
11/18/14

1

A Comparison of Software and
Hardware Techniques for x86

Virtualization

Presented by Mike Marty

By Keith Adams and Ole Ageson

VMWare

The Renaissance of Virtualization

l  1970s: virtual machines first used

l  1990s:
–  x86 becomes prominent server platform
–  No vertical integration in x86
–  Lack of enterprise features in commodity OSs

l  1999: VMWare first product to virtualize x86

l  2006: AMD and Intel offer hardware support

Outline

l  Classic Virtualization

l  Software Virtualization

l  Intel/AMD Hardware Virtualization

l  Comparison and Results

l  Discussion

Classic Virtualization

l  Popek and Goldberg’s Criteria:
1.  Fidelity – run any software
2.  Performance – run it fairly fast
3.  Safety – VMM manages all hardware

l  Trap-and-Emulate only real solution until
recently

11/18/14

2

Trap-and-Emulate Virtualization

1. De-Privilege OS

OS

apps

kernel
mode

user
mode

Trap-and-Emulate Virtualization

OS

apps

kernel
mode

user
mode

virtual machine monitor

OS

apps

1. De-Privilege OS

Trap-and-Emulate Virtualization

OS

apps

kernel
mode

user
mode

virtual machine monitor

OS

apps

1. De-Privilege OS
2. Shadow structures and memory tracing

primary
page table

shadow
page table

shadow
page table

Trap-and-Emulate cont.

l  Traps are expensive (~3000 cycles)

l  Many traps unavoidable
–  E.g., page faults

l  Important enhancements
–  “Paravirtualization” to reduce traps (e.g., Xen)
–  Hardware VM modes (e.g., IBM s370)

11/18/14

3

Can x86 Trap and Emulate?

l  No
–  Even with 4 execution modes!
–  Key problem: dual-purpose instructions don’t trap

l  Classic Example: popf instruction
–  Same instruction behaves differently depending

on execution mode
–  User Mode: changes ALU flags
–  Kernel Mode: changes ALU and system flags
–  Does not generate a trap in user mode

Outline

l  Classic Virtualization

l  Software Virtualization

l  Intel/AMD Hardware Virtualization

l  Comparison and Results

l  Discussion

Software Virtualization with VMWare

l  Binary translation!

X86 X86
(mostly safe, user-mode)

VMWare’s Binary Translation

l  On-the-fly
l  Only need to translate OS code

–  Makes SPEC run fast by default
l  Most instruction sequences don’t change
l  Instructions that do change:

–  Indirect control flow: call/ret, jmp
–  PC-relative addressing
–  Privileged instructions

l  Adaptive Translation
–  “Innocent until proven guilty”

11/18/14

4

Performance Advantages of BT

l  Translation sequences can be faster than
native:
–  cli vs. vpu.flags.IF := 0

l  Avoid privilege instruction traps
–  Example: rdtsc

l  Trap-and-emulate: 2030 cycles
l  Callout-and-emulate: 1254 cycles
l  BT emulation: 216 cycles (but TSC value is stale)

Outline

l  Classic Virtualization

l  Software Virtualization

l  Intel/AMD Hardware Virtualization

l  Comparison and Results

l  Discussion

AMD SVM and Intel VT

l  Extensions to x86-32 and x86-64
–  Allows classic trap-and-emulate!
–  Hardware VM modes to reduce traps
–  Details:

l  VMCB – virtual machine control block
l  VMX mode for running guest OSs
l  Vmrun instruction to enter VMX mode
l  Many instructions and events cause VMX exits
l  Control fields in VMCB can change VMX exit behavior

Hardware VM Example: syscall

1.  VMM fills in VMCB exception table for
Guest OS
l  Sets bit in VMCB not exit on syscall exception

2.  VMM executes vmrun
3.  Application invokes syscall
4.  CPU à CPL #0, does not trap, vectors to

VMCB exception table

11/18/14

5

Software BT vs. Hardware VM

l  Binary Translation VMM:
–  Converts traps to callouts

l  Callouts faster than trapping
–  Faster emulation routine

l  VMM does not need to reconstruct state
–  Avoids callouts entirely

l  Hardware VMM:
–  Preserves code density
–  No precise exception overhead
–  Faster system calls

Compute-bound Benchmarks

Bottomline: little difference for SPEC

Mixed Benchmarks

Process-based Thread-based Who Cares?

Would Hardware VM do better for multithreaded database?

Cygwin Make is SLOW!

Costs of Operations

11/18/14

6

Nanobenchmarks
VMWare Nanobenchmarks

l  syscall
–  Native/Hardware VMM: same
–  Software VMM: +2000 cycles

l  in
–  Native: 3209 cycles
–  Hardware VMM: 15826 cycles
–  Software VMM: 15x faster?

l  call/ret
–  Native/Hardware VMM: 11 cycles
–  Software VMM: 51 cycles

Opportunities

l  Faster Microarchitecture implementations
–  Intel Core Duo already much faster than P4

l  Hardware VMM algorithms

l  Software/Hardware Hybrid VMM

l  Hardware MMU
–  Virtualize DMA

Catalysts for Discussion

l  Is BT really faster for things that matter?
–  Process-based Apache on Linux?
–  Who configures a system to constantly page?

l  VMWare is done, why bother with Hardware VM
support?

–  Simplicity of VMM w/ Hardware support
–  New applications

l  Will next-gen hardware make binary translation
unnecessary?

