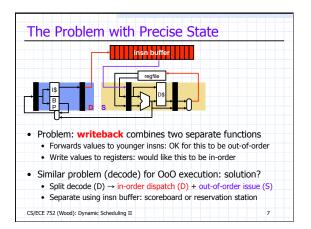
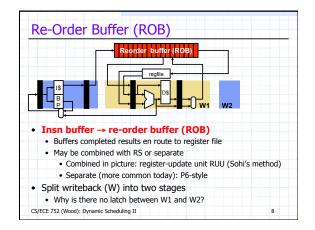
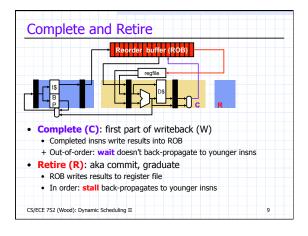
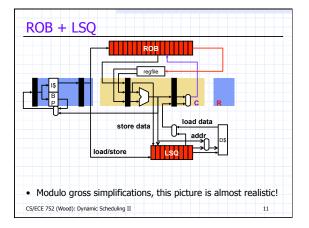

U. Wisconsin CS/ECE 752 Advanced Computer Architecture I
Prof. David A. Wood
Unit 6: Dynamic Scheduling II
Slides developed by Amir Roth of University of Pennsylvania with sources that included University of Wisconsin slides by Mark Hill, Guri Sohi, Jim Smith, and David Wood.
Slides enhanced by Milo Martin, Mark Hill, and David Wood with sources that included Profs. Asanovic, Falsafi, Hoe, Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood
CS/ECE 752 (Wood): Dynamic Scheduling II 1

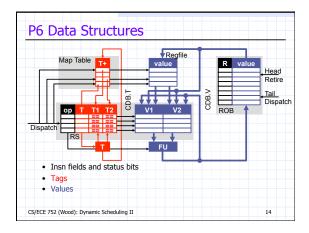



Superscalar + Out-of-Order + Specu	ulation
 Three great tastes that taste great together CPI ≥ 1? 	
Go superscalar	
 Superscalar increases RAW hazards? 	
Go out-of-order (OoO)	
RAW hazards still a problem?	
Build a larger window	
Branches a problem for filling large window? Add control speculation	
CS/ECE 752 (Wood): Dynamic Scheduling II	3


d (abort) anch
anch
cks
writeback
problem

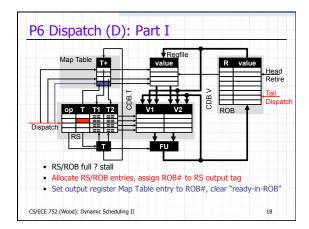
•	Speculative execution requires
	(Ability to) abort & restart at every branch
	 Abort & restart at every load useful for load speculation (later)
	 And for shared memory multiprocessing (much later)
•	Precise synchronous (program-internal) interrupts require
	Abort & restart at every load, store, ??
•	Precise asynchronous (external) interrupts require
	Abort & restart at every ??
•	Bite the bullet
	Implement abort & restart at every insn
	Called "precise state"

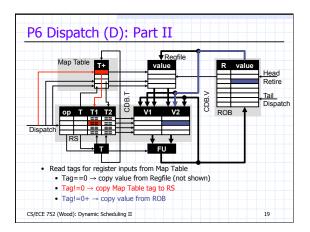

•	Imprecise state: ignore the problem!
	 Makes page faults (any restartable exceptions) difficult
	 Makes speculative execution almost impossible
	IEEE standard strongly suggests precise state
	 Compromise: Alpha implemented precise state only for integer ops
•	Force in-order completion (W): stall pipe if necessary
	- Slow
•	Precise state in software: trap to recovery routine
	 Implementation dependent
	Trap on every mis-predicted branch (you must be joking)
•	Precise state in hardware
	+ Everything is better in hardware (except policy)

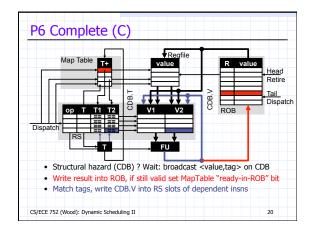


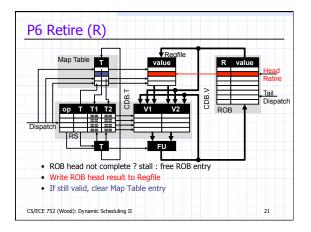
ROB makes register writes in-order, but what a	bout stores?
 As usual, i.e., write to D\$ in X stage? 	
 Not even close, imprecise memory worse than imprecise Especially in a multiprocessor! 	cise registers
Load/store queue (LSQ)	
Completed stores write to LSQ	
 When store retires, write head of LSQ to D\$ 	
When loads execute, access LSQ and D\$ in parallel	
 Forward from LSQ if older store with matching ad 	dress
 More modern design: loads and stores in separate qu 	leues
More on this later	

 P6: Start with Tomasulo's algorithm add Re Separate ROB and RS 	ОВ
• Simple-P6	
• Our old RS organization: 1 ALU, 1 load, 1 store, 2	3-cycle FP
CS/ECE 752 (Wood): Dynamic Scheduling II	12


 Reservation St 	ations are same as before	
ROB		
 head, tail: p 	ointers maintain sequential order	
 R: insn outpu 	t register, V: insn output value	
 Tags are difference 	rent	
 Tomasulo: RS 	6# → P6: ROB#	
 Map Table is c 	lifferent	
 T+: tag + "re 	eady-in-ROB" bit	
 T==0 → Valu 	ie is ready in regfile	
 T!=0 → Value 	e is not ready	
 T!=0+ → Val 	ue is ready in the ROB	




RC)B	3 2			<u> </u>	-	1 3	3 3	Map Table	CDB
	# In	sn		R	V	S	Х	С	Reg T+	TV
	1 1d	f X(r	1),f1			-			f0	
-			,f1,f	2				11	f1	
	3 st	f f2,	Z(r1)				+		f2	
			,4,r1						r1	
			1),f1							
			,f1,f	2						
_	7 st	f f2,	Z(r1)			_				
Re	servat	ion Sta	ations							
#	FU	busy	ор	т	T1	T	2	V1	V2	
1	ALU	no			-			++		
2	LD	no								
3	ST	no								
4	FP1	no								
5	FP2	no								


New pipeline structure: F, D, S, X, C, R	
D (dispatch)	
 Structural hazard (ROB/LSQ/RS) ? Stall 	
 Allocate ROB/LSQ/RS 	
 Set RS tag to ROB# 	
 Set Map Table entry to ROB# and clear "re 	eady-in-ROB" bit
 Read ready registers into RS (from either 	ROB or Regfile)
X (execute)	
Free RS entry	
Use to be at W, can be earlier because RS	# are not tags
S/ECE 752 (Wood): Dynamic Scheduling II	16

• C	(complete)
	Structural hazard (CDB)? wait
	Write value into ROB entry indicated by RS tag
	Mark ROB entry as complete
	If not overwritten, mark Map Table entry "ready-in-ROB" bit (+)
• R	(retire)
	Insn at ROB head not complete ? stall
	Handle any exceptions
	Write ROB head value to register file
	If store, write LSQ head to D\$
	Free ROB/LSQ entries

)B		2	4						Man	Table	CDB
_	_	Insn			R	/	S	X	С	Reg		TV
h			K(r	1),f1	f1		c2			f0		
t				,f1,f2	2 f 2						ROB#1	
		stf i									ROB#2	
	4	addi	r1	,4,r1						r1		
	5 ldf X(r1),f1											
	6	mulf	£0	,f1,f2	2							
	7	stf i	E2,	Z(r1)								\mathbf{i}
Re	ser	vation	Sta	ations								
	FI		JSV		Т	T1	T2		V1	V	2	set ROB# tag
#	A		_		-						·	
_	-) ve	es	ldf	ROB#1					-	r1]	
1	L		2	1			_					
1 2	LI S	r no										
# 1 2 3 4	-		es	mulf	ROB#2		ROE	3#1	[f0]			allocate

RC)B			1.3			1 1 1	1 1	Map Table	CDB
		Ins	sn		R	V	s x	C	Reg T+	TV
h				1),f1	f1		2 c3		f0	
				,f1,f					f1 ROB#1	
t				Z(r1)					f2 ROB#2	
	4	ad	di r1	,4,r1					r1	
	5	ld	f X(r	1),f1						-
	6	mu	1f f0	,f1,f	2					
	7	st	f f2,	Z(r1)						
R۵	cor	vət	ion Sta	ations	<u></u>					
#	FI		busy		Т	T1	T2	V1	V2	
1	-	LU	no		·		12	· -	v 2	
2	L		no				1 3			free
	S		yes	stf	POB#3	ROB#2			[r1]	allocate
3			yes		ROB#2		ROB#1	[ff0]	1	unocule
3 4	F									

	^D	-	1 1	1 1		3	- 1	_	1 8		Man Table	_
RC		-			-				1.1	-	Map Table CDB	_
	-	Ins			R	V	/	S	X	С	Reg T+ T V	
h				1),f1	f1		f1]	c2		c4	f0 ROB#1 [f]	1]
				,f1,f	2 f2	4		_c4			f1 ROB#1+	
			f f2,			+					f2 ROB#2	
t				,4,r1		+				2 4	r1 ROB#4	
				1),f1		+					ldf finished	~
	6	mu	1f f0	f1 f	2		1.1					
_					-	+					 set "ready-in-ROB" t 	oit
_	7	st	f f2,			t					2. write result to ROB	oit
	7	st:										oit
Re	7 ser		f f2,	Z(r1)							2. write result to ROB	oit
-	-	vati	f f2, ion Sta	z (r1) ations			т1		[2	V1	2. write result to ROB 3. CDB broadcast	oit
Re #	F	vati U	f f2, ion Sta busy	z (r1) ations op	T	_	T1		Г <u>2</u>	V1	2. write result to ROB 3. CDB broadcast	bit
# 1	F	vati U LU	f f2, ion Sta busy	z (r1) ations		_	T1	1	Г <u>2</u>	V1 [r1]	2. write result to ROB 3. CDB broadcast	
-	F	vati U LU D	f f2, ion Sta busy yes	z (r1) ations op	T	4			r2	_	2. write result to ROB 3. CDB broadcast V2 allocate	
# 1 2	FI Al LI	vati U LU D	f f2, ion Sta busy yes no yes	z (r1) ations op add	T ROB#	4		#2	Г2 ROB#1	[r1]	2. write result to ROB 3. CDB broadcast	

ĸu)B								Map Table	CDB
ht	#	Ins	n		R	/ 9	5 X	С	Reg T+	TV
	1	ldf	X(r	1),f1	f1	[f1] c	2 c3	c4	f0	
h				,f1,f		0	4 c5	-	f1 ROB#5	
	3	stf	f2,	Z(r1)					f2 ROB#2	
	4	add	li r1	,4,r1	r1	c	5		r1 ROB#4	
t	5	ldf	X(r	1),f1	f1				Idf retires	
	6	mul	f f0	,f1,f	2				1. write RO	B result to regf
	7	stf	f2,	Z(r1)						
	cor	vati	on Sta	ations		5 5	1 1 8			
Re					Т	T1	T2	V1	V2	
-	-	J	DUSV	IOD						
#	Fl	-	busy ves	op add	I ROB#4					
#	Fl	LŪ					ROB#4	[r1]		allocate
# 1 2	Fl	D D	yes	add	ROB#4 ROB#5					allocate
Re # 1 2 3 4	Fl	LU D	yes yes	add <mark>1df</mark>	ROB#4 ROB#5					allocate

RC)B	\$ <u>}</u>	3		1 3	1 : 2	3 1	Map Table	CDB
٦t	# In	sn		R	V	S X	C	Reg T+	ΤV
	1 1d	f X(r	1),f1	f1	[f1] (c2 c3	c4	fO	-
h	2 mu	1f f0	,f1,f2	2 f2		c4 c5+	-	f1 ROB#5	
		f f2,						f2 ROB#6	
			,4,r1	r1		c5 <mark>c6</mark>		r1 ROB#4	
			1),f1	f1		_			
t			,f1,f2	2 f2			2 3		
_	7 st	f f2,	Z(r1)						
Re	servat	ion St	ations						
#	FU	busy	ор	Т	T1	T2	V1	V2	
1	ALU	no							free
2	LD	yes	ldf	ROB#5	5	ROB#4	L]
3	ST	yes	stf	ROB#3	B ROB#2	2		[r1]	
4	FP1	yes	mulf	ROB#6	5	ROB#5	6 [f0]		allocate
5	FP2	no							

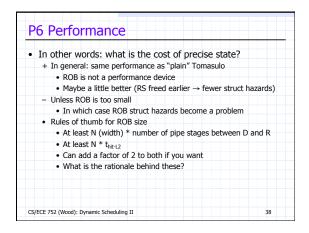
RC)B	:	3							М	ap Table	CDB
ht		Ins	sn		R	V		S X	C		eg T+	TV
	1	ld	f X(r	1),f1	f1	[f1] c	2 c3	c4	f)	ROB#4 [r1]
h	2	mu	1f f0	,f1,f	2 f2		c	4 c5+	+	f1	ROB#5	
	3			Z(r1)						f2		
	4			,4,r1	r1	[r1		:5 c6	c7	1	ROB#4+	•]
	5			1),f1	f1		c	:7				
t				,f1,f	2 f2		_					
_	7	st	f f2,	Z(r1)	_					sta	ll D (no fre	e STRS)
Re	ser	vat	ion Sta	ations								
#	F		busy		Т	T1		T2	V1		V2	
1	A	LU	no									ROB#4 ready
2	L	D	yes	ldf	ROB#	5		ROB#4			CDB.V	grab CDB.V
3	S	т	yes	stf	ROB#	3 RO	в#2				[r1]	grab obb.t
4	F	Р1	yes	mulf	ROB#	6		ROB#5	5 [f0]]		
5	12	P2	no						1			

							_	1 6	3 1			T 1 1	
RC	_	-			-		_		-			Table	CDB
ht	-	Ins	n		R	V	S	Х	С		Reg	T+	ΤV
	1			1),f1	f1		c2	c3	c4	1 13	0		ROB#2 [f2]
h	2			,f1,f	2 f2	[f2]	c4	c5+	c8		1	ROB#5	
	3			Z(r1)			c 8				2	ROB#6	
	4			,4,r1	r1	[r1]		c6	c7			ROB#4+	
	5			1),f1	f1		c7	c8				t for add	
t				,f1,f	2 f2					(in	-ore	der comi	nit)
	7	sti	£ £2,	Z(r1)								D.40 1	11 - 1 - 1 - 1
_			/	5(11)	_	_					RO	B#2 INVa	ilid in MapTable
				- (/									eady-in-ROB
Ro	cor	vati											
			on Sta	ations	T	T1	Т	2	V/1		dor	n't set "r	
#	F	J	on Sta busy	ations	T	T1	Т	2	V1			n't set "r	
# 1	F	na 1	on Sta busy no	ations	T	T1	Т	2	V1		dor	n't set "r	
# 1 2	F	D TA T	on Sta busy no no	op				2			doi V	n't set "r 2	
# 1 2 3	F A L S	с ГО Г	on Sta busy no no yes	op stf	ROB#	3 ROB	#2		[f2]		doi V	n't set "r	eady-in-ROB"
Re # 1 2 3 4	FI Al LI S' FI	с ГО Г	on Sta busy no no	op stf		3 ROB	#2	2 ов#5	[f2]		doi V	n't set "r 2	eady-in-ROB" ROB#2 ready

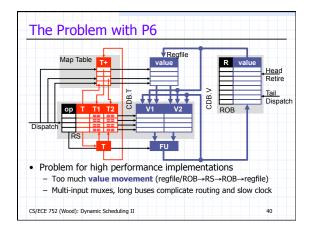
RC	Ж									1	Мар	Tabl	е	CDB
ht	#	Ins	sn		R	٧	S	Х	С	F	Reg	T+		ТV
	1	ld	f X(r	1),f1	f1	[f1]	c2	c3	c4		E0			ROB#5 [f1]
	2	mu	lf f0	,f1,f	2 f2	[f2]	c4	c5+	c8	1	£1	ROB	‡5 +	
h			f f2,				c8				E2	ROB		
	4			,4,r1	r1	[r1]	c5	c6	c7		:1	ROB	\$4+	
				1),f1	f1	[f1]	-		c9	ret	tire	mulf		
t			<u>lf f0</u> f f2,	,f1,f	2 £2		c9							
-			/	/				1 5	-	an	hih	e sta	yea	active at once
Re	ser	vat	ion Sta	ations										
Re #	ser Fl		ion Sta		Т	T1	1	-2	V1		V	2		
		J			Т	T1	1	-2	V1		V	2		
#	Fl	۲۵ ۲	busy		T	T1	1	2	V1		V	2		
# 1	Fl	D TO T	busy no	ор	T ROB#		#6						. v	free, re-allocat
# 1 2	FU		busy no no	ор	ROB#	7 ROB	#6	-2 2 80B#5			R		. v	free, re-allocat ROB#5 ready grab CDB.V

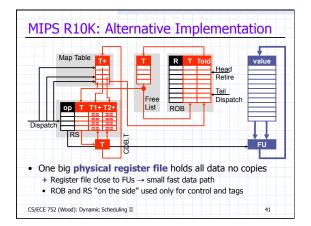
	_	_						_						
RC												Table	CDE	
ht	#	Ins	n		F	र ।	V	S	X	C	Rec	1 T+	Т	V
	1	ldi	E X(r	1),f1		f1	[f1]	c	2 c3	c4	f0			
	2	mul	Lf f0	,f1,f	2	£2	[£2]	C	1 c5+	c8	f1	ROB#5+		
h	3	st	£ £2,	Z(r1)				c	3 c9	c10	f2	ROB#6		
				,4,r1			[r1]	c!		c7	r 1	ROB#4+		
				1),f1			[f1]	c'		c9				
				,f1,f	2	£2		C	c10					
t	7	st	E £2,	Z(r1)										
R0	cor	vati	on Sta	ations	-	5 3	1 1	-	1.5	1 1	1 1	1 1 1		
#	TFL		busy		т		T1	-	T2	V1	\	/2		
# 1	AI		no	υρ			11	-	12	VI		12		
2	LI		no					-						
3	ST		yes	stf	BO	B#7	ROB	#6			T	ROB#4.V		
4	FF		no	0.01		~~~	1.00				-		free	
		2	no								-			

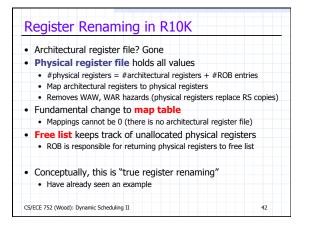
					_			_				T 1 1	CDD	
RO						_						o Table	CDB	_
ht	#	Ins	sn			R	V	S	X	C	Rec	1 T+	Т	V
	1	ld	f X(r	1),f1			[f1]	c	2 c3	c4	f0			
	2	mu	1f f0	,f1,f	2	£2	[f2]	C	l c5	c8	f1	ROB#5+		
	3	st	f f2,	Z(r1)				c	3 c9	c10	f2	ROB#6		
h	4	ad	di r1	,4,r1	.	r 1	[r1]	c!	5 c6	c7	r1	ROB#4+		
	5	ld	f X(r	1),f1		f1	[f1]	c'	7 c8	c9		re stf		
	6	mu	1f f0	,f1,f	2	£2		c	c10		retil	esu		
t	7	st	f f2,	Z(r1)										
Re	ser	vat	ion Sta	ations	-	1 1		_	1 3		1 3			
#	FI		busy		Т		T1		T2	V1		/2		
1		LU	no		<u> </u>									
2	L	D	no											
3	S	г	yes	stf	RC)B#7	ROB	#6			F	ROB#4.V		
4	F	P1	no											
5	-	P2	no											


	bint of ROB is maintaining precise state
1	How does that work? Easy as 1,2,3
	 Wait until last good insn retires, first bad insn at ROB head Clear contents of ROB, RS, and Map Table
	3. Start over
•	 Works because zero (0) means the right thing 0 in ROB/RS → entry is empty Tag == 0 in Map Table → register is in regfile
•	and because regfile and D\$ writes take place at R
•	Example: page fault in first stf

RC									1 1	Mar	o Table	CDB
ht		Ins	'n		R	V	6	S X	С			TV
ΠL	-	-		1),f1	f1	(f1]	c		c4	f0	117	ROB#5 [f1]
	+			,f1,f		[f2]		4 c5+	-	f1	ROB#5+	KOB#5[[II]
h				/11,1. Z(r1)	2 12	[12]		8 c9		f2	ROB#5+	
				,4,r1	r1	[r1]		5 c6	C7	r1	ROB#4+	
				1),f1		[f1]	-	7 c8	c9		1	•
				,f1,f			С	9				
t			f f2,									
											PAGE	FAULT
Do	cor	vəti	ion Sta	ations					1 1			
#	FI		busy		т	T1	-	T2	V1		12	
π 1	A		no	οp		11	-	12	V I		2	
2	L		no			-						
3	S		ves	stf	ROB#7	7 ROB	#6			F	ROB#4.V	
4	F		ves	mulf				ROB#5	[£0]		DB.V	
5	F	P2	no									


RO	В										Map Table CDB
ht	#	Insn			1	R	V	S	X	С	Reg T+ T V
	1	ldf	X(r	1),f1		f1	[f1]	c2	c3	c4	f0
				,f1,f		£2	[f2]	c4	c5+	c8	f1
				Z(r1)							f2
				,4,r1		_					<u>r1</u>
		<pre>ldf X(r1),f1 mulf f0,f1,f2</pre>				_					
				<u>,fl,f</u> Z(r1)	2	2					faulting insn at ROB head?
-	/	Sti	12,	2(f1)	-	1			1.1	1 1	CLEAR EVERYTHING
-											
Re	ser	vatio	n Sta	ations							
#	FL	J b	usy	ор	Т		T1	T	2	V1	V2
1	AL	U n	0								
2	LD	n	0							/	
3	ST		0								
4	FP		0					_			
5	FP	2 n	0								

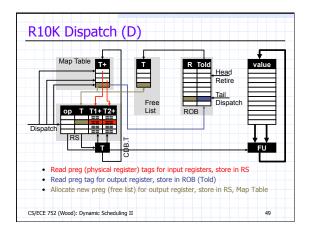

RC)B								Map Table CDB
ht	#	Insn		R	V	S	Х	С	Reg T+ T V
	1	ldf X(r	1),f1	f1	[f1]	c2	c3	c4	f0
	2 1	mulf f0	,f1,f	2 f2	[f2]	c4	c5+	c8	f1
ht		stf f2,							f2
		addi r1							r1
		ldf X(r							
		mulf f0		2					START OVER
_	7	stf f2,	Z(r1)		_				(after OS fixes page fault)
Re	serv	ation Sta	ations						
#	FU			Т	T1	Т	2	V1	V2
1	AL			-		-			
2	LD	no							
3	ST	yes	stf	ROB#3	3			[f4]	[r1]
4	FP	1 no							
5	FP	2 no							

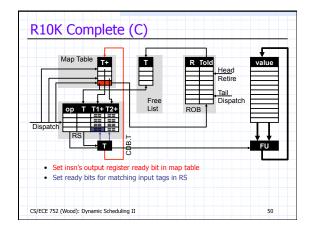

		-						1.3	1.1	Mars Table	CDD
RC		-					-		-	Map Table	CDB
ht	-	Ins			R	V	S	X	С	Reg T+	T V
			f X(r			[f1]		c3	c4	fO	
			1f f0		2 f2	[f2]		c5+	c8	f1	
h			f f2,				c12			f2	
t			di r1							r1 ROB#4	
			f X(r								
			1f f0		2						
	7	st	f f2,	Z(r1)							
Re	ser	vat	ion Sta	ations							
#	FI		busy		Т	T1		2	V1	V2	
1	AJ	- LU		addi	ROB#	_			[r1]		
2	LI		no			-					
3	S	r	yes	stf	ROB#	3			[f4]	[r1]	
	FI	P1	no								
4							_				

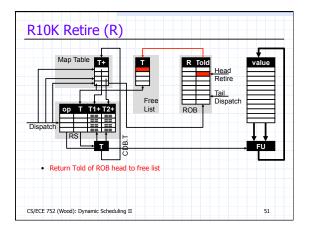
• (Relat • Ar • Ju	design for a while ively) easy to implement correctly ything goes wrong (mispredicted branch, fault, interrupt)? st clear everything and start again bles: Intel PentiumPro, IBM/Motorola PowerPC, AMD K6
	making a comeback
But wer	t away for a while, why?

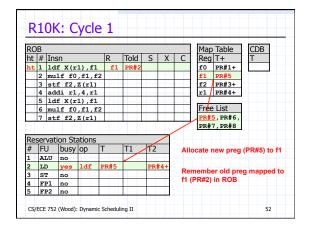
Parameter	7		
 Names: Location 	r1,r2,r3 s: 11,12,13,14,1	5 16 17	
		r2→12, r3→13, 14	–17 are "free"
MapTable	FreeList	Raw insns	Renamed insn
11 12 13	14,15,16,17	add r2,r3,r1	add 12,13,14
14 12 13	15,16,17	sub r2,r1,r3	sub 12,14,15
14 12 15	16,17	mul r2,r3,r1	mul 12,15,16
16 12 15	17	div r1,r3,r2	div 14,15,17
Question	how is the incr	after div rename	42
Y			1:
 We are d 	out of tree locations	(physical registers)	

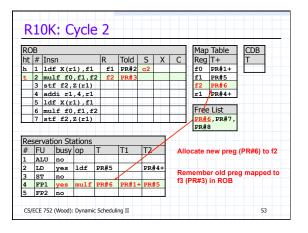
• P6	
No need to free storage for speculative ("in-flight") values explicitly
 Temporary storage comes with ROB entry R: copy speculative value from ROB to register file 	e, free ROB entry
• R10K	
Can't free physical register when insn retires	
 No architectural register to copy value to 	
• But	
 Can free physical register previously mapped to sa Why? All insns that will ever read its value have re 	5
CS/ECE 752 (Wood): Dynamic Scheduling II	44

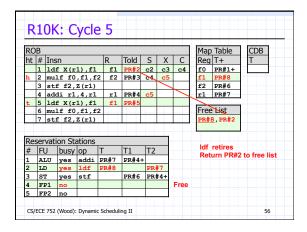

MapTable	FreeList	Raw insns	Renamed insns
r1 r2 r3			
11 12 13	14,15,16,17	add r2,r3,r1	add 12,13, <mark>14</mark>
14 12 13	15,16,17	sub r2,r1,r3	sub 12,14,15
14 12 15	16,17	mul r2,r3,r1	mul 12,15,16
16 12 15	17	div r1,r3,r2	div 14,15,17
When ad	ld retires, free 11		
• When su	b retires, free 13		
 When mu 	1 retires, free ?		
 When di 	v retires, free ?		
See the p	pattern?		


• New tags (again) • P6: ROB# \rightarrow R10K: PR#	
• ROB	
 R: logical output register Told: physical register previously mapped to insn 	's logical output
• RS	
 T, T1, T2: output, input physical registers 	
Map Table	
 T+: PR# (never empty) + "ready" bit 	
Free List	
• T: PR#	
 No values in ROB, RS, or on CDB 	
 Yeager paper uses different names, what an 	e they?
CS/ECE 752 (Wood): Dynamic Scheduling II	46


г


RC	B									Map	Table	CDB
ht	#	Ins	sn		R	Told	S	X	C	Reg	T+	Т
	1	ld	f X(r	1),f1						f0	PR#1+	
	2	mu	1f f0	,f1,f	2	-				f1	PR#2+	
	3	st	f f2,	Z(r1)						f2	PR#3+	
		ad	di r1	,4,r1			_			r1	PR#4+	
	5	ld	f X(r	1),f1								-
			1f f0		2		-				e List	
	7	st	f f2,	Z(r1)							5, PR#6,	
										PR#	7,PR#8	J.,
Re	ser	vat	ion Sta	ations								
#	F	U	busy	ор	Т	T1	T2		Notic	e I: no	values a	anywhere
1	A	LU	no				-					
2	L	D	no									
3	S	т	no						NOTIC	e II: M	apiable	is never empty
4	F	P1	no									
5	F	P2	no									


R10K Pipeline	
R10K pipeline structure: F, D, S, X, C, R	
• D (dispatch)	
 Structural hazard (RS, ROB, LSQ, physical regis 	ters) ? stall
 Allocate RS, ROB, LSQ entries and new physical r 	egister (T)
Record previously mapped physical register	(Told)
Update map table	
C (complete)	
 Write destination physical register, set Ready in N 	1T
R (retire)	
 ROB head not complete ? Stall 	
Handle any exceptions	
 Store write LSQ head to D\$ 	
Free ROB, LSQ entries	
Free previous physical register (Told)	
S/ECE 752 (Wood): Dynamic Scheduling II	48



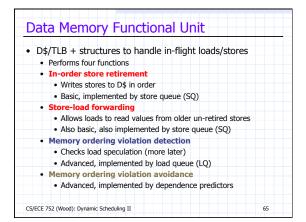
RC)B								Мар	Table	CDB
ht	# In	sn		R	Told	S	Х	C	Reg		T
h	1 1d	lf X(r	1),f1	f1	PR#2	c2	c3		f0	PR#1+	
	2 mu	lf f0	,f1,f	2 f2	PR#3				f1	PR#5	
t	3 st	f f2,	Z(r1)					-	f2	PR#6	
_	4 ad	ldi r1	,4,r1						r 1	PR#4+	
	5 1d	lf X(r	1),f1						_		
	6 mu	lf f0	,f1,f	2					Free	List	
	7 st	f f2,	Z(r1)						PR#'	7, PR#8	
Re	servat	ion St	ations		<u> </u>		1				
#	FU	busy	OD	Т	T1	T2		Sto	res ar	e not all	ocated pregs
1	ALU	no					{				
2	LD	no						Free			
3	ST	yes	stf		PR#6	PR#	4+				
4	FP1	yes	mulf	PR#6	PR#1+	PR#	5				
5	FP2	no	1 8		1 3		- 3				

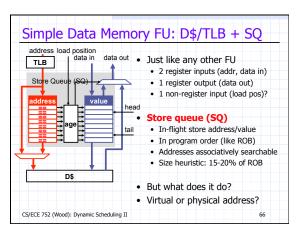
RC										Map Table CDB
ht	#	Ins	sn		R	Told	S	Х	C	Reg T+ T
h		1d	f X(r	1),f1	f1	PR#2	c2	c3	c4	f0 PR#1+ PR#5
	2		1f f0	,f1,f	2 f2	PR#3	c4			fl PR#5+
	3	st	f f2,	Z(r1)						f2 PR#6
t	4	ad	di r1	,4,r1	r1	PR#4				r1 PR#7
				1),f1				-		╎┓ <u>┥┥</u>
		-		,f1,f	2			-{		Free List
	7	st	f f2,	Z(r1)				-		<u>PR#7</u> , PR#8
Re	ser	vat	ion St	ations						<u>↓</u>
#	F		busy		т	T1	T2			Idf completes
1	-	LU		addi	PR#7	PR#4+				set MapTable ready bit
2	L		no							
3	S	т	yes	stf		PR#6	PR#4	1+		
4	F	P1	yes	mulf	PR#6	PR#1+	PR#5	5+	Match	h PR#5 tag from CDB & issu
5	F	P2	no					1		

 Problem with R10K design? Precise state is Physical registers are written out-of-order (at C 	
 That's OK, there is no architectural register file 	,
 We can "free" written registers and "restore" of 	d ones
Do this by manipulating the Map Table and Free	
• Two ways of restoring Map Table and Free	e List
Option I: serial rollback using R, T _{old} ROB fields	
± Slow, but simple	
 Option II: single-cycle restoration from some ch 	neckpoint
± Fast, but checkpoints are expensive	
 Modern processor compromise: make commo 	n case fast
Checkpoint only (low-confidence) branches	(frequent rollbacks)
 Serial recovery for page-faults and interrupt 	s (rare rollbacks)

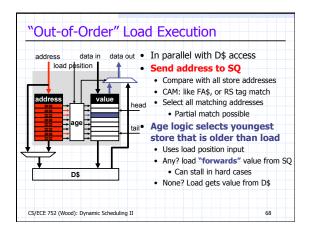
R	OB					2 3			1	Map	Table	CDB
h	: #	Ins	sn		R	Told	S	Х	С	Reg	T+	Т
	1	ld	f X(r	1),f1	f1	PR#2	c2	c3	c4	f0	PR#1+	
h	2	mu	1f f0	,f1,f	2 f2	PR#3	c4	c5		f1	PR#8	
	3	st	f f2,	Z(r1)						f2	PR#6	
				,4,r1		PR#4	c5			r1	PR#7	
t				1),f1		PR#5				-		
_				,f1,f	2						e List	
	7	st	f f2,	Z(r1)			-			PR#	<u>8</u> , pr#2	
											9	J
R	ese	rvati	ion Sta	ations								
#	F	Ū	busy	op	Т	T1	T2			undo i	nsns 3-5	
1	7	LU	yes	addi	PR#7	PR#4+	-	-			i't matte	
2	1	D	yes	ldf	PR#8		PR	‡7			rial rollb	
3	5	ST	yes	stf		PR#6	PR	#4+		use se	indi romo	uck
4	I	'P1	no									
5	I	'P2	no									

			<u> </u>		1 4			1 1				_				
RC								-			Table	3		C	DB	
ht	# 1	Insn		R	Told	S	Х	C	F	eg	T+			Т		
	1	ldf X(r	1),f1	f1	PR#2	c2	c3	c4	f	0	PR#1	+			~	
h	2 1	mulf f0	,f1,f	2 f2	PR#3	c4	c5		- f	1	PR#5	+ <u>P</u> F	8#8			
	3	stf f2,	Z(r1)				/		1	2	PR#6					
t	4	addi r1	,4,r1	r1	PB#4	c5	/		r	1	PR#7	_	-			
	5	ldf X(r	1),f1	f1	PR#5	_			-							
		mulf f0	,f1,f	2							List					
	7	stf f2,	Z(r1)						F	R#:	2, PR#	8				
Re	serv	ation St	ations				-	und	L bld	f (R	OB#5)				
		vation St		т	<u>Тт</u> 1	T2		und 1. fr			OB#5)				
#	FU	busy	ор	T DD#7	T1	T2		1. fr	ee F	Ś	OB#5 R#8),		urn	to F	reeLi	st
# 1	FU	busy vyes	ор	T pr#7	T1 PR#4+			1. fr 2. fr	ee F ee T	lS (P		reti				st
# 1 2	FU AL	U yes	Op addi		PR#4+			1. fr 2. fr	ee F ee 1 sto	IS (P re I	R#8), //T[f1]	reti				st
# 1 2 3	FU AL LD ST	busy Uyes no yes	ор				4+	1. fr 2. fr 3. re	ee F ee 1 sto	IS (P re I	R#8), //T[f1]	reti				st
# 1 2	FU AL	U yes no yes 1 no	Op addi		PR#4+		4+	1. fr 2. fr 3. re 4. fr	ee F ee 1 sto ee F	IS (P re I IOE	R#8), //T[f1]	retu to	Tole	d (P	R#5)	

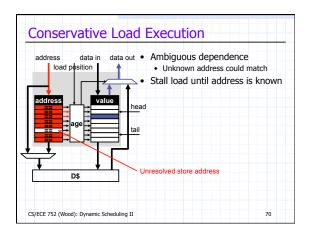

RC)B							3	Г	Man	Table		CDB
-	# In	cn		R	Told	S	X	С		Reg	T+	-	т
ne		lf X(r	1) 61			_	 c3	-		f0	PR#1+		-
h		lf f0					c5	64		<u>f1</u>	PR#5+	-	
t		f f2,			1.1.1	64	25			f2	PR#6	-	
-		ldi r1			PR#4	c5				r1	PR#4+PR#	7	
		lf X(r							1		5	-	
		lf f0					1			Free	List		
		f f2,									2, PR#8,		
	1. 1.	,	/							PR#			
Re	serva	tion St	ations			1	-	und	0	addi	(ROB#4)		
#	FU	busy		Т	T1	T2		1. fre	-				
1	ALU	no		-	1						R#7), returr		
2	LD	no									/T[r1] to To	ld (PR#4)
3	ST	ves	stf		PR#6	PR	#4+	4. fre	ee	ROE	3#4		
4	FP1	no	1 m		1 100								
5	FP2	no	1										

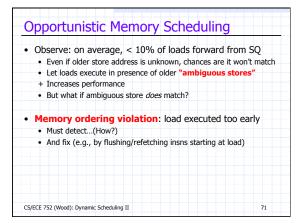

-											T 1 1	
RC						-					Table	CDB
ht	# In	-		R	Told	S	X	C			T+	Т
		lf X(r					c3	c4		0	PR#1+	
ht		lf f0			2 PR#3	c4	c5		-	1	PR#5+	
		f f2,	Z(r1))						2	PR#6	
		ldi r1	,4,r	1					r	1	PR#4+	
		lf X(r										
		lf f0			1.1.1.			<u>1</u>			e List	
	7 st	f f2,	Z (r1)								2, PR#8,	
									P	R#	7	
Re	serva	tion St	ations			-	-	undo	st	f (F	ROB#3)	
#	FU	busy		T	T1	T2	-	1. fre				
π 1	ALU	no			11	12	_	2. fre	e F	201	3#3	
2	LD	no	-	-	_	-	_	3. no	re	gis	ters to re	store/free
2	ST	no			-	-	-	4. hc	w i	s C)\$ write u	indone?
3 4	FP1	no					-					
4 5				-		+	-					
5	FP2	no				_						

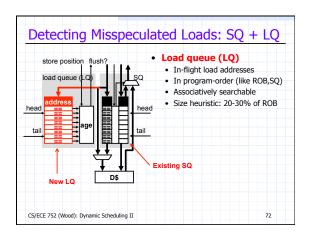
•	Faster precise state	
	 Use for (low-confidence) branches 	
•	Record state prior to predicted branch	
	 Save copy of MapTable 	
	Save copy of ROB tail pointer	Why not both head
	 Save copy of FreeList head pointer 	and tail pointers?
•	Mark RS entries as conditional (one bit	t per branch)
•	On mispredicted branch	
	 Restore checkpointed state 	
	FreeList retains	
	Clear RS entries that are conditional or	n mispredicted branch
	What about instructions that have	already completed?
•	R10K implements 4 checkpoints	
	Relationship to Smith and Pleszkun?	

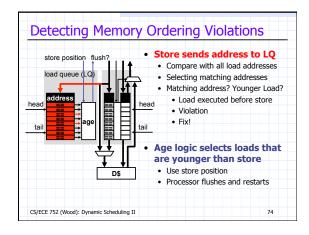

Feature	P6	R10K
Value storage	ARF,ROB,RS	PRF
Register read	@D: ARF/ROB → RS	@S: PRF → FU
Register write	@R: ROB → ARF	@C: FU → PRF
Speculative value	free @R: automatic (ROB)	@R: overwriting insn
Data paths	$ARF/ROB \rightarrow RS$	$PRF \rightarrow FU$
	RS → FU	$FU \rightarrow PRF$
	$FU \rightarrow ROB$	
	$ROB \rightarrow ARF$	
Precise state	Simple: clear everything	Complex: serial/checkpoir
 R10K-style b E.g., MIPS 	Simple: clear everything became popular in late 90 R10K (duh), DEC Alpha 21264	l's, early 00's I, Intel Pentium4
 P6-style is p 	erhaps making a comeba	ck
		t, simplicity is important

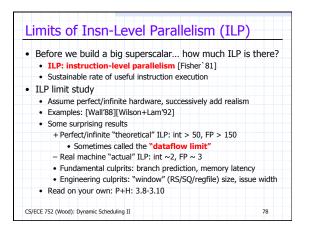
All insns are easy in out-of-order	
Register inputs only	
Register renaming captures all dependences	
 Tags tell you exactly when you can execute 	
except loads	
 Register and memory inputs (older stores) 	
 Register renaming does not tell you all dependent 	dences
 Memory renaming (a little later) 	
 How do loads find older in-flight stores to san 	ne address (if any)?
S/ECE 752 (Wood): Dynamic Scheduling II	64

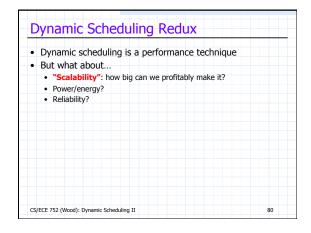


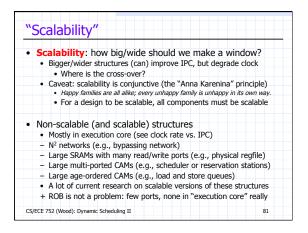


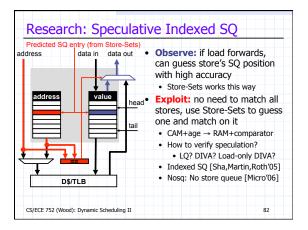

Stores	
Dispatch (D)	
Allocate entry at SQ tail	
Execute (X)	
Write address and data into corresponding SQ	slot
Retire (R)	
Write address/data from SQ head to D\$, free	SQ head
Loads	
Dispatch (D)	
 Record current SQ tail as "load position" 	
Execute (X)	
Where the good stuff happens	
Retire (R)	
Check for (ordering) exceptions	
CS/ECE 752 (Wood): Dynamic Scheduling II	67


 Why "" in "out-of-order"? 	
+ Load can execute out-of-order with respect	to (wrt) other loads
 Need to check for multiprocessor ordering 	ng violations (CS757)
 + Stores can eXecute out-of-order wrt other s 	tores
+ Can't let other cores see OoO stores in a	a multicore
+ Must Retire in order	
 Loads must execute in-order wrt older address 	stores to same
 Load execution requires knowledge of a 	ll older store addresses
 Stall if store address not yet known 	
+ Simple	
 Restricts performance 	
 Used in P6 and EV-6 	

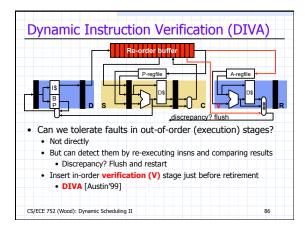

Dispatch (D) Allocate entry at LQ tail Execute (X)	
, -	
Execute (X)	
 Write address into corresponding LQ slot 	
Stores	
Dispatch (D)	
 Record current LQ tail as "store position" 	
Execute (X)	
 Where the good stuff happens 	


 Opportunistic scheduling better than conservat + Avoids many unnecessary delays 	ive
+ 100-300 false dep/1K Instrs	
but can degrade performance	
 Introduces few flushes, but each is much costlier that 0-25 misspeculations/1K Instrs * 12-35 cycles (Alpha 	
Observe: loads/stores that cause violations are	"stable"
 Dependences are mostly program based, program d Scheduler is deterministic 	oesn't change
Exploit: intelligent load scheduling	
 Hybridize conservative and opportunistic 	
 Predict which loads, or load/store pairs will cause viol 	olations
Use conservative scheduling for those, opportunistic	for the rest
CS/ECE 752 (Wood): Dynamic Scheduling II	75


Change belles de sues d'arbiers	
Store-blind prediction Predict lead only write for all older stores to even to	
 Predict load only, wait for all older stores to execute ± Simple, but a little too heavy handed 	
Example: Alpha 21264	
 Store-load pair prediction Predict load/store pair, wait for only one store to exe ± More complex, but minimizes delay 	cute
Store set prediction	
Group loads and stores into dependent sets	
 Store-Set Table: load-PC → store-PC 	
• Last Store Table: store-PC \rightarrow SQ index of most re	ecent instance
CS/ECE 752 (Wood): Dynamic Scheduling II	76


Moshovos, et al.	
Memory Dependence Prediction Table (MDPT)	
Identifies static load-store dependence	
 LDPC, STPC, dependence DISTance, prediction 	
DIST identifies dynamic instance of dependent stor	re
Memory Dependence Synchronization Table (MDST)	
 Used to synchronize dynamic instance in MDPT 	
Coordinate with instruction scheduler	
 For (i=0; i<n-2; i++)="" li="" {<=""> </n-2;>	
sum += X[i];	
if (X[i] % 7 ==1) X[i+2] = X[i+2]/2; }	
Store sets will stall on each instance of load	
 Implemented in Intel Nehalem/Haswell. Apple A7? 	
See WARF v. Intel, WARF v. Apple	
ECE 752 (Wood): Dynamic Scheduling II	77
ECE 752 (wood): Dynamic Scheduling II	1

 Does frequency vs. width tradeoff actua 	lly work?
Yes in some places, no in others	
+ Yes: fetch, decode, rename, retire (all the ir	n-order stages)
 No: issue, execute, complete (all the out-of- 	order stages)
What's the difference?	
Out-of-order: parallelism doesn't help if in	nsns themselves serial
 2 dependent insns execute in 2 cycle 	s, regardless of width
 In-order: inter-insn parallelism doesn't m 	atter
Intel Pentium4: multiple clock domai	ns
 In-order stages run at 3.4 GHz, out-of-order 	stages at 6.8 GHz!
• Frequency \propto Power _{dynamic} \rightarrow high frequency	only where necessary
CS/ECE 752 (Wood): Dynamic Scheduling II	79



Feature	Pentium III	Pentium 4	
Peak clock	800 MHz	3.4 GHz (6.8 internal)	
Pipeline stages	15	22	
Branch prediction	512 local + 512 BTB	2K hybrid + 2K BTB	
Primary caches	16KB 4-way	8KB 4-way + 64KB T\$	
L2	512KB-2MB	256KB-2MB	
Fetch width	16 bytes	3 µops (16 bytes on miss)	
Rename/retire width	3 µops	3 μops	
Execute width	5 μops	7 μops (X2)	
Register renaming	P6	R10K	
ROB/RS size	40/20	128/60	
Load scheduling	Conservative	Intelligent	
Anything else?	No	Hyperthreading	

 New SRAMs consume a lot of power 	
 Re-order buffer, reservation stations, physical register 	ile
 New CAMs consume even more (relatively) 	
 Reservation stations, load/store queue 	
Is dynamic scheduling low-energy? ± Could be	
Does performance improvement offset power increase?Are there "deep sleep" modes?	

 What is 	dynamic scheduling affect reliability? the fault model?	
	t faults (α-particles)? More transistors, more faults? faults (electro-migration)? Same	
– Permane	ent faults (design errors)? Worse, ooo is complicated	
A holistic	view of electrical reliability	
 Vulneration 	pility to electrical faults is function of transistor size	
 Mitigate 	(even eliminate) with larger transistors	
 But large 	er transistors consume more power and energy	
• Unles	ss we slow them down	

 Why I 	DIVA works
	execution acts like an in-order stage for parallelization purposes
 Car 	n re-execute dependent insns in parallel!
 Hor 	w come? "dependence-free checking"
•	You have original inputs and outputs of all insns
•	Try working this out for yourself
 What 	DIVA accomplishes
+ Det	tects transient errors in out-of-order stages
•	Re-execution is parallel \rightarrow slow clock, big, robust transistors
+ Car	n also detect design errors
•	Re-execution (in-order) simpler than execution (out-of-order)
•	Less likely to contain rare bugs

	I path modeling" ify (and optimize) performance critical instructions
	le schedulers"
 Supp 	ort for huge schedulers, several different designs
 "Macro 	ops and dataflow mini-graphs"
	dule groups of dependent insns at once (MG: also fetch, retire ore with fewer resources
 "Out-o" 	-order fetch and rename"
 Avoi 	branch mispredictions by fetching control independent insns
Much r	10re

•	Modern dynamic scheduling must support precise state • A software sanity issue, not a performance issue
•	Strategy: Writeback \rightarrow Complete (OoO) + Retire (iO)
•	Two basic designs • P6: Tomasulo + re-order buffer, copy based register renaming ± Precise state is simple, but fast implementations are difficult • R10K: implements true register renaming ± Easier fast implementations, but precise state is more complex
•	 Store queue: conservative load scheduling (iO wrt older stores) Load queue: opportunistic load scheduling (OoO wrt older stores) Intelligent memory scheduling: hybrid
CS/	ECE 752 (Wood): Dynamic Scheduling II 89

Out-of-order execution: a performance techr	
 Easier/more effective in hardware than software (Idea: make scheduling transparent to software 	isn't everytning?)
Feature I: Dynamic scheduling (iO \rightarrow OoO)	
 "Performance" piece: re-arrange insns into high-p Decode (iO) → dispatch (iO) + issue (OoO) 	erformance order
Two algorithms: Scoreboard, Tomasulo	
Feature II: Precise state (OoO \rightarrow iO)	
"Correctness" piece: put insns back into program	order
 Writeback (OoO) → complete (OoO) + retire (iO) Two designs: P6, R10K 	
 Don't forget about memory scheduling 	