#7, PR#8
Reservation Stations Idf completes
busylop [T T1 T2 .
1 |ALU |yes |addi |PR#7 |PR#A4+ set MapTable ready bit
2 |LD no
3 [ST |yes |stf PR#6 |PR#4+]
4 |FP1l |yes |mulf |PR#6 |PR#1+|PR#5+ Match PR#5 tag from CDB & issue
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling IT 55

R10K: Cycle 5

ROB Map Table
ht | # |Insn R |Told| S| X | C| |Reg|T+

1 [1df x(x1),£1 | £1 |pr#2[c2| c3| ca| [0 [pr#1+ | [|
| |2 |mulf £0,£1,£2] £2 |PR#3 c5 £1 |PR#8

3 [stf £2,2(rl) |£2_|pR#t6

4 |addi rl,4,rl rl |PR#4| c5 |rl |PR#7 |
t |5 [1df x(xl) £1 | £1 |PR#S)

6 |mulf £0,f1,f2 Freeist

7 |stf £2,2(rl) PR#S, PR#2

Reservation Stations

Idf retires
f ALU Szzy :gdi IR#7 l—;#“_ T2 Return PR#2 to free list
2 |LD yes |[1df |PR#8 PR#7
3 |ST |yes |stf PR#6 |PR#4+
4 |FP1 |no Free
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling 1 56

Precise State in R10K

¢ Problem with R10K design? Precise state is more difficult
— Physical registers are written out-of-order (at C)
e That's OK, there is no architectural register file
* We can “free” written registers and “restore” old ones
« Do this by manipulating the Map Table and Free List, not regfile

¢ Two ways of restoring Map Table and Free List

» Option I: serial rollback using R, T4 ROB fields
+ Slow, but simple

« Option II: single-cycle restoration from some checkpoint
+ Fast, but checkpoints are expensive

¢ Modern processor compromise: make common case fast
« Checkpoint only (low-confidence) branches (frequent rollbacks)
* Serial recovery for page-faults and interrupts (rare rollbacks)

CS/ECE 752 (Wood): Dynamic Scheduling 1T 57

R10K: Cycle 5 (with precise state)

ROB [Map Table
ht |# |Insn R |Told| S| X | C| |Reg|T+
1 |1df X(rl) ,f1 | £f1 [PR#2| c2| c3 | c4| |£0 |PR#1+
h |2 [mulf £0,£1,£2| £2 [PR#3] c4| c5 |£1 [pR#ts
3 [stf £2,2(xl) £2 |PR#6
4|addi rl,4,r1 | rl |PR#4[c5 lr1 |[PR#7
t |5 [1df X(xl),£f1 | £1 |PR#S|
| |6 |mulf £0,fl,f£2 Free List
7 [stf £2,7(r1) PR#8, PR#2

Reservation Stations

|[FU |busylop [T 1 |T2 undo insns 3-5

1 |ALU |yes |addi [PR#7 |PR#4+ (doesn’t matter why)

2 |ID |ves |1df |PR#8 PRi#7 use serial rollback

3 |ST |yes |stf PR#6 |PR#4+

4 |FP1 |no

5 |FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling IT 58

R10K: Cycle 6 (with precise state)

ROB Map Table
ht |# |Insn R [Told| S| X | C| |Reg|T+
1 |1df X(rl),fl £f1 |PR#2| c2 | c3 | c4 £0 |PR#1+
lh |2 |mulf £0,f1,f2| £2 |PR#3| c4| c5 | 1£1 |PR#5+PR#8]
3 [stf £2,2(rl) | {£7 |pr#6
t |4]addi rl,4,r1 | rl |PR#4<C5 [z1 [PR#7
5 |1df X(rl),f1 | £1 |PR#5
6 |mulf £0,£1,£2 Free List
7 [stf £2,2(r1) PR#2, PR#8S ||
Reservation Stations undo Idf (ROB#5)
[FU [busylop [T [11 [12 | [-freeRS)
1 |ALU |yes |addi |[PR#7 |PR#4+ 2. free T (PR#8), return to FreeList
2 b |no 3. restore MT[f1] to Told (PR#5)
3 |ST |yes |stf PRE#6 [pRyas| 4 free ROB#S
4 |FP1l |no
5 |FP2 |no insns may execute during rollback
(not shown)
CS/ECE 752 (Wood): Dynamic Scheduling 11 59

R10K: Cycle 7 (with precise state)

ROB Map Table
ht |# |Insn R |Told| S| X | C|[Reg [T+

1|1df x(rl),f1 | £1 |PR#2[c2| c3| c4a|[£0 |pR#1+ [|
Ih [2 [mulf £0,£1,£2] £2 [PR#3] c4| c5 £1 [PR#5+
t |3 |stf £2,2Z(rl) £2 _|PR#6

4 |addi rl,4,rl rl |PR#4| c5 rl PR#4+PR#7

5 [1df X(rl) ,£f1

6 |mulf £0,f£1,f2 Free List

7|stf £2,7(r1) PR#2 PRYS,

PR#7

Reservation Stations undo addi (ROB#4)
[FU Jbusylop [T [T1 [r2 | !.freeRS :
1 |ALU |no 2. free T (PR#7), return to FreeList
2 LD |no 3. restore MT[r1] to Told (PR#4)
3 |sT |yes [stf PR#6 |pR#as| 4 free ROB#4
4 |FP1 |no
5 |FP2 |no

CS/ECE 752 (Wood): Dynamic Scheduling IT 60

R10K: Cycle 8 (with precise state)

ROB Map Table
ht [#[Insn R _[Told][S| X[C| [Reg[T+

1 |1df X(rl),fl | £1 [PR#2] c2| c3| c4
|ht|2 |mulf £0,f1,£f2| £2 |PR#3 c4| c5

3 |stf £2,z(rl)

4 |addi rl,4,rl

5 [1df X(rl), £l

6 |mulf £0,f1,f2 Free List

7 |stf £2,2(rl) PR#2,PR#8,

PR#7

Reservation Stations undo stf (ROB#3)
[FU_|busylop [T [T1 [T2 1.free RS
1 |ALU |no 2. free RQB#?:
2 |10 |no 3.no re_glsters t_o restore/free
3 ST |no 4. how is D$ write undone?
4 |FP1l |no
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling T 61

R10K: Checkpointing

* Faster precise state
« Use for (low-confidence) branches
Record state prior to predicted branch
* Save copy of MapTable
¢ Save copy of ROB tail pointer Why not both head
« Save copy of FreeList head pointer and tail pointers?
* Mark RS entries as conditional (one bit per branch)

* On mispredicted branch
* Restore checkpointed state
* Freelist retains
¢ Clear RS entries that are conditional on mispredicted branch
* What about instructions that have already completed?

* R10K implements 4 checkpoints
Relationship to Smith and Pleszkun?

CS/ECE 752 (Wood): Dynamic Scheduling IT 62

P6 vs. R10K (Renaming)

Feature P6 R10K
Value storage ARF,ROB,RS PRF
Register read @D: ARF/ROB — RS @S: PRF — FU
Register write @R: ROB — ARF @C: FU — PRF
Speculative value free|@R: automatic (ROB) @R: overwriting insn
Data paths ARF/ROB — RS PRF — FU
RS — FU FU — PRF
FU — ROB
ROB — ARF
Precise state Simple: clear everything |Complex: serial/checkpoint]

¢ R10K-style became popular in late 90’s, early 00s
e E.g., MIPS R10K (duh), DEC Alpha 21264, Intel Pentium4

o P6-style is perhaps making a comeback
* Why? Frequency (power) is on the retreat, simplicity is important

CS/ECE 752 (Wood): Dynamic Scheduling 1T 63

Out of Order Memory Operations

o All insns are easy in out-of-order...
« Register inputs only
« Register renaming captures all dependences
¢ Tags tell you exactly when you can execute
o ... except loads
* Register and memory inputs (older stores)
* Register renaming does not tell you all dependences
* Memory renaming (a little later)
¢ How do loads find older in-flight stores to same address (if any)?

CS/ECE 752 (Wood): Dynamic Scheduling IT 64

Data Memory Functional Unit

e D$/TLB + structures to handle in-flight loads/stores
¢ Performs four functions
¢ In-order store retirement
* Writes stores to D$ in order
« Basic, implemented by store queue (SQ)
« Store-load forwarding
 Allows loads to read values from older un-retired stores
« Also basic, also implemented by store queue (SQ)
* Memory ordering violation detection
* Checks load speculation (more later)
* Advanced, implemented by load queue (LQ)
+ Memory ordering violation avoidance
« Advanced, implemented by dependence predictors

CS/ECE 752 (Wood): Dynamic Scheduling T 65

Simple Data Memory FU: D$/TLB + SQ

address load position

datain dataout o Jyst like any other FU

« 2 register inputs (addr, data in)
* 1 register output (data out)

* 1 non-register input (load pos)?

tore Queup (SQ) |

_Ead
* Store queue (SQ)

tail « In-flight store address/value
1 ¢ In program order (like ROB)
« Addresses associatively searchable
¢ Size heuristic: 15-20% of ROB

¢ But what does it do?
¢ Virtual or physical address?

CS/ECE 752 (Wood): Dynamic Scheduling IT 66

Data Memory FU "Pipeline”

e Stores
« Dispatch (D)
* Allocate entry at SQ tail
« Execute (X)
* Write address and data into corresponding SQ slot
« Retire (R)
« Write address/data from SQ head to D$, free SQ head
e Loads
« Dispatch (D)
* Record current SQ tail as “load position”
* Execute (X)
« Where the good stuff happens
¢ Retire (R)
¢ Check for (ordering) exceptions
CS/ECE 752 (Wood): Dynamic Scheduling IT 67

“Out-of-Order” Load Execution

address datain dataout ® In parallel with D$ access
load ppsition ¢ Send address to SQ
* Compare with all store addresses
o CAM: like FA$, or RS tag match
head * Select all matching addresses
 Partial match possible
tail® Age logic selects youngest
store that is older than load
e Uses load position input
¢ Any? load “forwards” value from SQ
¢ Can stall in hard cases
¢ None? Load gets value from D$

CS/ECE 752 (Wood): Dynamic Scheduling IT 68

Conservative Load Scheduling

e Why " in “out-of-order"”?
+ Load can execute out-of-order with respect to (wrt) other loads
- Need to check for multiprocessor ordering violations (CS757)
+ Stores can eXecute out-of-order wrt other stores
+ Can't let other cores see 000 stores in a multicore
+ Must Retire in order
— Loads must execute in-order wrt older stores to same
address
* Load execution requires knowledge of all older store addresses
- Stall if store address not yet known
+ Simple
— Restricts performance
e Used in P6 and EV-6

CS/ECE 752 (Wood): Dynamic Scheduling 1T 69

Conservative Load Execution

address datain dataout ®* Ambiguous dependence
load pgsition » Unknown address could match

Unresolved store address

CS/ECE 752 (Wood): Dynamic Scheduling IT 70

Opportunistic Memory Scheduling

e Observe: on average, < 10% of loads forward from SQ
« Even if older store address is unknown, chances are it won't match
* Let loads execute in presence of older “ambiguous stores”
+ Increases performance
¢ But what if ambiguous store does match?

 Memory ordering violation: load executed too early

e Must detect...(How?)
« And fix (e.g., by flushing/refetching insns starting at load)

CS/ECE 752 (Wood): Dynamic Scheduling T 7

Detecting Misspeculated Loads: SQ + LQ

store position flush? * Load queue (LQ)

« In-flight load addresses

¢ In program-order (like ROB,SQ)
* Associatively searchable

¢ Size heuristic: 20-30% of ROB

head

Existing SQ

New LQ

CS/ECE 752 (Wood): Dynamic Scheduling IT 72

Advanced Memory “Pipeline” (LQ Only)

¢ Loads
« Dispatch (D)
* Allocate entry at LQ tail
« Execute (X)
* Write address into corresponding LQ slot
o Stores
« Dispatch (D)
* Record current LQ tail as “store position
* Execute (X)
* Where the good stuff happens

"

CS/ECE 752 (Wood): Dynamic Scheduling T 73

Detecting Memory Ordering Violations

* Store sends address to LQ
« Compare with all load addresses
« Selecting matching addresses
* Matching address? Younger Load?
¢ Load executed before store
« Violation
o Fix!

store position flush?

load queue (LQ)

head

* Age logic selects loads that
are younger than store
¢ Use store position
* Processor flushes and restarts

CS/ECE 752 (Wood): Dynamic Scheduling IT 74

Intelligent Load Scheduling

* Opportunistic scheduling better than conservative...
+ Avoids many unnecessary delays
+ 100-300 false dep/1K Instrs
e ...but can degrade performance
— Introduces few flushes, but each is much costlier than a delay
— 0-25 misspeculations/1K Instrs * 12-35 cycles (Alpha EV7)

e Observe: loads/stores that cause violations are “stable”
« Dependences are mostly program based, program doesn’t change
o Scheduler is deterministic

¢ Exploit: intelligent load scheduling
¢ Hybridize conservative and opportunistic
« Predict which loads, or load/store pairs will cause violations
¢ Use conservative scheduling for those, opportunistic for the rest

CS/ECE 752 (Wood): Dynamic Scheduling 1T 75

Memory Dependence Prediction

¢ Store-blind prediction
« Predict load only, wait for all older stores to execute
+ Simple, but a little too heavy handed
* Example: Alpha 21264

¢ Store-load pair prediction
« Predict load/store pair, wait for only one store to execute
+ More complex, but minimizes delay

» Store set prediction
* Group loads and stores into dependent sets
* Store-Set Table: load-PC — store-PC
o Last Store Table: store-PC — SQ index of most recent instance

CS/ECE 752 (Wood): Dynamic Scheduling IT 76

Memory Dependence Prediction

e Moshovos, et al.
¢ Memory Dependence Prediction Table (MDPT)
« Identifies static load-store dependence
* LDPC, STPC, dependence DISTance, prediction
« DIST identifies dynamic instance of dependent store
* Memory Dependence Synchronization Table (MDST)
* Used to synchronize dynamic instance in MDPT
» Coordinate with instruction scheduler
e For (i=0; i<N-2; i++) {
sum += X[i];
if (X[i] % 7 ==1) X[i+2] = X[i+2]/2; }
Store sets will stall on each instance of load
¢ Implemented in Intel Nehalem/Haswell. Apple A7?
o See WARF v. Intel, WARF v. Apple....

CS/ECE 752 (Wood): Dynamic Scheduling T 77

Limits of Insn-Level Parallelism (ILP)

» Before we build a big superscalar... how much ILP is there?
o ILP: instruction-level parallelism [Fisher'81]
¢ Sustainable rate of useful instruction execution
e ILP limit study
« Assume perfect/infinite hardware, successively add realism
* Examples: [Wall'88][Wilson+Lam'92]
* Some surprising results
+ Perfect/infinite “theoretical” ILP: int > 50, FP > 150
* Sometimes called the “dataflow limit”
— Real machine “actual” ILP: int ~2, FP ~ 3
* Fundamental culprits: branch prediction, memory latency
« Engineering culprits: “window” (RS/SQ/redfile) size, issue width
¢ Read on your own: P+H: 3.8-3.10

CS/ECE 752 (Wood): Dynamic Scheduling IT 78

Clock Rate vs. IPC

* Does frequency vs. width tradeoff actually work?

* Yes in some places, no in others

+ Yes: fetch, decode, rename, retire (all the in-order stages)

— No: issue, execute, complete (all the out-of-order stages)

¢ What's the difference?
* Out-of-order: parallelism doesn't help if insns themselves serial

« 2 dependent insns execute in 2 cycles, regardless of width

« In-order: inter-insn parallelism doesn’t matter

¢ Intel Pentium4: multiple clock domains

o In-order stages run at 3.4 GHz, out-of-order stages at 6.8 GHz!
« Frequency = Powery, . — high frequency only where necessary

CS/ECE 752 (Wood): Dynamic Scheduling T 79

Dynamic Scheduling Redux

» Dynamic scheduling is a performance technique
¢ But what about...

« “Scalability”: how big can we profitably make it?

« Power/energy?

o Reliability?

CS/ECE 752 (Wood): Dynamic Scheduling IT 80

“Scalability”

¢ Scalability: how big/wide should we make a window?
« Bigger/wider structures (can) improve IPC, but degrade clock
* Where is the cross-over?
« Caveat: scalability is conjunctive (the “Anna Karenina” principle)
* Happy families are all alike; every unhappy family is unhappy in its own way.
« For a design to be scalable, all components must be scalable

* Non-scalable (and scalable) structures
« Mostly in execution core (see clock rate vs. IPC)
— N2 networks (e.g., bypassing network)
— Large SRAMs with many read/write ports (e.g., physical regfile)
— Large multi-ported CAMs (e.g., scheduler or reservation stations)
— Large age-ordered CAMs (e.g., load and store queues)
¢ A lot of current research on scalable versions of these structures
+ ROB is not a problem: few ports, none in “execution core” really

CS/ECE 752 (Wood): Dynamic Scheduling 1T 81

Research: Speculative Indexed SQ

Predicted SQ entry (from Store-Sets)
address datain dataout ¢ Observe: if load forwards,
can guess store’s SQ position
with high accuracy
* Store-Sets works this way
heag® EXxploit: no need to match all
stores, use Store-Sets to guess
one and match on it
e CAM+age — RAM+comparator
* How to verify speculation?
¢ LQ? DIVA? Load-only DIVA?
« Indexed SQ [Sha,Martin,Roth’05]
* Nosq: No store queue [Micro’06]

tail

D$/TLB

CS/ECE 752 (Wood): Dynamic Scheduling IT 82

Pentium III vs. Pentium4 (Processors)

Feature Pentium IIT Pentium 4

Peak clock 800 MHz 3.4 GHz (6.8 internal)
Pipeline stages 15 22

Branch prediction 512 local + 512 BTB 2K hybrid + 2K BTB
Primary caches 16KB 4-way 8KB 4-way + 64KB T$
L2 512KB-2MB 256KB-2MB

Fetch width 16 bytes 3 uops (16 bytes on miss)
Rename/retire width |3 uops 3 uops

Execute width 5 uops 7 uops (X2)

Register renaming P6 R10K

ROBJ/RS size 40/20 128/60

Load scheduling Conservative Intelligent

Anything else? No Hyperthreading

CS/ECE 752 (Wood): Dynamic Scheduling T 83

Dynamic Scheduling and Power/Energy

¢ Is dynamic scheduling low-power?
— Probably not
¢ New SRAMs consume a lot of power
« Re-order buffer, reservation stations, physical register file
« New CAMs consume even more (relatively)
« Reservation stations, load/store queue
¢ Is dynamic scheduling low-energy?
+ Could be
« Does performance improvement offset power increase?
o Are there “deep sleep” modes?

CS/ECE 752 (Wood): Dynamic Scheduling IT 84

Dynamic Scheduling and Reliability

* How does dynamic scheduling affect reliability?
¢ What is the fault model?
+ Transient faults (a-particles)? More transistors, more faults?
+ Gradual faults (electro-migration)? Same
— Permanent faults (design errors)? Worse, 000 is complicated

¢ A holistic view of electrical reliability
« Vulnerability to electrical faults is function of transistor size
« Mitigate (even eliminate) with larger transistors
« But larger transistors consume more power and energy
¢ Unless we slow them down....

CS/ECE 752 (Wood): Dynamic Scheduling T 85

Dynamic Instruction Verification (DIVA)

Re-order buffer

P-regfile Acregfile

¢ Can we tolerate faults in out-of-order (execution) stages?
« Not directly
« But can detect them by re-executing insns and comparing results
* Discrepancy? Flush and restart
¢ Insert in-order verification (V) stage just before retirement
« DIVA [Austin'99]

CS/ECE 752 (Wood): Dynamic Scheduling IT 86

DIVA

¢ Why DIVA works
« Re-execution acts like an in-order stage for parallelization purposes
« Can re-execute dependent insns in parallel!
¢ How come? “dependence-free checking”
« You have original inputs and outputs of all insns
* Try working this out for yourself
¢ What DIVA accomplishes
+ Detects transient errors in out-of-order stages
* Re-execution is parallel — slow clock, big, robust transistors
+ Can also detect design errors
* Re-execution (in-order) simpler than execution (out-of-order)
o Less likely to contain rare bugs

CS/ECE 752 (Wood): Dynamic Scheduling 1T 87

Current Dynamic Scheduling Research

e “Critical path modeling”
« Identify (and optimize) performance critical instructions
e “Scalable schedulers”
« Support for huge schedulers, several different designs
¢ “Macro-ops and dataflow mini-graphs”
« Schedule groups of dependent insns at once (MG: also fetch, retire)
* Do more with fewer resources
¢ “Out-of-order fetch and rename”
« Avoid branch mispredictions by fetching control independent insns
e Much more...

CS/ECE 752 (Wood): Dynamic Scheduling IT 88

Unit Summary

e Modern dynamic scheduling must support precise state
« A software sanity issue, not a performance issue
e Strategy: Writeback — Complete (000) + Retire (iO)
¢ Two basic designs
« P6: Tomasulo + re-order buffer, copy based register renaming
+ Precise state is simple, but fast implementations are difficult
¢ R10K: implements true register renaming
+ Easier fast implementations, but precise state is more complex
¢ QOut-of-order memory operations
« Store queue: conservative load scheduling (iO wrt older stores)
e Load queue: opportunistic load scheduling (00O wrt older stores)
¢ Intelligent memory scheduling: hybrid

CS/ECE 752 (Wood): Dynamic Scheduling T 89

Dynamic Scheduling Summary

e Qut-of-order execution: a performance technique
« Easier/more effective in hardware than software (isn't everything?)
¢ Idea: make scheduling transparent to software
e Feature I: Dynamic scheduling (i0 — 000)
« “Performance” piece: re-arrange insns into high-performance order
¢ Decode (iO) — dispatch (iO) + issue (O00)
« Two algorithms: Scoreboard, Tomasulo
o Feature II: Precise state (OoO — iO)
« “Correctness” piece: put insns back into program order
¢ Writeback (O00) — complete (O00) + retire (iO)
* Two designs: P6, R10K
* Don't forget about memory scheduling

CS/ECE 752 (Wood): Dynamic Scheduling IT 90

