11/18/14

A Comparison of Software and
Hardware Techniques for x86
Virtualization

By Keith Adams and Ole Ageson
VMWare

Presented by Mike Marty
D

The Renaissance of Virtualization
¢]

e 1970s: virtual machines first used

e 1990s:
- x86 becomes prominent server platform
- No vertical integration in x86

- Lack of enterprise features in commodity OSs

e 1999: VMWare first product to virtualize x86

e 2006: AMD and Intel offer hardware support

Outline
. |
e Classic Virtualization
e Software Virtualization
e Intel/AMD Hardware Virtualization

e Comparison and Results

e Discussion

Classic Virtualization
G

e Popek and Goldberg’ s Criteria:
1. Fidelity — run any software
2. Performance — run it fairly fast
3. Safety — VMM manages all hardware

e Trap-and-Emulate only real solution until
recently

11/18/14

Trap-and-Emulate Virtualization

1. De-Privilege OS

user

Trap-and-Emulate Virtualization

1. De-Privilege OS

mode mode
os
Jkemel [virtual] kernel
mode mode
Trap-and-Emulate Virtualization Trap-and-Emulate cont.
G
1. De-Privilege OS e Traps are expensive (~3000 cycles)
2. Shadow structures and memory tracing
shadow e Many traps unavoidable
shadow page table
pa;e(:abm - apps apps - E.g., page faults
user
mode
os 0s ° Imﬁnonant en.har.1ce"ments
primary - "Paravirtualization” to reduce traps (e.g., Xen)
page table - Hardware VM modes (e.g., IBM s370)
[virtual hi i] kernel
mode

11/18/14

Can x86 Trap and Emulate?
. |

e No
- Even with 4 execution modes!
- Key problem: dual-purpose instructions don’ t trap

e Classic Example: popf instruction

- Same instruction behaves differently depending
on execution mode

- User Mode: changes ALU flags
- Kernel Mode: changes ALU and system flags
- Does not generate a trap in user mode

Outline
¢]

e Classic Virtualization
e Software Virtualization
e Intel/AMD Hardware Virtualization

e Comparison and Results

e Discussion

Software Virtualization with VMWare
G

e Binary translation!

(mostly safe, user-mode)

60 [| e 30

o e [r
e e | (I !
Windows iy g o Hconsole
[oo o |

DS etaaianiose
P

VMWare' s Binary Translation
G

e On-the-fly
e Only need to translate OS code

- Makes SPEC run fast by default
e Most instruction sequences don’ t change
e Instructions that do change:

- Indirect control flow: call/ret, jmp

- PC-relative addressing

- Privileged instructions
e Adaptive Translation

- “Innocent until proven guilty”

11/18/14

Performance Advantages of BT
G

e Translation sequences can be faster than
native:

- clivs. vpu.flags.IF :=0

e Avoid privilege instruction traps
- Example: rdtsc
e Trap-and-emulate: 2030 cycles
e Callout-and-emulate: 1254 cycles
e BT emulation: 216 cycles (but TSC value is stale)

Outline
G

e Classic Virtualization

e Software Virtualization

e Intel/AMD Hardware Virtualization
e Comparison and Results

e Discussion

AMD SVM and Intel VT
C |

e Extensions to x86-32 and x86-64

- Allows classic trap-and-emulate!

- Hardware VM modes to reduce traps

- Details:
e VMCB — virtual machine control block
e VMX mode for running guest OSs
e Vmrun instruction to enter VMX mode
e Many instructions and events cause VMX exits
e Control fields in VMCB can change VMX exit behavior

Hardware VM Example: syscall
O

1. VMM fills in VMCB exception table for
Guest OS
e Sets bit in VMCB not exit on syscall exception
2. VMM executes vmrun
Application invokes syscall

4. CPU > CPL #0, does not trap, vectors to
VMCB exception table

11/18/14

Software BT vs. Hardware VM
¢]

e Binary Translation VMM:

- Converts traps to callouts

e Callouts faster than trapping
- Faster emulation routine

e VMM does not need to reconstruct state
- Avoids callouts entirely

e Hardware VMM:
- Preserves code density
- No precise exception overhead
- Faster system calls

% of native (higher is better)

Compute-bound Benchmarks

120
Software VIV mm——
Hardware VMM T——1
100 1
o -A--Xl--2-Ri-A-R AR LR 1
o -A-X-B-R-A-R- AR PR 1
= .
2 -R-R-A-R - AR 4
gzip vpr mef craftyparser con perlbmkgap vortex bzip2 twolf specibb

Bottomline: little difference for SPEC

Mixed Benchmarks

100 T T T T

Software VMM
Hardware VMM ==

% of native (higher is better)

compileLin compileWin ApacheLin ApacheWin LargeRAM 2DGraphics

Cygwin Make is SLOW! Process-based Thread-based
Would Hardware VM do better for multithreaded database?

Who Cares?

CPU cycles (smaller is better)

100000

10000

1000

100

0.1

Costs of Operations

j Native ===
Software VMM ===
Hardware VMM

syscall

in

créwr

callret

pgfault divzero ptemod

11/18/14

Nanobenchmarks

10 T T T T

" Software VMM ==
Hardware VMM

=3

IS

Overhead (seconds)

~

VMWare Nanobenchmarks
¢]

e syscall
- Native/Hardware VMM: same
- Software VMM: +2000 cycles
e in
- Native: 3209 cycles
- Hardware VMM: 15826 cycles
- Software VMM: 15x faster?

Nl O 0 o call/ret
. . : . . L . - Native/Hardware VMM: 11 cycles
syscall infout créwr callret pgfault ptemod translate
- Software VMM: 51 cycles
Opportunities Catalysts for Discussion

e Faster Microarchitecture implementations
- Intel Core Duo already much faster than P4

e Hardware VMM algorithms
e Software/Hardware Hybrid VMM

e Hardware MMU
- Virtualize DMA

e |s BT really faster for things that matter?
- Process-based Apache on Linux?
- Who configures a system to constantly page?

e VMWare is done, why bother with Hardware VM
support?
- Simplicity of VMM w/ Hardware support
- New applications

o Will next-gen hardware make binary translation
unnecessary?

