
CS/ECE 752 (Wood): Dynamic Scheduling II 1

U. Wisconsin CS/ECE 752
Advanced Computer Architecture I

Prof. David A. Wood

Unit 6: Dynamic Scheduling II

Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

Slides enhanced by Milo Martin, Mark Hill, and David Wood
with sources that included Profs. Asanovic, Falsafi, Hoe,
Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood

CS/ECE 752 (Wood): Dynamic Scheduling II 2

This Unit: Dynamic Scheduling II

•  Previously: dynamic scheduling
•  Insn buffer + scheduling algorithms
•  Scoreboard: no register renaming
•  Tomasulo: register renaming

•  Now: add speculation, precise state
•  Re-order buffer
•  PentiumPro vs. MIPS R10000

•  Also: dynamic load scheduling
•  Out-of-order memory operations

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

CS/ECE 752 (Wood): Dynamic Scheduling II 3

Superscalar + Out-of-Order + Speculation

•  Three great tastes that taste great together
•  CPI ≥ 1?

•  Go superscalar
•  Superscalar increases RAW hazards?

•  Go out-of-order (OoO)
•  RAW hazards still a problem?

•  Build a larger window
•  Branches a problem for filling large window?

•  Add control speculation

CS/ECE 752 (Wood): Dynamic Scheduling II 4

Speculation and Precise Interrupts

•  Why are we discussing these together?
•  Sequential (vN) semantics for interrupts

•  All insns before interrupt should be complete
•  All insns after interrupt should look as if never started (abort)
•  Basically want same thing for mis-predicted branch

•  What makes precise interrupts difficult?
•  OoO completion → must undo post-interrupt writebacks
•  Same thing for branches
•  In-order → branches complete before younger insns writeback
•  OoO → not necessarily

•  Precise interrupts, mis-speculation recovery: same problem
•  Same problem → same solution

CS/ECE 752 (Wood): Dynamic Scheduling II 5

Precise State

•  Speculative execution requires
•  (Ability to) abort & restart at every branch
•  Abort & restart at every load useful for load speculation (later)

•  And for shared memory multiprocessing (much later)

•  Precise synchronous (program-internal) interrupts require
•  Abort & restart at every load, store, ??

•  Precise asynchronous (external) interrupts require
•  Abort & restart at every ??

•  Bite the bullet
•  Implement abort & restart at every insn
•  Called “precise state”

CS/ECE 752 (Wood): Dynamic Scheduling II 6

Precise State Options

•  Imprecise state: ignore the problem!
–  Makes page faults (any restartable exceptions) difficult
–  Makes speculative execution almost impossible
•  IEEE standard strongly suggests precise state
•  Compromise: Alpha implemented precise state only for integer ops

•  Force in-order completion (W): stall pipe if necessary
–  Slow

•  Precise state in software: trap to recovery routine
–  Implementation dependent
•  Trap on every mis-predicted branch (you must be joking)

•  Precise state in hardware
+  Everything is better in hardware (except policy)

CS/ECE 752 (Wood): Dynamic Scheduling II 7

The Problem with Precise State

•  Problem: writeback combines two separate functions
•  Forwards values to younger insns: OK for this to be out-of-order
•  Write values to registers: would like this to be in-order

•  Similar problem (decode) for OoO execution: solution?
•  Split decode (D) → in-order dispatch (D) + out-of-order issue (S)
•  Separate using insn buffer: scoreboard or reservation station

regfile

D$
I$
B
P

insn buffer

S D

CS/ECE 752 (Wood): Dynamic Scheduling II 8

Re-Order Buffer (ROB)

•  Insn buffer → re-order buffer (ROB)
•  Buffers completed results en route to register file
•  May be combined with RS or separate

•  Combined in picture: register-update unit RUU (Sohi’s method)
•  Separate (more common today): P6-style

•  Split writeback (W) into two stages
•  Why is there no latch between W1 and W2?

regfile

D$
I$
B
P

Reorder buffer (ROB)

W1 W2

CS/ECE 752 (Wood): Dynamic Scheduling II 9

Complete and Retire

•  Complete (C): first part of writeback (W)
•  Completed insns write results into ROB
+  Out-of-order: wait doesn’t back-propagate to younger insns

•  Retire (R): aka commit, graduate
•  ROB writes results to register file
•  In order: stall back-propagates to younger insns

regfile

D$
I$
B
P

Reorder buffer (ROB)

C R

CS/ECE 752 (Wood): Dynamic Scheduling II 10

Load/Store Queue (LSQ)

•  ROB makes register writes in-order, but what about stores?

•  As usual, i.e., write to D$ in X stage?
•  Not even close, imprecise memory worse than imprecise registers
•  Especially in a multiprocessor!

•  Load/store queue (LSQ)
•  Completed stores write to LSQ
•  When store retires, write head of LSQ to D$
•  When loads execute, access LSQ and D$ in parallel

•  Forward from LSQ if older store with matching address
•  More modern design: loads and stores in separate queues
•  More on this later

CS/ECE 752 (Wood): Dynamic Scheduling II 11

ROB + LSQ

•  Modulo gross simplifications, this picture is almost realistic!

regfile

D$

I$
B
P

ROB

C R

LSQ load/store

store data
addr

load data

CS/ECE 752 (Wood): Dynamic Scheduling II 12

P6

•  P6: Start with Tomasulo’s algorithm… add ROB
•  Separate ROB and RS

•  Simple-P6
•  Our old RS organization: 1 ALU, 1 load, 1 store, 2 3-cycle FP

CS/ECE 752 (Wood): Dynamic Scheduling II 13

P6 Data Structures

•  Reservation Stations are same as before
•  ROB

•  head, tail: pointers maintain sequential order
•  R: insn output register, V: insn output value

•  Tags are different
•  Tomasulo: RS# → P6: ROB#

•  Map Table is different
•  T+: tag + “ready-in-ROB” bit
•  T==0 → Value is ready in regfile
•  T!=0 → Value is not ready
•  T!=0+ → Value is ready in the ROB

CS/ECE 752 (Wood): Dynamic Scheduling II 14

P6 Data Structures

•  Insn fields and status bits
•  Tags
•  Values

value

V1 V2

FU

T+

T2 T1 T op
== == == ==

Map Table

RS

C
D

B
.V

C
D

B
.T

Dispatch

Regfile

T

== == == ==

R value

ROB

Head
Retire

Tail
Dispatch

CS/ECE 752 (Wood): Dynamic Scheduling II 15

P6 Data Structures
ROB
ht # Insn R V S X C

1 ldf X(r1),f1
2 mulf f0,f1,f2
3 stf f2,Z(r1)
4 addi r1,4,r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1
f2
r1

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD no
3 ST no
4 FP1 no
5 FP2 no

CDB
T V

CS/ECE 752 (Wood): Dynamic Scheduling II 16

P6 Pipeline

•  New pipeline structure: F, D, S, X, C, R
•  D (dispatch)

•  Structural hazard (ROB/LSQ/RS) ? Stall
•  Allocate ROB/LSQ/RS
•  Set RS tag to ROB#
•  Set Map Table entry to ROB# and clear “ready-in-ROB” bit
•  Read ready registers into RS (from either ROB or Regfile)

•  X (execute)
•  Free RS entry
•  Use to be at W, can be earlier because RS# are not tags

CS/ECE 752 (Wood): Dynamic Scheduling II 17

P6 Pipeline
•  C (complete)

•  Structural hazard (CDB)? wait
•  Write value into ROB entry indicated by RS tag
•  Mark ROB entry as complete
•  If not overwritten, mark Map Table entry “ready-in-ROB” bit (+)

•  R (retire)
•  Insn at ROB head not complete ? stall
•  Handle any exceptions
•  Write ROB head value to register file
•  If store, write LSQ head to D$
•  Free ROB/LSQ entries

CS/ECE 752 (Wood): Dynamic Scheduling II 18

P6 Dispatch (D): Part I

•  RS/ROB full ? stall
•  Allocate RS/ROB entries, assign ROB# to RS output tag
•  Set output register Map Table entry to ROB#, clear “ready-in-ROB”

value

V1 V2

FU

T+

T2 T1 T op
== == == ==

Map Table

RS

C
D

B
.V

C
D

B
.T

Dispatch

Regfile

T

== == == ==

R value

ROB

Head
Retire

Tail
Dispatch

CS/ECE 752 (Wood): Dynamic Scheduling II 19

P6 Dispatch (D): Part II

•  Read tags for register inputs from Map Table
•  Tag==0 → copy value from Regfile (not shown)
•  Tag!=0 → copy Map Table tag to RS
•  Tag!=0+ → copy value from ROB

value

V1 V2

FU

T+

T2 T1 T op
== == == ==

Map Table

RS

C
D

B
.V

C
D

B
.T

Dispatch

Regfile

T

== == == ==

R value

ROB

Head
Retire

Tail
Dispatch

CS/ECE 752 (Wood): Dynamic Scheduling II 20

P6 Complete (C)

•  Structural hazard (CDB) ? Wait: broadcast <value,tag> on CDB
•  Write result into ROB, if still valid set MapTable “ready-in-ROB” bit
•  Match tags, write CDB.V into RS slots of dependent insns

value

V1 V2

FU

T+

T2 T1 T op
== == == ==

Map Table

RS

C
D

B
.V

C
D

B
.T

Dispatch

Regfile

T

== == == ==

R value

ROB

Head
Retire

Tail
Dispatch

CS/ECE 752 (Wood): Dynamic Scheduling II 21

P6 Retire (R)

•  ROB head not complete ? stall : free ROB entry
•  Write ROB head result to Regfile
•  If still valid, clear Map Table entry

value

V1 V2

FU

T

T2 T1 T op
== == == ==

Map Table

RS

C
D

B
.V

C
D

B
.T

Dispatch

Regfile

T

== == == ==

R value

ROB

Head
Retire

Tail
Dispatch

CS/ECE 752 (Wood): Dynamic Scheduling II 22

P6: Cycle 1
ROB
ht # Insn R V S X C
ht 1 ldf X(r1),f1 f1

2 mulf f0,f1,f2
3 stf f2,Z(r1)
4 addi r1,4,r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#1
f2
r1

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD yes ldf ROB#1 [r1]
3 ST no
4 FP1 no
5 FP2 no

CDB
T V

allocate

set ROB# tag

Null r1 tag,
copy value

CS/ECE 752 (Wood): Dynamic Scheduling II 23

P6: Cycle 2
ROB
ht # Insn R V S X C
h 1 ldf X(r1),f1 f1 c2
t 2 mulf f0,f1,f2 f2

3 stf f2,Z(r1)
4 addi r1,4,r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#1
f2 ROB#2
r1

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD yes ldf ROB#1 [r1]
3 ST no
4 FP1 yes mulf ROB#2 ROB#1 [f0]
5 FP2 no

CDB
T V

allocate

set ROB# tag

CS/ECE 752 (Wood): Dynamic Scheduling II 24

P6: Cycle 3
ROB
ht # Insn R V S X C
h 1 ldf X(r1),f1 f1 c2 c3

2 mulf f0,f1,f2 f2
t 3 stf f2,Z(r1)

4 addi r1,4,r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#1
f2 ROB#2
r1

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD no
3 ST yes stf ROB#3 ROB#2 [r1]
4 FP1 yes mulf ROB#2 ROB#1 [f0]
5 FP2 no

CDB
T V

allocate
free

CS/ECE 752 (Wood): Dynamic Scheduling II 25

P6: Cycle 4
ROB
ht # Insn R V S X C
h 1 ldf X(r1),f1 f1 [f1] c2 c3 c4

2 mulf f0,f1,f2 f2 c4
3 stf f2,Z(r1)

t 4 addi r1,4,r1 r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#1+
f2 ROB#2
r1 ROB#4

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU yes add ROB#4 [r1]
2 LD no
3 ST yes stf ROB#3 ROB#2 [r1]
4 FP1 yes mulf ROB#2 ROB#1 [f0] CDB.V
5 FP2 no

CDB
T V
ROB#1 [f1]

allocate

ROB#1 ready
grab CDB.V

ldf finished
1.  set “ready-in-ROB” bit
2.  write result to ROB
3.  CDB broadcast

CS/ECE 752 (Wood): Dynamic Scheduling II 26

P6: Cycle 5
ROB
ht # Insn R V S X C

1 ldf X(r1),f1 f1 [f1] c2 c3 c4
h 2 mulf f0,f1,f2 f2 c4 c5

3 stf f2,Z(r1)
4 addi r1,4,r1 r1 c5

t 5 ldf X(r1),f1 f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#5
f2 ROB#2
r1 ROB#4

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU yes add ROB#4 [r1]
2 LD yes ldf ROB#5 ROB#4
3 ST yes stf ROB#3 ROB#2 [r1]
4 FP1 no
5 FP2 no

CDB
T V

allocate

free

ldf retires
1.  write ROB result to regfile

CS/ECE 752 (Wood): Dynamic Scheduling II 27

P6: Cycle 6
ROB
ht # Insn R V S X C

1 ldf X(r1),f1 f1 [f1] c2 c3 c4
h 2 mulf f0,f1,f2 f2 c4 c5+

3 stf f2,Z(r1)
4 addi r1,4,r1 r1 c5 c6
5 ldf X(r1),f1 f1

t 6 mulf f0,f1,f2 f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#5
f2 ROB#6
r1 ROB#4

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD yes ldf ROB#5 ROB#4
3 ST yes stf ROB#3 ROB#2 [r1]
4 FP1 yes mulf ROB#6 ROB#5 [f0]
5 FP2 no

CDB
T V

allocate

free

CS/ECE 752 (Wood): Dynamic Scheduling II 28

P6: Cycle 7
ROB
ht # Insn R V S X C

1 ldf X(r1),f1 f1 [f1] c2 c3 c4
h 2 mulf f0,f1,f2 f2 c4 c5+

3 stf f2,Z(r1)
4 addi r1,4,r1 r1 [r1] c5 c6 c7
5 ldf X(r1),f1 f1 c7

t 6 mulf f0,f1,f2 f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#5
f2 ROB#6
r1 ROB#4+

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD yes ldf ROB#5 ROB#4 CDB.V
3 ST yes stf ROB#3 ROB#2 [r1]
4 FP1 yes mulf ROB#6 ROB#5 [f0]
5 FP2 no

CDB
T V
ROB#4 [r1]

ROB#4 ready
grab CDB.V

stall D (no free ST RS)

CS/ECE 752 (Wood): Dynamic Scheduling II 29

P6: Cycle 8
ROB
ht # Insn R V S X C

1 ldf X(r1),f1 f1 [f1] c2 c3 c4
h 2 mulf f0,f1,f2 f2 [f2] c4 c5+ c8

3 stf f2,Z(r1) c8
4 addi r1,4,r1 r1 [r1] c5 c6 c7
5 ldf X(r1),f1 f1 c7 c8

t 6 mulf f0,f1,f2 f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#5
f2 ROB#6
r1 ROB#4+

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD no
3 ST yes stf ROB#3 ROB#2 [f2] [r1]
4 FP1 yes mulf ROB#6 ROB#5 [f0]
5 FP2 no

CDB
T V
ROB#2 [f2]

ROB#2 ready
grab CDB.V

stall R for addi
(in-order commit)

ROB#2 invalid in MapTable
don’t set “ready-in-ROB”

CS/ECE 752 (Wood): Dynamic Scheduling II 30

P6: Cycle 9
ROB
ht # Insn R V S X C

1 ldf X(r1),f1 f1 [f1] c2 c3 c4
2 mulf f0,f1,f2 f2 [f2] c4 c5+ c8

h 3 stf f2,Z(r1) c8 c9
4 addi r1,4,r1 r1 [r1] c5 c6 c7
5 ldf X(r1),f1 f1 [f1] c7 c8 c9
6 mulf f0,f1,f2 f2 c9

t 7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#5+
f2 ROB#6
r1 ROB#4+

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD no
3 ST yes stf ROB#7 ROB#6 ROB#4.V
4 FP1 yes mulf ROB#6 ROB#5 [f0] CDB.V
5 FP2 no

CDB
T V
ROB#5 [f1]

ROB#5 ready
grab CDB.V

retire mulf

all pipe stages active at once!

free, re-allocate

CS/ECE 752 (Wood): Dynamic Scheduling II 31

P6: Cycle 10
ROB
ht # Insn R V S X C

1 ldf X(r1),f1 f1 [f1] c2 c3 c4
2 mulf f0,f1,f2 f2 [f2] c4 c5+ c8

h 3 stf f2,Z(r1) c8 c9 c10
4 addi r1,4,r1 r1 [r1] c5 c6 c7
5 ldf X(r1),f1 f1 [f1] c7 c8 c9
6 mulf f0,f1,f2 f2 c9 c10

t 7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#5+
f2 ROB#6
r1 ROB#4+

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD no
3 ST yes stf ROB#7 ROB#6 ROB#4.V
4 FP1 no
5 FP2 no

CDB
T V

free

CS/ECE 752 (Wood): Dynamic Scheduling II 32

P6: Cycle 11
ROB
ht # Insn R V S X C

1 ldf X(r1),f1 f1 [f1] c2 c3 c4
2 mulf f0,f1,f2 f2 [f2] c4 c5 c8
3 stf f2,Z(r1) c8 c9 c10

h 4 addi r1,4,r1 r1 [r1] c5 c6 c7
5 ldf X(r1),f1 f1 [f1] c7 c8 c9
6 mulf f0,f1,f2 f2 c9 c10

t 7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#5+
f2 ROB#6
r1 ROB#4+

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD no
3 ST yes stf ROB#7 ROB#6 ROB#4.V
4 FP1 no
5 FP2 no

CDB
T V

retire stf

CS/ECE 752 (Wood): Dynamic Scheduling II 33

Precise State in P6

•  Point of ROB is maintaining precise state
•  How does that work?
•  Easy as 1,2,3

1.  Wait until last good insn retires, first bad insn at ROB head
2.  Clear contents of ROB, RS, and Map Table
3.  Start over

•  Works because zero (0) means the right thing…
•  0 in ROB/RS → entry is empty
•  Tag == 0 in Map Table → register is in regfile

•  …and because regfile and D$ writes take place at R
•  Example: page fault in first stf

CS/ECE 752 (Wood): Dynamic Scheduling II 34

P6: Cycle 9 (with precise state)
ROB
ht # Insn R V S X C

1 ldf X(r1),f1 f1 [f1] c2 c3 c4
2 mulf f0,f1,f2 f2 [f2] c4 c5+ c8

h 3 stf f2,Z(r1) c8 c9
4 addi r1,4,r1 r1 [r1] c5 c6 c7
5 ldf X(r1),f1 f1 [f1] c7 c8 c9
6 mulf f0,f1,f2 f2 c9

t 7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1 ROB#5+
f2 ROB#6
r1 ROB#4+

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD no
3 ST yes stf ROB#7 ROB#6 ROB#4.V
4 FP1 yes mulf ROB#6 ROB#5 [f0] CDB.V
5 FP2 no

CDB
T V
ROB#5 [f1]

PAGE FAULT

CS/ECE 752 (Wood): Dynamic Scheduling II 35

P6: Cycle 10 (with precise state)
ROB
ht # Insn R V S X C

1 ldf X(r1),f1 f1 [f1] c2 c3 c4
2 mulf f0,f1,f2 f2 [f2] c4 c5+ c8
3 stf f2,Z(r1)
4 addi r1,4,r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1
f2
r1

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD no
3 ST no
4 FP1 no
5 FP2 no

CDB
T V

faulting insn at ROB head?
CLEAR EVERYTHING

CS/ECE 752 (Wood): Dynamic Scheduling II 36

P6: Cycle 11 (with precise state)
ROB
ht # Insn R V S X C

1 ldf X(r1),f1 f1 [f1] c2 c3 c4
2 mulf f0,f1,f2 f2 [f2] c4 c5+ c8

ht 3 stf f2,Z(r1)
4 addi r1,4,r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1
f2
r1

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU no
2 LD no
3 ST yes stf ROB#3 [f4] [r1]
4 FP1 no
5 FP2 no

CDB
T V

START OVER
(after OS fixes page fault)

CS/ECE 752 (Wood): Dynamic Scheduling II 37

P6: Cycle 12 (with precise state)
ROB
ht # Insn R V S X C

1 ldf X(r1),f1 f1 [f1] c2 c3 c4
2 mulf f0,f1,f2 f2 [f2] c4 c5+ c8

h 3 stf f2,Z(r1) c12
t 4 addi r1,4,r1 r1

5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0
f1
f2
r1 ROB#4

Reservation Stations
FU busy op T T1 T2 V1 V2
1 ALU yes addi ROB#4 [r1]
2 LD no
3 ST yes stf ROB#3 [f4] [r1]
4 FP1 no
5 FP2 no

CDB
T V

CS/ECE 752 (Wood): Dynamic Scheduling II 38

P6 Performance

•  In other words: what is the cost of precise state?
+  In general: same performance as “plain” Tomasulo

•  ROB is not a performance device
•  Maybe a little better (RS freed earlier → fewer struct hazards)

–  Unless ROB is too small
•  In which case ROB struct hazards become a problem

•  Rules of thumb for ROB size
•  At least N (width) * number of pipe stages between D and R
•  At least N * thit-L2
•  Can add a factor of 2 to both if you want
•  What is the rationale behind these?

CS/ECE 752 (Wood): Dynamic Scheduling II 39

P6 (Tomasulo+ROB) Redux

•  Popular design for a while
•  (Relatively) easy to implement correctly

•  Anything goes wrong (mispredicted branch, fault, interrupt)?
•  Just clear everything and start again

•  Examples: Intel PentiumPro, IBM/Motorola PowerPC, AMD K6

•  Actually making a comeback…
•  Examples: Intel PentiumM

•  But went away for a while, why?

CS/ECE 752 (Wood): Dynamic Scheduling II 40

The Problem with P6

•  Problem for high performance implementations
–  Too much value movement (regfile/ROB→RS→ROB→regfile)
–  Multi-input muxes, long buses complicate routing and slow clock

value

V1 V2

FU

T+

T2 T1 T op
== == == ==

Map Table

RS

C
D

B
.V

C
D

B
.T

Dispatch

Regfile

T

== == == ==

R value

ROB

Head
Retire

Tail
Dispatch

CS/ECE 752 (Wood): Dynamic Scheduling II 41

MIPS R10K: Alternative Implementation

•  One big physical register file holds all data no copies
+  Register file close to FUs → small fast data path
•  ROB and RS “on the side” used only for control and tags

FU

T+

T2+ T1+ T op
== == == ==

Map Table

RS

C
D

B
.T

Dispatch

T

== == == ==

R value

ROB

Head
Retire

Tail
Dispatch

Told T T

Free
List

CS/ECE 752 (Wood): Dynamic Scheduling II 42

Register Renaming in R10K

•  Architectural register file? Gone
•  Physical register file holds all values

•  #physical registers = #architectural registers + #ROB entries
•  Map architectural registers to physical registers
•  Removes WAW, WAR hazards (physical registers replace RS copies)

•  Fundamental change to map table
•  Mappings cannot be 0 (there is no architectural register file)

•  Free list keeps track of unallocated physical registers
•  ROB is responsible for returning physical registers to free list

•  Conceptually, this is “true register renaming”
•  Have already seen an example

CS/ECE 752 (Wood): Dynamic Scheduling II 43

Register Renaming Example

•  Parameters
•  Names: r1,r2,r3
•  Locations: l1,l2,l3,l4,l5,l6,l7
•  Original mapping: r1→l1, r2→l2, r3→l3, l4–l7 are “free”

•  Question: how is the insn after div renamed?
•  We are out of free locations (physical registers)
•  Real question: how/when are physical registers freed?

MapTable FreeList Raw insns Renamed insns
r1 r2 r3
l1 l2 l3 l4,l5,l6,l7 add r2,r3,r1 add l2,l3,l4
l4 l2 l3 l5,l6,l7 sub r2,r1,r3 sub l2,l4,l5
l4 l2 l5 l6,l7 mul r2,r3,r1 mul l2,l5,l6
l6 l2 l5 l7 div r1,r3,r2 div l4,l5,l7

CS/ECE 752 (Wood): Dynamic Scheduling II 44

Freeing Registers in P6 and R10K

•  P6
•  No need to free storage for speculative (“in-flight”) values explicitly
•  Temporary storage comes with ROB entry
•  R: copy speculative value from ROB to register file, free ROB entry

•  R10K
•  Can’t free physical register when insn retires
•  No architectural register to copy value to
•  But…
•  Can free physical register previously mapped to same logical register
•  Why? All insns that will ever read its value have retired

CS/ECE 752 (Wood): Dynamic Scheduling II 45

Freeing Registers in R10K

•  When add retires, free 11
•  When sub retires, free 13
•  When mul retires, free ?
•  When div retires, free ?
•  See the pattern?

MapTable FreeList Raw insns Renamed insns
r1 r2 r3
11 12 13 l4,l5,l6,l7 add r2,r3,r1 add l2,l3,l4
l4 l2 l3 l5,l6,l7 sub r2,r1,r3 sub l2,l4,l5
l4 l2 l5 l6,l7 mul r2,r3,r1 mul l2,l5,l6
l6 l2 l5 l7 div r1,r3,r2 div l4,l5,l7

CS/ECE 752 (Wood): Dynamic Scheduling II 46

R10K Data Structures
•  New tags (again)

•  P6: ROB# → R10K: PR#

•  ROB
•  R: logical output register
•  Told: physical register previously mapped to insn’s logical output

•  RS
•  T, T1, T2: output, input physical registers

•  Map Table
•  T+: PR# (never empty) + “ready” bit

•  Free List
•  T: PR#

•  No values in ROB, RS, or on CDB
•  Yeager paper uses different names, what are they?

CS/ECE 752 (Wood): Dynamic Scheduling II 47

R10K Data Structures
ROB
ht # Insn R Told S X C

1 ldf X(r1),f1
2 mulf f0,f1,f2
3 stf f2,Z(r1)
4 addi r1,4,r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0 PR#1+
f1 PR#2+
f2 PR#3+
r1 PR#4+

Reservation Stations
FU busy op T T1 T2
1 ALU no
2 LD no
3 ST no
4 FP1 no
5 FP2 no

CDB
T

Notice I: no values anywhere

Free List
PR#5,PR#6,
PR#7,PR#8

Notice II: MapTable is never empty

CS/ECE 752 (Wood): Dynamic Scheduling II 48

R10K Pipeline

•  R10K pipeline structure: F, D, S, X, C, R
•  D (dispatch)

•  Structural hazard (RS, ROB, LSQ, physical registers) ? stall
•  Allocate RS, ROB, LSQ entries and new physical register (T)
•  Record previously mapped physical register (Told)
•  Update map table

•  C (complete)
•  Write destination physical register, set Ready in MT

•  R (retire)
•  ROB head not complete ? Stall
•  Handle any exceptions
•  Store write LSQ head to D$
•  Free ROB, LSQ entries
•  Free previous physical register (Told)

CS/ECE 752 (Wood): Dynamic Scheduling II 49

R10K Dispatch (D)

•  Read preg (physical register) tags for input registers, store in RS
•  Read preg tag for output register, store in ROB (Told)
•  Allocate new preg (free list) for output register, store in RS, Map Table

FU

T+

T2+ T1+ T op
== == == ==

Map Table

RS

C
D

B
.T

Dispatch

T

== == == ==

value

ROB

Head
Retire

Tail
Dispatch

Told R T

Free
List

CS/ECE 752 (Wood): Dynamic Scheduling II 50

R10K Complete (C)

•  Set insn’s output register ready bit in map table
•  Set ready bits for matching input tags in RS

FU

T+

T2+ T1+ T op
== == == ==

Map Table

RS

C
D

B
.T

Dispatch

T

== == == ==

value

ROB

Head
Retire

Tail
Dispatch

Told R T

Free
List

CS/ECE 752 (Wood): Dynamic Scheduling II 51

R10K Retire (R)

•  Return Told of ROB head to free list

FU

T+

T2+ T1+ T op
== == == ==

Map Table

RS

C
D

B
.T

Dispatch

T

== == == ==

value

ROB

Head
Retire

Tail
Dispatch

Told R T

Free
List

CS/ECE 752 (Wood): Dynamic Scheduling II 52

R10K: Cycle 1
ROB
ht # Insn R Told S X C
ht 1 ldf X(r1),f1 f1 PR#2

2 mulf f0,f1,f2
3 stf f2,Z(r1)
4 addi r1,4,r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0 PR#1+
f1 PR#5
f2 PR#3+
r1 PR#4+

Reservation Stations
FU busy op T T1 T2
1 ALU no
2 LD yes ldf PR#5 PR#4+
3 ST no
4 FP1 no
5 FP2 no

CDB
T

Allocate new preg (PR#5) to f1

Free List
PR#5,PR#6,
PR#7,PR#8

Remember old preg mapped to
f1 (PR#2) in ROB

CS/ECE 752 (Wood): Dynamic Scheduling II 53

R10K: Cycle 2
ROB
ht # Insn R Told S X C
h 1 ldf X(r1),f1 f1 PR#2 c2
t 2 mulf f0,f1,f2 f2 PR#3

3 stf f2,Z(r1)
4 addi r1,4,r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0 PR#1+
f1 PR#5
f2 PR#6
r1 PR#4+

Reservation Stations
FU busy op T T1 T2
1 ALU no
2 LD yes ldf PR#5 PR#4+
3 ST no
4 FP1 yes mulf PR#6 PR#1+ PR#5
5 FP2 no

CDB
T

Allocate new preg (PR#6) to f2

Free List
PR#6,PR#7,
PR#8

Remember old preg mapped to
f3 (PR#3) in ROB

CS/ECE 752 (Wood): Dynamic Scheduling II 54

R10K: Cycle 3
ROB
ht # Insn R Told S X C
h 1 ldf X(r1),f1 f1 PR#2 c2 c3

2 mulf f0,f1,f2 f2 PR#3
t 3 stf f2,Z(r1)

4 addi r1,4,r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0 PR#1+
f1 PR#5
f2 PR#6
r1 PR#4+

Reservation Stations
FU busy op T T1 T2
1 ALU no
2 LD no
3 ST yes stf PR#6 PR#4+
4 FP1 yes mulf PR#6 PR#1+ PR#5
5 FP2 no

CDB
T

Stores are not allocated pregs

Free List
PR#7,PR#8,
PR#9

Free

CS/ECE 752 (Wood): Dynamic Scheduling II 55

R10K: Cycle 4
ROB
ht # Insn R Told S X C
h 1 ldf X(r1),f1 f1 PR#2 c2 c3 c4

2 mulf f0,f1,f2 f2 PR#3 c4
3 stf f2,Z(r1)

t 4 addi r1,4,r1 r1 PR#4
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0 PR#1+
f1 PR#5+
f2 PR#6
r1 PR#7

Reservation Stations
FU busy op T T1 T2
1 ALU yes addi PR#7 PR#4+
2 LD no
3 ST yes stf PR#6 PR#4+
4 FP1 yes mulf PR#6 PR#1+ PR#5+
5 FP2 no

CDB
T
PR#5

ldf completes
set MapTable ready bit

Free List
PR#7,PR#8,
PR#9

Match PR#5 tag from CDB & issue

CS/ECE 752 (Wood): Dynamic Scheduling II 56

R10K: Cycle 5
ROB
ht # Insn R Told S X C

1 ldf X(r1),f1 f1 PR#2 c2 c3 c4
h 2 mulf f0,f1,f2 f2 PR#3 c4 c5

3 stf f2,Z(r1)
4 addi r1,4,r1 r1 PR#4 c5

t 5 ldf X(r1),f1 f1 PR#5
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0 PR#1+
f1 PR#8
f2 PR#6
r1 PR#7

Reservation Stations
FU busy op T T1 T2
1 ALU yes addi PR#7 PR#4+
2 LD yes ldf PR#8 PR#7
3 ST yes stf PR#6 PR#4+
4 FP1 no
5 FP2 no

CDB
T

ldf retires
Return PR#2 to free list

Free List
PR#8,PR#2,
PR#9

Free

CS/ECE 752 (Wood): Dynamic Scheduling II 57

Precise State in R10K
•  Problem with R10K design? Precise state is more difficult

–  Physical registers are written out-of-order (at C)
•  That’s OK, there is no architectural register file
•  We can “free” written registers and “restore” old ones
•  Do this by manipulating the Map Table and Free List, not regfile

•  Two ways of restoring Map Table and Free List
•  Option I: serial rollback using R, Told ROB fields

± Slow, but simple
•  Option II: single-cycle restoration from some checkpoint

± Fast, but checkpoints are expensive
•  Modern processor compromise: make common case fast

•  Checkpoint only (low-confidence) branches (frequent rollbacks)
•  Serial recovery for page-faults and interrupts (rare rollbacks)

CS/ECE 752 (Wood): Dynamic Scheduling II 58

R10K: Cycle 5 (with precise state)
ROB
ht # Insn R Told S X C

1 ldf X(r1),f1 f1 PR#2 c2 c3 c4
h 2 mulf f0,f1,f2 f2 PR#3 c4 c5

3 stf f2,Z(r1)
4 addi r1,4,r1 r1 PR#4 c5

t 5 ldf X(r1),f1 f1 PR#5
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0 PR#1+
f1 PR#8
f2 PR#6
r1 PR#7

Reservation Stations
FU busy op T T1 T2
1 ALU yes addi PR#7 PR#4+
2 LD yes ldf PR#8 PR#7
3 ST yes stf PR#6 PR#4+
4 FP1 no
5 FP2 no

CDB
T

undo insns 3-5
(doesn’t matter why)
use serial rollback

Free List
PR#8,PR#2,
PR#9

CS/ECE 752 (Wood): Dynamic Scheduling II 59

R10K: Cycle 6 (with precise state)
ROB
ht # Insn R Told S X C

1 ldf X(r1),f1 f1 PR#2 c2 c3 c4
h 2 mulf f0,f1,f2 f2 PR#3 c4 c5

3 stf f2,Z(r1)
t 4 addi r1,4,r1 r1 PR#4 c5

5 ldf X(r1),f1 f1 PR#5
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0 PR#1+
f1 PR#5+PR#8
f2 PR#6
r1 PR#7

Reservation Stations
FU busy op T T1 T2
1 ALU yes addi PR#7 PR#4+
2 LD no
3 ST yes stf PR#6 PR#4+
4 FP1 no
5 FP2 no

CDB
T

undo ldf (ROB#5)
1. free RS
2. free T (PR#8), return to FreeList
3. restore MT[f1] to Told (PR#5)
4. free ROB#5

Free List
PR#2,PR#8
PR#9

insns may execute during rollback
(not shown)

CS/ECE 752 (Wood): Dynamic Scheduling II 60

R10K: Cycle 7 (with precise state)
ROB
ht # Insn R Told S X C

1 ldf X(r1),f1 f1 PR#2 c2 c3 c4
h 2 mulf f0,f1,f2 f2 PR#3 c4 c5
t 3 stf f2,Z(r1)

4 addi r1,4,r1 r1 PR#4 c5
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0 PR#1+
f1 PR#5+
f2 PR#6
r1 PR#4+PR#7

Reservation Stations
FU busy op T T1 T2
1 ALU no
2 LD no
3 ST yes stf PR#6 PR#4+
4 FP1 no
5 FP2 no

CDB
T

undo addi (ROB#4)
1. free RS
2. free T (PR#7), return to FreeList
3. restore MT[r1] to Told (PR#4)
4. free ROB#4

Free List
PR#2,PR#8,
PR#7, PR#9

CS/ECE 752 (Wood): Dynamic Scheduling II 61

R10K: Cycle 8 (with precise state)
ROB
ht # Insn R Told S X C

1 ldf X(r1),f1 f1 PR#2 c2 c3 c4
ht 2 mulf f0,f1,f2 f2 PR#3 c4 c5

3 stf f2,Z(r1)
4 addi r1,4,r1
5 ldf X(r1),f1
6 mulf f0,f1,f2
7 stf f2,Z(r1)

Map Table
Reg T+
f0 PR#1+
f1 PR#5+
f2 PR#6
r1 PR#4+

Reservation Stations
FU busy op T T1 T2
1 ALU no
2 LD no
3 ST no
4 FP1 no
5 FP2 no

CDB
T

undo stf (ROB#3)
1. free RS
2. free ROB#3
3. no registers to restore/free
4. how is D$ write undone?

Free List
PR#2,PR#8,
PR#7, PR#9

CS/ECE 752 (Wood): Dynamic Scheduling II 62

R10K: Checkpointing
•  Faster precise state

•  Use for (low-confidence) branches
•  Record state prior to predicted branch

•  Save copy of MapTable
•  Save copy of ROB tail pointer
•  Save copy of FreeList head pointer

•  Mark RS entries as conditional (one bit per branch)

•  On mispredicted branch
•  Restore checkpointed state

•  FreeList retains
•  Clear RS entries that are conditional on mispredicted branch

•  What about instructions that have already completed?

•  R10K implements 4 checkpoints
•  Relationship to Smith and Pleszkun?

} Why not both head
and tail pointers?

CS/ECE 752 (Wood): Dynamic Scheduling II 63

P6 vs. R10K (Renaming)

•  R10K-style became popular in late 90’s, early 00’s
•  E.g., MIPS R10K (duh), DEC Alpha 21264, Intel Pentium4

•  P6-style is perhaps making a comeback
•  Why? Frequency (power) is on the retreat, simplicity is important

Feature P6 R10K
Value storage ARF,ROB,RS PRF
Register read @D: ARF/ROB → RS @S: PRF → FU
Register write @R: ROB → ARF @C: FU → PRF
Speculative value free @R: automatic (ROB) @R: overwriting insn
Data paths ARF/ROB → RS

RS → FU
FU → ROB
ROB → ARF

PRF → FU
FU → PRF

Precise state Simple: clear everything Complex: serial/checkpoint

CS/ECE 752 (Wood): Dynamic Scheduling II 64

Out of Order Memory Operations

•  All insns are easy in out-of-order…
•  Register inputs only
•  Register renaming captures all dependences
•  Tags tell you exactly when you can execute

•  … except loads
•  Register and memory inputs (older stores)
•  Register renaming does not tell you all dependences

•  Memory renaming (a little later)
•  How do loads find older in-flight stores to same address (if any)?

CS/ECE 752 (Wood): Dynamic Scheduling II 65

Data Memory Functional Unit

•  D$/TLB + structures to handle in-flight loads/stores
•  Performs four functions
•  In-order store retirement

•  Writes stores to D$ in order
•  Basic, implemented by store queue (SQ)

•  Store-load forwarding
•  Allows loads to read values from older un-retired stores
•  Also basic, also implemented by store queue (SQ)

•  Memory ordering violation detection
•  Checks load speculation (more later)
•  Advanced, implemented by load queue (LQ)

•  Memory ordering violation avoidance
•  Advanced, implemented by dependence predictors

CS/ECE 752 (Wood): Dynamic Scheduling II 66

Simple Data Memory FU: D$/TLB + SQ

•  Just like any other FU
•  2 register inputs (addr, data in)
•  1 register output (data out)
•  1 non-register input (load pos)?

•  Store queue (SQ)
•  In-flight store address/value
•  In program order (like ROB)
•  Addresses associatively searchable
•  Size heuristic: 15-20% of ROB

•  But what does it do?
•  Virtual or physical address?

value address
== == == == == == == ==

age

D$

head

tail

load position address
data in data out

Store Queue (SQ)

TLB

CS/ECE 752 (Wood): Dynamic Scheduling II 67

Data Memory FU “Pipeline”

•  Stores
•  Dispatch (D)

•  Allocate entry at SQ tail
•  Execute (X)

•  Write address and data into corresponding SQ slot
•  Retire (R)

•  Write address/data from SQ head to D$, free SQ head

•  Loads
•  Dispatch (D)

•  Record current SQ tail as “load position”
•  Execute (X)

•  Where the good stuff happens
•  Retire (R)

•  Check for (ordering) exceptions
CS/ECE 752 (Wood): Dynamic Scheduling II 68

“Out-of-Order” Load Execution

•  In parallel with D$ access
•  Send address to SQ

•  Compare with all store addresses
•  CAM: like FA$, or RS tag match
•  Select all matching addresses

•  Partial match possible

•  Age logic selects youngest
store that is older than load
•  Uses load position input
•  Any? load “forwards” value from SQ

•  Can stall in hard cases
•  None? Load gets value from D$

value address
== == == == == == == ==

age

D$

head

tail

load position
address data in data out

CS/ECE 752 (Wood): Dynamic Scheduling II 69

Conservative Load Scheduling

•  Why “” in “out-of-order”?
+  Load can execute out-of-order with respect to (wrt) other loads

- Need to check for multiprocessor ordering violations (CS757)
+  Stores can eXecute out-of-order wrt other stores

+ Can’t let other cores see OoO stores in a multicore
+ Must Retire in order

–  Loads must execute in-order wrt older stores to same
address

•  Load execution requires knowledge of all older store addresses
-  Stall if store address not yet known

+ Simple
–  Restricts performance

•  Used in P6 and EV-6

CS/ECE 752 (Wood): Dynamic Scheduling II 70

Conservative Load Execution

•  Ambiguous dependence
•  Unknown address could match

•  Stall load until address is known

value address
== == == == == == == ==

age

D$

head

tail

load position
address data in data out

Unresolved store address

CS/ECE 752 (Wood): Dynamic Scheduling II 71

Opportunistic Memory Scheduling

•  Observe: on average, < 10% of loads forward from SQ
•  Even if older store address is unknown, chances are it won’t match
•  Let loads execute in presence of older “ambiguous stores”
+  Increases performance
•  But what if ambiguous store does match?

•  Memory ordering violation: load executed too early
•  Must detect…(How?)
•  And fix (e.g., by flushing/refetching insns starting at load)

CS/ECE 752 (Wood): Dynamic Scheduling II 72

Detecting Misspeculated Loads: SQ + LQ

•  Load queue (LQ)
•  In-flight load addresses
•  In program-order (like ROB,SQ)
•  Associatively searchable
•  Size heuristic: 20-30% of ROB

== == == == == == == ==

D$

head

tail

load queue (LQ)

address
== == == == == == == ==

tail

head

age

store position flush?

SQ

Existing SQ

New LQ

CS/ECE 752 (Wood): Dynamic Scheduling II 73

Advanced Memory “Pipeline” (LQ Only)

•  Loads
•  Dispatch (D)

•  Allocate entry at LQ tail
•  Execute (X)

•  Write address into corresponding LQ slot

•  Stores
•  Dispatch (D)

•  Record current LQ tail as “store position”
•  Execute (X)

•  Where the good stuff happens

CS/ECE 752 (Wood): Dynamic Scheduling II 74

Detecting Memory Ordering Violations

•  Store sends address to LQ
•  Compare with all load addresses
•  Selecting matching addresses
•  Matching address? Younger Load?

•  Load executed before store
•  Violation
•  Fix!

•  Age logic selects loads that
are younger than store
•  Use store position
•  Processor flushes and restarts

== == == == == == == ==

D$

head

tail

load queue (LQ)

address
== == == == == == == ==

tail

head

age

store position flush?

CS/ECE 752 (Wood): Dynamic Scheduling II 75

Intelligent Load Scheduling
•  Opportunistic scheduling better than conservative…

+  Avoids many unnecessary delays
+  100-300 false dep/1K Instrs

•  …but can degrade performance
–  Introduces few flushes, but each is much costlier than a delay
–  0-25 misspeculations/1K Instrs * 12-35 cycles (Alpha EV7)

•  Observe: loads/stores that cause violations are “stable”

•  Dependences are mostly program based, program doesn’t change
•  Scheduler is deterministic

•  Exploit: intelligent load scheduling

•  Hybridize conservative and opportunistic
•  Predict which loads, or load/store pairs will cause violations
•  Use conservative scheduling for those, opportunistic for the rest

CS/ECE 752 (Wood): Dynamic Scheduling II 76

Memory Dependence Prediction

•  Store-blind prediction
•  Predict load only, wait for all older stores to execute
±  Simple, but a little too heavy handed
•  Example: Alpha 21264

•  Store-load pair prediction
•  Predict load/store pair, wait for only one store to execute
±  More complex, but minimizes delay

•  Store set prediction
•  Group loads and stores into dependent sets
•  Store-Set Table: load-PC → store-PC
•  Last Store Table: store-PC → SQ index of most recent instance

Memory Dependence Prediction

•  Moshovos, et al.
•  Memory Dependence Prediction Table (MDPT)

•  Identifies static load-store dependence
•  LDPC, STPC, dependence DISTance, prediction
•  DIST identifies dynamic instance of dependent store

•  Memory Dependence Synchronization Table (MDST)
•  Used to synchronize dynamic instance in MDPT
•  Coordinate with instruction scheduler

•  For (i=0; i<N-2; i++) {
 sum += X[i];
 if (X[i] % 7 ==1) X[i+2] = X[i+2]/2; }
Store sets will stall on each instance of load

•  Implemented in Intel Nehalem/Haswell. Apple A7?
•  See WARF v. Intel, WARF v. Apple….

CS/ECE 752 (Wood): Dynamic Scheduling II 77 CS/ECE 752 (Wood): Dynamic Scheduling II 78

Limits of Insn-Level Parallelism (ILP)

•  Before we build a big superscalar… how much ILP is there?
•  ILP: instruction-level parallelism [Fisher`81]
•  Sustainable rate of useful instruction execution

•  ILP limit study
•  Assume perfect/infinite hardware, successively add realism
•  Examples: [Wall’88][Wilson+Lam’92]
•  Some surprising results

+ Perfect/infinite “theoretical” ILP: int > 50, FP > 150
•  Sometimes called the “dataflow limit”

–  Real machine “actual” ILP: int ~2, FP ~ 3
•  Fundamental culprits: branch prediction, memory latency
•  Engineering culprits: “window” (RS/SQ/regfile) size, issue width

•  Read on your own: P+H: 3.8-3.10

CS/ECE 752 (Wood): Dynamic Scheduling II 79

Clock Rate vs. IPC

•  Does frequency vs. width tradeoff actually work?
•  Yes in some places, no in others
+  Yes: fetch, decode, rename, retire (all the in-order stages)
–  No: issue, execute, complete (all the out-of-order stages)
•  What’s the difference?

•  Out-of-order: parallelism doesn’t help if insns themselves serial
•  2 dependent insns execute in 2 cycles, regardless of width

•  In-order: inter-insn parallelism doesn’t matter

•  Intel Pentium4: multiple clock domains
•  In-order stages run at 3.4 GHz, out-of-order stages at 6.8 GHz!
•  Frequency ∝ Powerdynamic → high frequency only where necessary

CS/ECE 752 (Wood): Dynamic Scheduling II 80

Dynamic Scheduling Redux

•  Dynamic scheduling is a performance technique
•  But what about…

•  “Scalability”: how big can we profitably make it?
•  Power/energy?
•  Reliability?

CS/ECE 752 (Wood): Dynamic Scheduling II 81

“Scalability”
•  Scalability: how big/wide should we make a window?

•  Bigger/wider structures (can) improve IPC, but degrade clock
•  Where is the cross-over?

•  Caveat: scalability is conjunctive (the “Anna Karenina” principle)
•  Happy families are all alike; every unhappy family is unhappy in its own way.
•  For a design to be scalable, all components must be scalable

•  Non-scalable (and scalable) structures
•  Mostly in execution core (see clock rate vs. IPC)
–  N2 networks (e.g., bypassing network)
–  Large SRAMs with many read/write ports (e.g., physical regfile)
–  Large multi-ported CAMs (e.g., scheduler or reservation stations)
–  Large age-ordered CAMs (e.g., load and store queues)
•  A lot of current research on scalable versions of these structures
+  ROB is not a problem: few ports, none in “execution core” really

CS/ECE 752 (Wood): Dynamic Scheduling II 82

Research: Speculative Indexed SQ

•  Observe: if load forwards,
can guess store’s SQ position
with high accuracy
•  Store-Sets works this way

•  Exploit: no need to match all
stores, use Store-Sets to guess
one and match on it
•  CAM+age → RAM+comparator
•  How to verify speculation?

•  LQ? DIVA? Load-only DIVA?
•  Indexed SQ [Sha,Martin,Roth’05]
•  Nosq: No store queue [Micro’06]

value address

D$/TLB

head

tail

Predicted SQ entry (from Store-Sets)
address data in data out

==

CS/ECE 752 (Wood): Dynamic Scheduling II 83

Pentium III vs. Pentium4 (Processors)
Feature Pentium III Pentium 4
Peak clock 800 MHz 3.4 GHz (6.8 internal)
Pipeline stages 15 22
Branch prediction 512 local + 512 BTB 2K hybrid + 2K BTB
Primary caches 16KB 4-way 8KB 4-way + 64KB T$
L2 512KB-2MB 256KB-2MB
Fetch width 16 bytes 3 µops (16 bytes on miss)
Rename/retire width 3 µops 3 µops
Execute width 5 µops 7 µops (X2)
Register renaming P6 R10K
ROB/RS size 40/20 128/60
Load scheduling Conservative Intelligent
Anything else? No Hyperthreading

CS/ECE 752 (Wood): Dynamic Scheduling II 84

Dynamic Scheduling and Power/Energy

•  Is dynamic scheduling low-power?
–  Probably not
•  New SRAMs consume a lot of power

•  Re-order buffer, reservation stations, physical register file
•  New CAMs consume even more (relatively)

•  Reservation stations, load/store queue

•  Is dynamic scheduling low-energy?
±  Could be
•  Does performance improvement offset power increase?
•  Are there “deep sleep” modes?

CS/ECE 752 (Wood): Dynamic Scheduling II 85

Dynamic Scheduling and Reliability
•  How does dynamic scheduling affect reliability?

•  What is the fault model?
±  Transient faults (α-particles)? More transistors, more faults?
±  Gradual faults (electro-migration)? Same
–  Permanent faults (design errors)? Worse, ooo is complicated

•  A holistic view of electrical reliability
•  Vulnerability to electrical faults is function of transistor size
•  Mitigate (even eliminate) with larger transistors
•  But larger transistors consume more power and energy

•  Unless we slow them down….

CS/ECE 752 (Wood): Dynamic Scheduling II 86

Dynamic Instruction Verification (DIVA)

•  Can we tolerate faults in out-of-order (execution) stages?
•  Not directly
•  But can detect them by re-executing insns and comparing results

•  Discrepancy? Flush and restart
•  Insert in-order verification (V) stage just before retirement

•  DIVA [Austin’99]

P-regfile

D$
I$
B
P

Re-order buffer

S D

A-regfile

D$

C R V ==

discrepancy? flush

CS/ECE 752 (Wood): Dynamic Scheduling II 87

DIVA

•  Why DIVA works
•  Re-execution acts like an in-order stage for parallelization purposes
•  Can re-execute dependent insns in parallel!
•  How come? “dependence-free checking”

•  You have original inputs and outputs of all insns
•  Try working this out for yourself

•  What DIVA accomplishes
+  Detects transient errors in out-of-order stages

•  Re-execution is parallel → slow clock, big, robust transistors
+  Can also detect design errors

•  Re-execution (in-order) simpler than execution (out-of-order)
•  Less likely to contain rare bugs

CS/ECE 752 (Wood): Dynamic Scheduling II 88

Current Dynamic Scheduling Research
•  “Critical path modeling”

•  Identify (and optimize) performance critical instructions

•  “Scalable schedulers”
•  Support for huge schedulers, several different designs

•  “Macro-ops and dataflow mini-graphs”
•  Schedule groups of dependent insns at once (MG: also fetch, retire)
•  Do more with fewer resources

•  “Out-of-order fetch and rename”
•  Avoid branch mispredictions by fetching control independent insns

•  Much more…

CS/ECE 752 (Wood): Dynamic Scheduling II 89

Unit Summary

•  Modern dynamic scheduling must support precise state
•  A software sanity issue, not a performance issue

•  Strategy: Writeback → Complete (OoO) + Retire (iO)
•  Two basic designs

•  P6: Tomasulo + re-order buffer, copy based register renaming
± Precise state is simple, but fast implementations are difficult

•  R10K: implements true register renaming
± Easier fast implementations, but precise state is more complex

•  Out-of-order memory operations
•  Store queue: conservative load scheduling (iO wrt older stores)
•  Load queue: opportunistic load scheduling (OoO wrt older stores)
•  Intelligent memory scheduling: hybrid

CS/ECE 752 (Wood): Dynamic Scheduling II 90

Dynamic Scheduling Summary

•  Out-of-order execution: a performance technique
•  Easier/more effective in hardware than software (isn’t everything?)
•  Idea: make scheduling transparent to software

•  Feature I: Dynamic scheduling (iO → OoO)
•  “Performance” piece: re-arrange insns into high-performance order
•  Decode (iO) → dispatch (iO) + issue (OoO)
•  Two algorithms: Scoreboard, Tomasulo

•  Feature II: Precise state (OoO → iO)
•  “Correctness” piece: put insns back into program order
•  Writeback (OoO) → complete (OoO) + retire (iO)
•  Two designs: P6, R10K

•  Don’t forget about memory scheduling

