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This Unit: Dynamic Scheduling II

e Previously: dynamic scheduling
« Insn buffer + scheduling algorithms
* Scoreboard: no register renaming
* Tomasulo: register renaming

Memory

¢ Now: add speculation, precise state
¢ Re-order buffer

Gates & Transistors « PentiumPro vs. MIPS R10000

¢ Also: dynamic load scheduling
« Out-of-order memory operations

Digital Circuits
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Superscalar + Out-of-Order + Speculation

* Three great tastes that taste great together
e CPI>1?
* Go superscalar
o Superscalar increases RAW hazards?
* Go out-of-order (OoO)
¢ RAW hazards still a problem?
* Build a larger window
* Branches a problem for filling large window?
* Add control speculation
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Speculation and Precise Interrupts

e Why are we discussing these together?

* Sequential (vN) semantics for interrupts
« All insns before interrupt should be complete
« All insns after interrupt should look as if never started (abort)
« Basically want same thing for mis-predicted branch

* What makes precise interrupts difficult?
* 000 completion — must undo post-interrupt writebacks
* Same thing for branches
* In-order — branches complete before younger insns writeback
* 000 — not necessarily

e Precise interrupts, mis-speculation recovery: same problem
¢ Same problem — same solution
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Precise State

e Speculative execution requires
¢ (Ability to) abort & restart at every branch
« Abort & restart at every load useful for load speculation (later)
* And for shared memory multiprocessing (much later)
» Precise synchronous (program-internal) interrupts require
o Abort & restart at every load, store, ??
» Precise asynchronous (external) interrupts require
e Abort & restart at every ??

» Bite the bullet

¢ Implement abort & restart at every insn
e Called “precise state”
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Precise State Options

¢ Imprecise state: ignore the problem!
— Makes page faults (any restartable exceptions) difficult
— Makes speculative execution almost impossible
« [EEE standard strongly suggests precise state
« Compromise: Alpha implemented precise state only for integer ops
e Force in-order completion (W): stall pipe if necessary
— Slow
¢ Precise state in software: trap to recovery routine
— Implementation dependent
« Trap on every mis-predicted branch (you must be joking)
¢ Precise state in hardware
+ Everything is better in hardware (except policy)
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The Problem with Precise State

insn buffer

57

¢ Problem: writeback combines two separate functions
¢ Forwards values to younger insns: OK for this to be out-of-order
« Write values to registers: would like this to be in-order

¢ Similar problem (decode) for OoO execution: solution?
« Split decode (D) — in-order dispatch (D) + out-of-order issue (S)
* Separate using insn buffer: scoreboard or reservation station
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Re-Order Buffer (ROB)

Reorder | buffer (ROB)

regfile

¢ Insn buffer — re-order buffer (ROB)
« Buffers completed results en route to register file
* May be combined with RS or separate
* Combined in picture: register-update unit RUU (Sohi’s method)
* Separate (more common today): P6-style
o Split writeback (W) into two stages
« Why is there no latch between W1 and W2?
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Complete and Retire

Reorder | buffer (ROB)

regfile

e Complete (C): first part of writeback (W)

¢ Completed insns write results into ROB

+ Out-of-order: wait doesn't back-propagate to younger insns
¢ Retire (R): aka commit, graduate

* ROB writes results to register file

« In order: stall back-propagates to younger insns
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Load/Store Queue (LSQ)

* ROB makes register writes in-order, but what about stores?

e Asusual, i.e., write to D$ in X stage?
« Not even close, imprecise memory worse than imprecise registers
« Especially in a multiprocessor!

¢ Load/store queue (LSQ)
e Completed stores write to LSQ
« When store retires, write head of LSQ to D$
« When loads execute, access LSQ and D$ in parallel
* Forward from LSQ if older store with matching address
* More modern design: loads and stores in separate queues
* More on this later
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ROB + LSQ

ROB

regfile

1
i EHs

store data

load/store

¢ Modulo gross simplifications, this picture is almost realistic!
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P6

e P6: Start with Tomasulo’s algorithm... add ROB
¢ Separate ROB and RS

e Simple-P6
e Our old RS organization: 1 ALU, 1 load, 1 store, 2 3-cycle FP
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P6 Data Structures

¢ Reservation Stations are same as before
¢ ROB

« head, tail: pointers maintain sequential order

« R: insn output register, V: insn output value
» Tags are different

¢ Tomasulo: RS# — P6: ROB#
e Map Table is different

e T+: tag + “ready-in-ROB” bit

e T==0 — Value is ready in regfile

e T!=0 — Value is not ready

e T!=0+ — Value is ready in the ROB
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P6 Data Structures

Redfil
ooy | i |
I | Hegd
] Retire
= > Tail
8 g Dispatch
@] o ROB |
Dispatcl
 Insn fields and status bits
e Tags
o Values
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P6 Data Structures

ROB |Map Table CDB
ht[#[Insn R M s [ X C| [Reg[T+ T
1[1df X(r1),f1 £0
2 \mulf £0,f1,f2 f1
3 |stf £2,2(rl) f2
4 |addi rl,4,rl1 »1
5 |1df X(rl),fl
| 6 |mulf f0,£1,£2
7 |stf £2,Z(rl)
Reservation Stations
# |[FU |busylop |T T1 T2
1 |ALU |no
2 |ID |no
3 |sT no
4 |FP1l |no
5 |FP2 |no
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P6 Pipeline

¢ New pipeline structure: F, D, S, X, C, R
« D (dispatch)
 Structural hazard (ROB/LSQ/RS) ? Stall
» Allocate ROB/LSQ/RS
* Set RS tag to ROB#
* Set Map Table entry to ROB# and clear “ready-in-ROB” bit
« Read ready registers into RS (from either ROB or Regdfile)
¢ X (execute)
* Free RS entry
* Use to be at W, can be earlier because RS# are not tags
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P6 Pipeline

e C (complete)

o Structural hazard (CDB)? wait

* Write value into ROB entry indicated by RS tag

* Mark ROB entry as complete

« If not overwritten, mark Map Table entry “ready-in-ROB" bit (+)
¢ R (retire)

« Insn at ROB head not complete ? stall

« Handle any exceptions

* Write ROB head value to register file

« If store, write LSQ head to D$

« Free ROB/LSQ entries
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P6 Dispatch (D): Part I

Redfill

I Hei?d
] Retire
[ >
& o Tg\\
a o Dispatch
@] ) ROB 4

Dispatcl

¢ RS/ROB full ? stall
¢ Allocate RS/ROB entries, assign ROB# to RS output tag
* Set output register Map Table entry to ROB#, clear “ready-in-ROB”
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P6 Dispatch (D): Part II

iReiﬁle l
I Head
|
1

—J—Refire

Map Table e

P6 Complete (C)

Map Table =

iReifile l
Head

1 — ] Retire
1 I 1 1
[ > .
& o Ta_ul
Q [a} Dispatch
(8] o

ROB

Dispatch

e Structural hazard (CDB) ? Wait: broadcast <value,tag> on CDB
o Write result into ROB, if still valid set MapTable “ready-in-ROB” bit
e Match tags, write CDB.V into RS slots of dependent insns
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— > i
5 : =
[a} aQ Dispatch
&) ) ROB
(==
Dispatch
« Read tags for register inputs from Map Table
* Tag==0 — copy value from Regfile (not shown)
e Tag!=0 — copy Map Table tag to RS
* Tag!=0+ — copy value from ROB
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P6 Retire (R)
Redfil
Map Table E .
Head
] Retire
& = Tail
a [=) Dispatch
() o ROB
Dispatcl
¢ ROB head not complete ? stall : free ROB entry
¢ Write ROB head result to Redfile
o If still valid, clear Map Table entry
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P6: Cycle 1

ROB |Map Table CbB
ht |# |Insn R A s | x| C| [Rea[T+ T
ht|l [1df X(rl) f1 | f1 £0
2 |mulf £0,£1,£2 £1 |ROB#1
3 |stf £2,2z(xl) £2
4 |addi rl,4,rl »1
5 [1df x(rl) ,f1
| |6 |mulf f£0,f1,£2 Null r1 tag,
7 |stf £2,7(rl) copy value

Reservation Stations

FU |busylop [T |T1 |T2 @Jet ROB# tag
ALU |no |

LD |yes |1df |[ROB#1 [r11” allocate

ST |no

FP1 |no

G [ (W [N [ |5

FP2 |no
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P6: Cycle 2

ROB Map Table CDB
ht [#[Insn R S| X[ C| [Reg[T+ T
h 1df X(rl),fl f1 c2 f0

[t |2 [mulf f£0,£1,£2] £2 £1 |ROB#1
stf £2,7(rl) £2 |ROB#2

addi rl,4,rl P

1df X(rl),f1

mulf £0,£f1,£2

\lmunu‘r\n—-:&

stf £2,2(rl)

Reservation Stations
FU |busylop |T T1 |12 set ROB# tag
| —

ALU |no
LD |yes [1df |ROB#1 [r1]
ST |no
FP1l |yes |mulf |ROB#2 ROB#1|[£0] allocate
FP2 |no

RN
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P6: Cycle 3

ROB Map Table CDB
ht [#[Insn R S| X[ C| [Reg[T+ T
h |1 |1df X(rl),f1 |f£1 c2| c3 £0
| |2 |mu1lf f0,f1,£2]£2 £1 |ROB#1
t |3 |stf £2,2(xl) |£2 |roB#2
4 |addi r1,4,r1 r1
5 [1df X(r1) ,f1
6 [mulf £0,f1,£2
7 |stf £2,2(rl)
Reservation Stations m
# |[FU |busylop |T 1 [T2
1 |ALU |no
2 |ID |no free
3 |ST |yes |stf |ROB#3|ROB#2 [r1]
4 |FP1 |yes |mulf |ROB#2 ROB#1|[£0]
5 |FP2 |no
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P6: Cycle 4

P6: Cycle 5

ROB Map Table
ht [#[Insn R S| X ] C| [Rea]T+
h |1 [1df X(rl) ,f1 | f1|[f1]| c2| e3]| ca] [£0
| |2 |mulf f0,£1,£2] £2 c4 |£1 |ROB#1+
3 |stf £2,z(rl) |£2 |ROB#2
t |4 |addi rl,4,r1 |rl rl |ROB#4
5 |1df X(rl),fl Idf finished
6 lmulf £0,f1,£2 1. set “ready-in-ROB” bit
7 |stf £2,Z(rl) 2. write result to ROB
3. CDB broadcast
Reservation Stations
# busylop |T T1 T2
1 |ALU |yes |add |ROB#4 [rl] allocate
2 |LD no
3 [ST |yes |stf |[ROB#3|ROB#2 [rl]
4 |FP1 |yes |mulf |ROB#2 ROB#1| [£0] CDB.V__|ROB#1 ready
5 |FP2 |no grab CDB.V
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P6: Cycle 6
ROB |Map Table CDB
ht [#[Insn R S| X[ C| [Reg[T+ T
1 |1df X(rl),f1 | £1[[f1]| c2| c3| c4a| [£0
h |2 mulf £0,£f1,f2]f2 c4 |c5+ |£1 |ROB#5
3 |stf £2,2z(rl) £2 |ROB#6
4 |addi rl,4,r1 |rl c5 | c6 |[r1 |ROB#4
5 |1df x(rl),f1 | f1
|t |6 mulf f0,£1,£2] £2
7 |stf £2,2Z(rl)
Reservation Stations m
# |[FU |busylop |T T1 [T2
1 |ALU |no free
2 |1LD yes |[1df |ROB#5 ROB#4
3 |ST |yes |stf |ROB#3|ROB#2 [rl]
4 |FP1 |yes |mulf [ROB#6 ROB#5| [£0] allocate
5 |FP2 |no
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P6: Cycle 8
ROB Map Table
ht [#[Insn R S| X[ C| |Reg[T+
1[1df X(rl),f1 | f1[[f1]] c2| c3| ca] [£fO
Ih |2 mulf £0,£1,f£2]| £2|[£2]] c4 [c5+| c8| [£1 |ROB#S5
3 |stf £2,z(rl) c8 £2 |ROB#6
4 |addi rl,4,rl |rl|[rl]| c5)|c6| c7 rl |ROB#4+
5 |1df X(rl),fl1 | f1 c7| c8 stall R for addi
t |6 |lmulf £0,£f1,£2| £2 (in-order commit)
7 |stf £2,2(rl) ROB#2 invalid in MapTable

don’t set “ready-in-ROB”

Reservation Stations

FU |busylop [T T1

ALU |no

sz

1D no

ST |yes |stf

ROB#3|ROB#2

[£2]

[£1] ROB#2 ready

FP1 |yes |mulf |ROB#6

ROB#5

[£0]

grab CDB.V

RN

FP2 |no
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ROB Map Table CDB
ht [#[Insn R S| X[ C| [Rea[T+ T
1|1df X(rl),fl |f1|[f1]| c2| c3| c4 £0
Ih [2 [mulf £0,£1,£2]£2] ~J ca| c5 £1 |ROB#5
3 [stf £2,27(z1) £2 |ROB#2
4 |addi rl1,4,rl1 |rl c5 |r1 |ROB#4 |
t |5 [1df x(r1) ,£1 | f£1 \df retires
6 mulf £0,£1,£2 1. write ROB result to regfile
7 |stf £2,Z(rl)
Reservation Stations
# busylop [T Ti T2
1 |ALU |yes |add |ROB#4 [r1]
2 |1D |yes |1df |ROB#5 ROB#4 allocate
3 |sT yes |stf |ROB#3|ROB#2 [x1]
4 |FP1 |no free
5 |FP2 |no
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P6: Cycle 7
ROB |Map Table
ht [#[Insn R S| X[ C| [Reg[T+
1 |1df X(rl),f1 | £f1|[f1]| c2| c3| c4]| [£O
h |2 mulf £0,f1,f2]| f2 c4 | c5+ |£1 |ROB#5
3 |stf £2,Z(rl) £2 |ROB#6
4 |addi rl,4,rl rl|[rl]| 5| c6| c7 |rl |[ROB#4+
5 |1df X(rl) , fl | f1 ci
|t |6 mulf £0,f1,£2] £2
7 |stf £2,Z(rl) stall D (no free ST RS)
Reservation Stations
# |[FU |busylop [T T1 T2
1 |ALU |no ROB#4 ready
2 |LD |yes [1df |ROB#5 ROB#4 CDB.V grab CDB.V
3 |ST |yes |stf |ROB#3|ROB#2 [rl]
4 |FP1l |yes |mulf |[ROB#6 ROB#5|[£0]
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling IT 28
P6: Cycle 9
ROB Map Table
ht [#[Insn R S| X[ C| |Reg[T+
1|1df X(rl),fl | f1|[f1]| c2| c3| c4 £0
| |2 |mulf f0,f1,£2[ £2[[£2]] c4[c5+] e8| |1 |ROB#5+
h [3[stf £2,2(rl) e8] c9 £2 |ROB#6
4 |addi rl,4,rl |rl|[rl]| c5| c6]| c7 rl |ROB#4+]
5 |1df X(rl) ,fl1 | £1|[£1]| c7 | ¢8| c9 | retire mulf
6 mulf £0,f1,£2| £2 c9
t |7 |stf £2 7 (rl) all pipe stages active at once!
Reservation Stations m
# |FU_|busyjop |T T1 T2
1 |ALU |no
2 |LD no
3 |ST |yes [stf |ROB#7|ROB#6 ROB#4.V]| free, re-allocate
4 |FP1 |yes |mulf |ROB#6 ROB#5|[£0] CDB.V | ROB#5 ready
5 |FP2 |no grab CDB.V

CS/ECE 752 (Wood): Dynamic Scheduling IT

30




P6: Cycle 10

ROB Map Table CDB
ht [#[Insn R S| X ] C| [Rea]T+ T
1[1df x(xl),£f1 | £1[[f1]] c2| 3] c4| [£0
| [2 [mulf f£0,£1,£2[ £2][£2][ c4 [c5+] c8| [£1 |ROB#5+
h |3 [stf £2,2(rl) c8| c9[c10| [£2 |roB#6
4 |addi rl,4,r1 |rl|[rl]| c5| c6| c7| |rl |ROB#4+
5 [1df X(r1) ,£1 [ f£1|[f1][ c7 [ c8] co
6 \mulf £0,f1,£2| £2 c9|cl0
t |7 |stf £2,2(xl)

Reservation Stations

# |[FU |busylop |T T1 T2

ALU |no
LD no
ST |yes |stf |ROB#7|ROB#6 ROB#4.V|
FP1l |no free
FP2 |no

ENRIRNE
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P6: Cycle 11

ROB Map Table CDB
ht [#[Insn R S| X[ C| [Rea[T+ T
1[1df X(rl),£1 | £1|[£1]] c2| c3| ca| [£0
| [2 [mulf f0,£1,£2] £2|[£2][ ca| c5] c8| |1 |ROB#S+
3 [stf £2,7(c1) c8 | c9|c10| [£2 |RoB#6
h |4 |addi rl,4,rl1 |rl|[rl]| c5| c6| c7| |rl |ROB#4+
5 [1df X(r1) £1 | £1][£1]] c7| c8| co ]
6 lmulf £0,£1,£2]£2 c9 |10 retire stf
t |7 |stf £2,2(r1)

Reservation Stations

# |[FU |busylop [T Ti T2

ALU [no
LD no
ST |yes |stf |ROB#7|ROB#6| ROB#4 .V
FP1 |no
FP2 |no

ENRIRE
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Precise State in P6

¢ Point of ROB is maintaining precise state
¢ How does that work?
e FEasyas 1,23
1. Wait until last good insn retires, first bad insn at ROB head
2. Clear contents of ROB, RS, and Map Table
3. Start over
* Works because zero (0) means the right thing...
* 0in ROB/RS — entry is empty
* Tag == 0in Map Table — register is in regfile
e ..and because redfile and D$ writes take place at R
¢ Example: page fault in first st £
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P6: Cycle 9 (with precise state)

ROB |Map Table
ht [#[Insn R A s| x| C| [Rea[T+

1|1df x(r1) ,f1 | f1|[f1]| c2| 3| c4]| |£O

2 \mulf £0,f1,£f2| £2|[£2]| c4 |c5+| c8| |f1 |ROB#5+
h |3 |stf £2,Z(rl) c8| c94 £2 |ROB#6

4 |addi rl,4,rl rl|[rl]| 5| c6 B\\LROB#M'

5 |1df X(rl) ,fl | f1|[£f1]] c7| c8| c9
| [6 [mulf £0,£1,£2] £2 <9
t |7 |stf £2,Z(rl)

PAGE FAULT

Reservation Stations
# |[FU |busylop [T T1 T2
1 |ALU |no
2 |ID |no
3 |ST |yes [stf |ROB#7|ROB#6 ROB#4.V
4 |FP1l |yes |mulf |[ROB#6 ROB#5|[£0] CDB.V
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling IT 34

P6: Cycle 10 (with precise state)

ROB Map Table CDB
ht [#[Insn R S| X[ C| [Reg[T+ T
1[1df x(r1),£1 | £1[[£1]] c2| c3] c4| [£0
| |2 [mulf £0,£1,£2] £2[[£2] c4 |c5+] c8| [£1
3 [stf £2,2(rl) £2 z
4 |addi r1,4,r1 rl \
5 [1df x(rl) £l \
6 \mulf £0,£1,£2 faulting insn at ROB head?
7 [stf £2,2(rl) CLEAR EVERYTHING

Reservation Stations

FU |busylop |T T1 T2

ALU |no
LD no /
ST no

FP1 |no
FP2 |no

RN
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P6: Cycle 11 (with precise state)

ROB Map Table CDB
ht [#[Insn R S| X[ C| [Reg[T+ T
1[1df x(xl),£f1 | f1[[f1]] c2| c3]| c4] [£0
| [2 [mulf f0,f1,£2] £2|[£2][ c4[c5+ c8] [£1
ht[3 [stf £2,2(rl) £2
4 |addi r1,4,r1 rl
5 [1df X(rl),f1
6 |mulf £0,£1,£2 START OVER
7 |stf £2,2(r1) (after OS fixes page fault)
Reservation Stations m
# |[FU |busylop [T Ti T2
1 |ALU |no
2 |LD no
3 [sT |yes |stf [RoB#3 [£4] [r1]
4 |FP1 |no
5 |FP2 |no
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P6: Cycle 12 (with precise state)

ROB Map Table CDB
ht [#[Insn R WA S| X[ C| [Rea[T+ T
1[1df x(xl),£f1 | £1[[f1]] c2| 3] c4| [£0
| |2 |mulf £0,£1,f£2] £2|[£2]] c4 |c5+| c8] [£1
h |3 [stf £2,2(rl) cl2 £2
t |4 |addi rl,4,r1 |rl rl |ROB#4
5 [1df X(r1),£1
6 |mulf £0,£1,£2
7 [stf £2,2(xl)
Reservation Stations
# |[FU_ |busylop |T T1 T2
1 |ALU |yes |addi [ROB#4 [rl]
2 |LD no
3 [sT |yes |stf |ROB#3 [£4] [r1]
4 |FP1 |no
5 |FP2 |no
CS/ECE 752 (Wood): Dynamic Scheduling IT 37

P6 Performance

o In other words: what is the cost of precise state?
+ In general: same performance as “plain” Tomasulo
* ROB is not a performance device
* Maybe a little better (RS freed earlier — fewer struct hazards)
— Unless ROB is too small
« In which case ROB struct hazards become a problem
¢ Rules of thumb for ROB size
* At least N (width) * number of pipe stages between D and R
o Atleast N * t.; (o
* Can add a factor of 2 to both if you want
* What is the rationale behind these?
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P6 (Tomasulo+ROB) Redux

¢ Popular design for a while
* (Relatively) easy to implement correctly
« Anything goes wrong (mispredicted branch, fault, interrupt)?
* Just clear everything and start again
* Examples: Intel PentiumPro, IBM/Motorola PowerPC, AMD K6

¢ Actually making a comeback...
¢ Examples: Intel PentiumM

« But went away for a while, why?
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The Problem with P6

Map Table ﬁ ﬁRe fle a

I | Hegd
] Retire
— > ;
o @ wTail
a [=) Dispatch
© © RroB

Dispatcl

¢ Problem for high performance implementations
— Too much value movement (regfile/ROB—RS—~ROB—regfile)
— Multi-input muxes, long buses complicate routing and slow clock
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MIPS R10K: Alternative Implementation

Map Table ﬁ

Head
| Retire
Tail
Free Dispatch
op ' T Ti+T2+ List ROB
T [==T==]
==1
Dispatch
=
o
o

* One big physical register file holds all data no copies
+ Register file close to FUs — small fast data path
* ROB and RS “on the side” used only for control and tags
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Register Renaming in R10K

o Architectural register file? Gone
¢ Physical register file holds all values
« #physical registers = #architectural registers + #ROB entries
* Map architectural registers to physical registers
* Removes WAW, WAR hazards (physical registers replace RS copies)
e Fundamental change to map table
« Mappings cannot be 0 (there is no architectural register file)
¢ Free list keeps track of unallocated physical registers
* ROB is responsible for returning physical registers to free list

Conceptually, this is “true register renaming”
* Have already seen an example
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Register Renaming Example

o Parameters
e Names: r1,r2,r3
o Locations: 11,12,13,14,15,16,17
¢ Original mapping: r1—11, r2—12, r3—13, 14-17 are “free”

MapTable FreelList Raw insns Renamed insns
rl |r2 |r3

11 |12 13 14,15,16,17 add r2,r3,rl add 12,13,14
14 12 13 15,16,17 sub r2,rl,r3 sub 12,14,15
14 12 15 16,17 mul r2,r3,rl mul 12,15,16
16 (12 |15 17 div rl,r3,r2 div 14,15,17

¢ Question: how is the insn after div renamed?
« We are out of free locations (physical registers)
* Real question: how/when are physical registers freed?
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Freeing Registers in P6 and R10K

e P6
« No need to free storage for speculative (“in-flight”) values explicitly
e Temporary storage comes with ROB entry
e R: copy speculative value from ROB to register file, free ROB entry

e R10K
« Can't free physical register when insn retires
« No architectural register to copy value to
e But...
« Can free physical register previously mapped to same logical register
« Why? All insns that will ever read its value have retired
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Freeing Registers in R10K

‘MapTable FreeList Raw insns Renamed insns
rl |r2 |r3

11 |12 13 14,15,16,17 add r2,r3,rl add 12,13,14
14 12 13 15,16,17 sub r2,rl,r3 sub 12,14,15
14 12 15 16,17 mul r2,r3,rl mul 12,15,16
16 (12 |15 17 div rl,r3,r2 div 14,15,17

When add retires, free 11
When sub retires, free 13
When mul retires, free ?
When div retires, free ?
See the pattern?

CS/ECE 752 (Wood): Dynamic Scheduling 1T 45

R10K Data Structures

¢ New tags (again)

¢ P6: ROB# — R10K: PR#
* ROB

¢ R: logical output register

« Told: physical register previously mapped to insn’s logical output
¢ RS

e T, T1, T2: output, input physical registers
e Map Table

e T+: PR# (never empty) + “ready” bit
e Free List

e T: PR#

¢ No values in ROB, RS, or on CDB
* Yeager paper uses different names, what are they?
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R10K Data Structures

ROB Map Table
ht |# |Insn R [Told| S| X | C| |Reg|T+

1|1df X(rl),fl £0 |PR#1+
| |2 |[mulf £0,f1,6£2 £f1 |PR#2+

3 |stf £2,z(rl) £2 |PR#3+

4 |addi rl,4,rl [z [pR#ta+

5 [1df X(rl),f£1

6 |mulf £0,£1,£2 Free List

7 |stf £2,2Z(rl) PR#5, PR#6,

PR#7, PR#8

Reservation Stations
# |FU |busylop |T T1 T2 Notice I: no values anywhere
1 |ALU |no
; Is-lz :: Notice Il: MapTable is never empty
4 |FP1l |no
5 |FP2 |no
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R10K Pipeline

e R10K pipeline structure: F, D, S, X, C, R
¢ D (dispatch)
* Structural hazard (RS, ROB, LSQ, physical registers) ? stall
* Allocate RS, ROB, LSQ entries and new physical register (T)
« Record previously mapped physical register (Told)
« Update map table
¢ C (complete)
* Write destination physical register, set Ready in MT
¢ R (retire)
* ROB head not complete ? Stall
« Handle any exceptions
* Store write LSQ head to D$
* Free ROB, LSQ entries
« Free previous physical register (Told)
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R10K Dispatch (D)

Map Table E

Hea_d
Retire

Tail
Free m‘Fspatch

List ROB

op T T1+T2+
[ T==1==1]

Dispatch

* Read preg (physical register) tags for input registers, store in RS
* Read preg tag for output register, store in ROB (Told)
o Allocate new preg (free list) for output register, store in RS, Map Table
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R10K Complete (C)

R10K Retire (R)

Map Table E
Head
| Retire
Tail
Free Dispatch
op T T1+T2+ List ROB
T T==T==1
Dispatch
=
o
[&]
e Set insn’s output register ready bit in map table
* Set ready bits for matching input tags in RS
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R10K: Cycle 1
ROB Map Table
ht |# |Insn R _|Told| S| X | C| |Reg|T+
ht|l |1df X(rl) £1 | f1 |PR#2 £0 |PR#1+
2 \mulf £0,f1,f2 £1 |PR#5
3 |stf £2,Z(rl) £2 ;PR#EH-
4 |addi rl,4,rl rl l PR#4+
5 |1df X(rl), fl
|6 [mulf £0,£1,£2 Frée List
7 |stf £2,Z(rl) PR#5, PR#6,

PR#7,PR#8

Reservation Stations
FU |busylop |T T1 T2 Allocate new preg (PR#5) to f1

ALU |no

LD |yes [1df |PR#5 PR#4+

ST |no Remember old preg mapped to

FP1 |no f1 (PR#2) in ROB

G [ (W [N [ |5

FP2 |no
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Map Table E
Head
| Retire
Tail
Free Dispatch
op T T1+T2+ List ROB
Dispatch
=
o
o
e Return Told of ROB head to free list
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R10K: Cycle 2
ROB Map Table
ht |# |Insn R [Told| S| X | C| |Reg|T+
h [1[1df x(rl),f1 | £f1 |PR#2 c2 £0 |pr#1+ | [ |
|t |2 [mulf £0,f1,f2| £2 |PR#3 £1 |PR#5
3 |stf £2,z(rl) £2 |PR#6
4 |addi r1,4,rl rl [PR#4+
5 [1df X(rl) £l
6 [mulf £0,£1,£2 Frée List
7 |stf £2,7(rl) PR#6, PR#7,
PR#8
Reservation Stations
# |[FU |busylop |T 11 127 Allocate new preg (PR#6) to f2
1 |ALU |no
2 |ID |yes |1df |PR#5 PR#4+
3 |stT ho B Remembe_r old preg mapped to
4 |FP1 |yes |mulf |[PR#6 |PR#1+|PR#5 f3 (PR#3) in ROB
5 |FP2 |no
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R10K: Cycle 3

ROB Map Table
ht |# |Insn R |Told| S| X | C| |Reg|T+
h |1[1df X(r1),f1 | £1 [PR#2 c2| c3 g0 [er#1+ | [ |
| |2 |mulf f0,f1,f£2| £2 [PR#3 |£1 |PR#5
t |3 |stf £2,2Z(xrl) £2 |PR#6

4 |addi r1,4,r1 [z1 [PR#4+

5 |1df X(rl),£1

6 |mulf £0,f£1,f2 Free List

7 [stf £2,7(rl) PR#7, PR#8
Reservation Stations
# |FU_|busylop [T T1 T2 Stores are not allocated pregs
1 |ALU |no
2 |ID |no Free
3 |ST |yes |stf PR#6 |PR#4+|
4 |FP1 |yes |mulf |PR#6 |PR#1+ PR#5
5 |FP2 |no
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R10K: Cycle 4

ROB Map Table
ht [# [Insn R_[Told[ S| X[ C| [Reg[T+
h |1 [1df X(rl),f1 | £1 |[PR#2] c2| c3 ] c4
| [2 [mulf f£0,£1,£2] £2 |PR#3 c4

3 |stf £2,2z(rl)
t |4 |addi rl,4,r1 | rl [PR#4

5 [1df X(r1),£1

6 |mulf £0,f1,f2 Free List

7 |stf £2,2(xl) PR#7, PR#8
Reservation Stations Idf completes
# busylop [T T1 T2 .
1 |ALU |yes |addi |PR#7 |PR#A4+ set MapTable ready bit
2 |LD no
3 [ST |yes |stf PR#6 |PR#4+]
4 |FP1l |yes |mulf |PR#6 |PR#1+|PR#5+ Match PR#5 tag from CDB & issue
5 |FP2 |no
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R10K: Cycle 5

ROB Map Table
ht | # |Insn R |Told| S| X | C| |Reg|T+

1 [1df x(x1),£1 | £1 |pr#2[ c2| c3| ca| [0 [pr#1+ | [ |
| |2 |mulf £0,£1,£2] £2 |PR#3 c5 £1 |PR#8

3 [stf £2,2(rl) |£2_|pR#t6

4 |addi rl,4,rl rl |PR#4| c5 |rl |PR#7 |
t |5 [1df x(xl) £1 | £1 |PR#S)

6 |mulf £0,f1,f2 Freeist

7 |stf £2,2(rl) PR#S, PR#2

Reservation Stations

Idf retires
f ALU Szzy :gdi IR#7 l—;#“_ T2 Return PR#2 to free list
2 |LD yes |[1df |PR#8 PR#7
3 |ST |yes |stf PR#6 |PR#4+
4 |FP1 |no Free
5 |FP2 |no
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Precise State in R10K

¢ Problem with R10K design? Precise state is more difficult
— Physical registers are written out-of-order (at C)
e That's OK, there is no architectural register file
* We can “free” written registers and “restore” old ones
« Do this by manipulating the Map Table and Free List, not regfile

¢ Two ways of restoring Map Table and Free List

» Option I: serial rollback using R, T4 ROB fields
+ Slow, but simple

« Option II: single-cycle restoration from some checkpoint
+ Fast, but checkpoints are expensive

¢ Modern processor compromise: make common case fast
« Checkpoint only (low-confidence) branches (frequent rollbacks)
* Serial recovery for page-faults and interrupts (rare rollbacks)
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R10K: Cycle 5 (with precise state)

ROB [Map Table
ht |# |Insn R |Told| S| X | C| |Reg|T+
1 |1df X(rl) ,f1 | £f1 [PR#2| c2| c3 | c4| |£0 |PR#1+
h |2 [mulf £0,£1,£2| £2 [PR#3] c4| c5 |£1 [pR#ts
3 [stf £2,2(xl) £2 |PR#6
4|addi rl,4,r1 | rl |PR#4[ c5 lr1 |[PR#7
t |5 [1df X(xl),£f1 | £1 |PR#S|
| |6 |mulf £0,fl,f£2 Free List
7 [stf £2,7(r1) PR#8, PR#2

Reservation Stations

# |[FU |busylop [T 1 |T2 undo insns 3-5

1 |ALU |yes |addi [PR#7 |PR#4+ (doesn’t matter why)

2 |ID |ves |1df |PR#8 PRi#7 use serial rollback

3 |ST |yes |stf PR#6 |PR#4+

4 |FP1 |no

5 |FP2 |no
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R10K: Cycle 6 (with precise state)

ROB Map Table
ht |# |Insn R [Told| S| X | C| |Reg|T+
1 |1df X(rl),fl £f1 |PR#2| c2 | c3 | c4 £0 |PR#1+
lh |2 |mulf £0,f1,f2| £2 |PR#3| c4| c5 | 1£1 |PR#5+PR#8]
3 [stf £2,2(rl) | {£7 |pr#6
t |4 ]addi rl,4,r1 | rl |PR#4<C5 [z1 [PR#7
5 |1df X(rl),f1 | £1 |PR#5
6 |mulf £0,£1,£2 Free List
7 [stf £2,2(r1) PR#2, PR#8S ||
Reservation Stations undo Idf (ROB#5)
# [FU [busylop [T [11 [12 | [-freeRS )
1 |ALU |yes |addi |[PR#7 |PR#4+ 2. free T (PR#8), return to FreeList
2 b |no 3. restore MT[f1] to Told (PR#5)
3 |ST |yes |stf PRE#6 [pRyas| 4 free ROB#S
4 |FP1l |no
5 |FP2 |no insns may execute during rollback
(not shown)
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R10K: Cycle 7 (with precise state)

ROB Map Table
ht |# |Insn R |Told| S| X | C|[Reg [T+

1|1df x(rl),f1 | £1 |PR#2[ c2| c3| c4a|[£0 |pR#1+ [ |
Ih [2 [mulf £0,£1,£2] £2 [PR#3] c4| c5 £1 [PR#5+
t |3 |stf £2,2Z(rl) £2 _|PR#6

4 |addi rl,4,rl rl |PR#4| c5 rl PR#4+PR#7

5 [1df X(rl) ,£f1

6 |mulf £0,f£1,f2 Free List

7|stf £2,7(r1) PR#2 PRYS,

PR#7

Reservation Stations undo addi (ROB#4)
# [FU Jbusylop [T [T1 [r2 | !.freeRS :
1 |ALU |no 2. free T (PR#7), return to FreeList
2 LD |no 3. restore MT[r1] to Told (PR#4)
3 |sT |yes [stf PR#6 |pR#as| 4 free ROB#4
4 |FP1 |no
5 |FP2 |no
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R10K: Cycle 8 (with precise state)

ROB Map Table
ht [#[Insn R _[Told][ S| X[ C| [Reg[T+

1 |1df X(rl),fl | £1 [PR#2] c2| c3| c4
|ht|2 |mulf £0,f1,£f2| £2 |PR#3 c4| c5

3 |stf £2,z(rl)

4 |addi rl,4,rl

5 [1df X(rl), £l

6 |mulf £0,f1,f2 Free List

7 |stf £2,2(rl) PR#2,PR#8,

PR#7

Reservation Stations undo stf (ROB#3)
# [FU_|busylop [T [T1 [T2 1.free RS
1 |ALU |no 2. free RQB#?:
2 |10 |no 3.no re_glsters t_o restore/free
3 ST |no 4. how is D$ write undone?
4 |FP1l |no
5 |FP2 |no
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R10K: Checkpointing

* Faster precise state
« Use for (low-confidence) branches
Record state prior to predicted branch
* Save copy of MapTable
¢ Save copy of ROB tail pointer Why not both head
« Save copy of FreeList head pointer and tail pointers?
* Mark RS entries as conditional (one bit per branch)

* On mispredicted branch
* Restore checkpointed state
* Freelist retains
¢ Clear RS entries that are conditional on mispredicted branch
* What about instructions that have already completed?

* R10K implements 4 checkpoints
Relationship to Smith and Pleszkun?
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P6 vs. R10K (Renaming)

Feature P6 R10K
Value storage ARF,ROB,RS PRF
Register read @D: ARF/ROB — RS @S: PRF — FU
Register write @R: ROB — ARF @C: FU — PRF
Speculative value free|@R: automatic (ROB) @R: overwriting insn
Data paths ARF/ROB — RS PRF — FU
RS — FU FU — PRF
FU — ROB
ROB — ARF
Precise state Simple: clear everything |Complex: serial/checkpoint]

¢ R10K-style became popular in late 90’s, early 00s
e E.g., MIPS R10K (duh), DEC Alpha 21264, Intel Pentium4

o P6-style is perhaps making a comeback
* Why? Frequency (power) is on the retreat, simplicity is important
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Out of Order Memory Operations

o All insns are easy in out-of-order...
« Register inputs only
« Register renaming captures all dependences
¢ Tags tell you exactly when you can execute
o ... except loads
* Register and memory inputs (older stores)
* Register renaming does not tell you all dependences
* Memory renaming (a little later)
¢ How do loads find older in-flight stores to same address (if any)?
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Data Memory Functional Unit

e D$/TLB + structures to handle in-flight loads/stores
¢ Performs four functions
¢ In-order store retirement
* Writes stores to D$ in order
« Basic, implemented by store queue (SQ)
« Store-load forwarding
 Allows loads to read values from older un-retired stores
« Also basic, also implemented by store queue (SQ)
* Memory ordering violation detection
* Checks load speculation (more later)
* Advanced, implemented by load queue (LQ)
+ Memory ordering violation avoidance
« Advanced, implemented by dependence predictors
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Simple Data Memory FU: D$/TLB + SQ

address load position

datain dataout o Jyst like any other FU

« 2 register inputs (addr, data in)
* 1 register output (data out)

* 1 non-register input (load pos)?

tore Queup (SQ) |

_Ead
* Store queue (SQ)

tail « In-flight store address/value
1 ¢ In program order (like ROB)
« Addresses associatively searchable
¢ Size heuristic: 15-20% of ROB

¢ But what does it do?
¢ Virtual or physical address?
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Data Memory FU "Pipeline”

e Stores
« Dispatch (D)
* Allocate entry at SQ tail
« Execute (X)
* Write address and data into corresponding SQ slot
« Retire (R)
« Write address/data from SQ head to D$, free SQ head
e Loads
« Dispatch (D)
* Record current SQ tail as “load position”
* Execute (X)
« Where the good stuff happens
¢ Retire (R)
¢ Check for (ordering) exceptions
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“Out-of-Order” Load Execution

address datain dataout ® In parallel with D$ access
load ppsition ¢ Send address to SQ
* Compare with all store addresses
o CAM: like FA$, or RS tag match
head * Select all matching addresses
 Partial match possible
tail® Age logic selects youngest
store that is older than load
e Uses load position input
¢ Any? load “forwards” value from SQ
¢ Can stall in hard cases
¢ None? Load gets value from D$
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Conservative Load Scheduling

e Why " in “out-of-order"”?
+ Load can execute out-of-order with respect to (wrt) other loads
- Need to check for multiprocessor ordering violations (CS757)
+ Stores can eXecute out-of-order wrt other stores
+ Can't let other cores see 000 stores in a multicore
+ Must Retire in order
— Loads must execute in-order wrt older stores to same
address
* Load execution requires knowledge of all older store addresses
- Stall if store address not yet known
+ Simple
— Restricts performance
e Used in P6 and EV-6
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Conservative Load Execution

address datain dataout ®* Ambiguous dependence
load pgsition » Unknown address could match

Unresolved store address
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Opportunistic Memory Scheduling

e Observe: on average, < 10% of loads forward from SQ
« Even if older store address is unknown, chances are it won't match
* Let loads execute in presence of older “ambiguous stores”
+ Increases performance
¢ But what if ambiguous store does match?

 Memory ordering violation: load executed too early

e Must detect...(How?)
« And fix (e.g., by flushing/refetching insns starting at load)
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Detecting Misspeculated Loads: SQ + LQ

store position flush? * Load queue (LQ)

« In-flight load addresses

¢ In program-order (like ROB,SQ)
* Associatively searchable

¢ Size heuristic: 20-30% of ROB

head

Existing SQ

New LQ
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Advanced Memory “Pipeline” (LQ Only)

¢ Loads
« Dispatch (D)
* Allocate entry at LQ tail
« Execute (X)
* Write address into corresponding LQ slot
o Stores
« Dispatch (D)
* Record current LQ tail as “store position
* Execute (X)
* Where the good stuff happens

"
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Detecting Memory Ordering Violations

* Store sends address to LQ
« Compare with all load addresses
« Selecting matching addresses
* Matching address? Younger Load?
¢ Load executed before store
« Violation
o Fix!

store position flush?

load queue (LQ)

head

* Age logic selects loads that
are younger than store
¢ Use store position
* Processor flushes and restarts
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Intelligent Load Scheduling

* Opportunistic scheduling better than conservative...
+ Avoids many unnecessary delays
+ 100-300 false dep/1K Instrs
e ...but can degrade performance
— Introduces few flushes, but each is much costlier than a delay
— 0-25 misspeculations/1K Instrs * 12-35 cycles (Alpha EV7)

e Observe: loads/stores that cause violations are “stable”
« Dependences are mostly program based, program doesn’t change
o Scheduler is deterministic

¢ Exploit: intelligent load scheduling
¢ Hybridize conservative and opportunistic
« Predict which loads, or load/store pairs will cause violations
¢ Use conservative scheduling for those, opportunistic for the rest
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Memory Dependence Prediction

¢ Store-blind prediction
« Predict load only, wait for all older stores to execute
+ Simple, but a little too heavy handed
* Example: Alpha 21264

¢ Store-load pair prediction
« Predict load/store pair, wait for only one store to execute
+ More complex, but minimizes delay

» Store set prediction
* Group loads and stores into dependent sets
* Store-Set Table: load-PC — store-PC
o Last Store Table: store-PC — SQ index of most recent instance
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Memory Dependence Prediction

e Moshovos, et al.
¢ Memory Dependence Prediction Table (MDPT)
« Identifies static load-store dependence
* LDPC, STPC, dependence DISTance, prediction
« DIST identifies dynamic instance of dependent store
* Memory Dependence Synchronization Table (MDST)
* Used to synchronize dynamic instance in MDPT
» Coordinate with instruction scheduler
e For (i=0; i<N-2; i++) {
sum += X[i];
if (X[i] % 7 ==1) X[i+2] = X[i+2]/2; }
Store sets will stall on each instance of load
¢ Implemented in Intel Nehalem/Haswell. Apple A7?
o See WARF v. Intel, WARF v. Apple....
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Limits of Insn-Level Parallelism (ILP)

» Before we build a big superscalar... how much ILP is there?
o ILP: instruction-level parallelism [Fisher'81]
¢ Sustainable rate of useful instruction execution
e ILP limit study
« Assume perfect/infinite hardware, successively add realism
* Examples: [Wall'88][Wilson+Lam'92]
* Some surprising results
+ Perfect/infinite “theoretical” ILP: int > 50, FP > 150
* Sometimes called the “dataflow limit”
— Real machine “actual” ILP: int ~2, FP ~ 3
* Fundamental culprits: branch prediction, memory latency
« Engineering culprits: “window” (RS/SQ/redfile) size, issue width
¢ Read on your own: P+H: 3.8-3.10
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Clock Rate vs. IPC

* Does frequency vs. width tradeoff actually work?

* Yes in some places, no in others

+ Yes: fetch, decode, rename, retire (all the in-order stages)

— No: issue, execute, complete (all the out-of-order stages)

¢ What's the difference?
* Out-of-order: parallelism doesn't help if insns themselves serial

« 2 dependent insns execute in 2 cycles, regardless of width

« In-order: inter-insn parallelism doesn’t matter

¢ Intel Pentium4: multiple clock domains

o In-order stages run at 3.4 GHz, out-of-order stages at 6.8 GHz!
« Frequency = Powery, . — high frequency only where necessary
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Dynamic Scheduling Redux

» Dynamic scheduling is a performance technique
¢ But what about...

« “Scalability”: how big can we profitably make it?

« Power/energy?

o Reliability?
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“Scalability”

¢ Scalability: how big/wide should we make a window?
« Bigger/wider structures (can) improve IPC, but degrade clock
* Where is the cross-over?
« Caveat: scalability is conjunctive (the “Anna Karenina” principle)
* Happy families are all alike; every unhappy family is unhappy in its own way.
« For a design to be scalable, all components must be scalable

* Non-scalable (and scalable) structures
« Mostly in execution core (see clock rate vs. IPC)
— N2 networks (e.g., bypassing network)
— Large SRAMs with many read/write ports (e.g., physical regfile)
— Large multi-ported CAMs (e.g., scheduler or reservation stations)
— Large age-ordered CAMs (e.g., load and store queues)
¢ A lot of current research on scalable versions of these structures
+ ROB is not a problem: few ports, none in “execution core” really
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Research: Speculative Indexed SQ

Predicted SQ entry (from Store-Sets)
address datain dataout ¢ Observe: if load forwards,
can guess store’s SQ position
with high accuracy
* Store-Sets works this way
heag® EXxploit: no need to match all
stores, use Store-Sets to guess
one and match on it
e CAM+age — RAM+comparator
* How to verify speculation?
¢ LQ? DIVA? Load-only DIVA?
« Indexed SQ [Sha,Martin,Roth’05]
* Nosq: No store queue [Micro’06]

tail

D$/TLB
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Pentium III vs. Pentium4 (Processors)

Feature Pentium IIT Pentium 4

Peak clock 800 MHz 3.4 GHz (6.8 internal)
Pipeline stages 15 22

Branch prediction 512 local + 512 BTB 2K hybrid + 2K BTB
Primary caches 16KB 4-way 8KB 4-way + 64KB T$
L2 512KB-2MB 256KB-2MB

Fetch width 16 bytes 3 uops (16 bytes on miss)
Rename/retire width |3 uops 3 uops

Execute width 5 uops 7 uops (X2)

Register renaming P6 R10K

ROBJ/RS size 40/20 128/60

Load scheduling Conservative Intelligent

Anything else? No Hyperthreading
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Dynamic Scheduling and Power/Energy

¢ Is dynamic scheduling low-power?
— Probably not
¢ New SRAMs consume a lot of power
« Re-order buffer, reservation stations, physical register file
« New CAMs consume even more (relatively)
« Reservation stations, load/store queue
¢ Is dynamic scheduling low-energy?
+ Could be
« Does performance improvement offset power increase?
o Are there “deep sleep” modes?
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Dynamic Scheduling and Reliability

* How does dynamic scheduling affect reliability?
¢ What is the fault model?
+ Transient faults (a-particles)? More transistors, more faults?
+ Gradual faults (electro-migration)? Same
— Permanent faults (design errors)? Worse, 000 is complicated

¢ A holistic view of electrical reliability
« Vulnerability to electrical faults is function of transistor size
« Mitigate (even eliminate) with larger transistors
« But larger transistors consume more power and energy
¢ Unless we slow them down....
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Dynamic Instruction Verification (DIVA)

Re-order buffer

P-regfile Acregfile

¢ Can we tolerate faults in out-of-order (execution) stages?
« Not directly
« But can detect them by re-executing insns and comparing results
* Discrepancy? Flush and restart
¢ Insert in-order verification (V) stage just before retirement
« DIVA [Austin'99]
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DIVA

¢ Why DIVA works
« Re-execution acts like an in-order stage for parallelization purposes
« Can re-execute dependent insns in parallel!
¢ How come? “dependence-free checking”
« You have original inputs and outputs of all insns
* Try working this out for yourself
¢ What DIVA accomplishes
+ Detects transient errors in out-of-order stages
* Re-execution is parallel — slow clock, big, robust transistors
+ Can also detect design errors
* Re-execution (in-order) simpler than execution (out-of-order)
o Less likely to contain rare bugs
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Current Dynamic Scheduling Research

e “Critical path modeling”
« Identify (and optimize) performance critical instructions
e “Scalable schedulers”
« Support for huge schedulers, several different designs
¢ “Macro-ops and dataflow mini-graphs”
« Schedule groups of dependent insns at once (MG: also fetch, retire)
* Do more with fewer resources
¢ “Out-of-order fetch and rename”
« Avoid branch mispredictions by fetching control independent insns
e Much more...
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Unit Summary

e Modern dynamic scheduling must support precise state
« A software sanity issue, not a performance issue
e Strategy: Writeback — Complete (000) + Retire (iO)
¢ Two basic designs
« P6: Tomasulo + re-order buffer, copy based register renaming
+ Precise state is simple, but fast implementations are difficult
¢ R10K: implements true register renaming
+ Easier fast implementations, but precise state is more complex
¢ QOut-of-order memory operations
« Store queue: conservative load scheduling (iO wrt older stores)
e Load queue: opportunistic load scheduling (00O wrt older stores)
¢ Intelligent memory scheduling: hybrid
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Dynamic Scheduling Summary

e Qut-of-order execution: a performance technique
« Easier/more effective in hardware than software (isn't everything?)
¢ Idea: make scheduling transparent to software
e Feature I: Dynamic scheduling (i0 — 000)
« “Performance” piece: re-arrange insns into high-performance order
¢ Decode (iO) — dispatch (iO) + issue (O00)
« Two algorithms: Scoreboard, Tomasulo
o Feature II: Precise state (OoO — iO)
« “Correctness” piece: put insns back into program order
¢ Writeback (O00) — complete (O00) + retire (iO)
* Two designs: P6, R10K
* Don't forget about memory scheduling
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