
Page 1 of 9

CS/ECE 752: Advanced Computer Architecture I

Prof. David A. Wood

Final Exam
December 18, 2006

Approximate Weight: 20%

CLOSED BOOK
TWO SHEETS OF NOTES

NAME: ___________________________________

DO NOT OPEN THE EXAM UNTIL TOLD TO DO SO!

Read over the entire exam before beginning. Verify that your exam includes all 9 pages. Budget
your time according to the weight of the questions, and your ability to answer them. Limit your
answers to the space provided, if possible. If not, write on the BACK OF THE SAME SHEET. Use
the back of the sheet for scratch work. WRITE YOUR NAME ON EACH SHEET.

Problem Possible
Points Points

Problem 1 10

Problem 2 30

Problem 3 10

Problem 4 10

Problem 5 15

Problem 6 25

Total 100

NAME: _______________________________________

Page 2 of 9

Problem 1: (10 points)

Circle either the word True or the word False for the questions below.

True or False: Compiler optimizations such as loop unrolling and if-conversion can improve pro-
gram performance on both statically scheduled processors and dynamically
scheduled processors.

True or False: Non-blocking caches improve performance by reducing the latency of cache
misses.

True or False: The Sun Niagara processor uses the ICOUNT policy to select the which thread
should run next.

True or False: Software pipelining is the preferred optimization if a loop has a loop-carried
dependence.

True or False: Loop blocking is a compiler optimization that primarily tries to increase a pro-
gram’s spatial locality.

True or False: Seznec’s skewed-associative caches try to reduce conflict misses by hashing
the address bits in the cache tag.

True or False: Stream buffers are one way to implement non-binding prefetching.

True or False: Virtual address aliases are not a problem for a physically-tagged cache if the vir-
tual memory page size times the associativity are less than or equal to the cache
size.

True or False: TLB Reach can be increased both by increasing the page size and by increasing
the number of TLB entries.

True or False: Implementing TLB reload (i.e., TLB miss handling) in hardware always results in
lower TLB miss penalties than implementing it in software.

NAME: _______________________________________

Page 3 of 9

Problem 2: (30 points)

Consider a memory hierarchy with the following components and properties:
• An L1 data cache with 64 KByte capacity, 32 byte blocks, direct-mapped placement, a write-through

policy, and physical tags. An L1 hit takes 2 cycles.
• A two-entry victim cache (i.e., victim buffer) between the L1 and L2 with fully-associative placement,

LRU replacement, and a “swap-on-hit” policy. A reference that misses in the L1 cache but hits in the
victim cache takes a total of 4 cycles.

• An L2 unified cache with 1 Mbyte capacity, 128 byte (address) blocks, 32 byte subblocks, 4-way set-
associative, LRU replacement policy, a writeback policy, and physical tags. A reference that misses in
both the L1 cache and victim cache but hits in the L2 cache takes a total of 15 cycles.

• A main memory system with 4 Gbyte capacity. A reference that misses in all caches and is satisfied by
the main memory takes a total of 250 cycles.

• Physical addresses are 32 bits and the smallest addressable unit is one byte.
• Ignore the instruction cache and TLB.

Part A: (15 points)

How many bits are required to implement this memory system? Be sure to include the state
needed to implement the various policies. Complete the table below. Show your work in the
space below the table, using additional pages if necessary.

Table 1:

Cache Bits per Block Blocks per set Bits per set Total bits in
cache

L1 Cache

Victim
Cache

L2 Cache

NAME: _______________________________________

Page 4 of 9

Part B: (15 points)

Consider only the L1 data cache and victim cache and assume that all entries in both caches are
initially invalid. For the memory reference stream below, determine which references hit or miss
at each level (accessed from top to bottom). Assume that the victim cache is only accessed on
L1 misses and all accesses that miss in the victim cache will hit in the L2 cache. Assume byte
addressing and all accesses are 32-bit loads.

Complete the tables
to the left. In
Table 2,, indicate in
which cache each
reference hits. In
Table 3, indicate the
number of hits,
misses, and cycles
for each cache.

Hint: Calculate the
L1 index bits for
each access in the
middle column. Then
track which entries
are added to or
removed from the
victim cache.

Table 2:

Memory
Reference L1 Index Hits in? Victim Cache Contents

MRU, LRU

0x00000000 0 L2 invalid, invalid

0x00010010

0x00020020

0x00040040

0x00000000

0x00010010

0x00020020

0x00040040

0xEEE00000

0x00000000

0x00010010

0x00020020

0x00040040

Table 3:

Cache Number
of Hits

Number
of

Misses

Hit
Latency

Total Hit
Cycles

L1
Cache

2

Victim
Cache

4

L2
Cache

15

All

NAME: _______________________________________

Page 5 of 9

Problem 3: (10 points)

What is the difference between a store queue, a write buffer, and a writeback buffer? Explain
what each one does and identify their key requirements. Which, if any, of these are visible to the
instruction set architecture (i.e., can affect the execution of any program)?

NAME: _______________________________________

Page 6 of 9

Problem 4: (10 points)

Part A: (5 points)

What is the key architectural feature needed to support strip mining for arbitrary length arrays?
Explain how it is used in strip mining.

Part B: (5 points)

Mark Hill’s original 3C’s classification broke cache misses into three categories. Norm Jouppi
later added a fouth category. What are the four categories? Identify the addition and explain why
it was omitted from the original classification.

NAME: _______________________________________

Page 7 of 9

Problem 5: (15 points)

Consider a multiprocessor system that uses broadcast snooping cache coherence. Four processors, P1, P2,
P3, and P4 perform the following sequence of loads and stores to/from lines A and B. Assume A and B do
not conflict in the data caches. Assume the protocol described in the book (reprinted on the next page),
which uses the three states: Invalid (I), Shared (S), and Exclusive (E). The table below shows the state of
the memory system as time flows down. The cache blocks are represented with the following notation:
address:(state, data). For example, A:(I,0) means that cache block A is in state I with data value 0. A data
value of x means the value is unknown or undefined. Complete the table below, updating the cache and
memory states in response to the sequence of loads and stores. Indicate actions taken by the cache and
memory controllers: hits, requests to get a block shared or exclusive, and responses to requests. You may
use arrows (as shown) to indicate that the state has not changed in that cycle.

P1 P2 P3 P4 MEM

A:(I,x) B:(I,x) A:(I,x) B:(I,x) A:(I,x) B:(I,x) A:(I,x) B:(I,x) A:0 B:0

load A
miss, get A shared
A:(S,0) B:(I,x)

respond with A
A:0 B:0

load B
miss, get B shared
A:(I,x) B:(S,0)

respond with B
A:0 B:0

load A

store B = 1

load A

load B

store A = 3

load A

load B

NAME: _______________________________________

Page 8 of 9

Page 9 of 9

Problem 6: (25 points)

Consider the following code sequence executing on a MIPS R10000 processor.
L0: lw R6, 0(R1) // notation: lw dest, imm(src1)
L1: lw R2, 100(R1)
L2: add R1, R6, R3 // notation: add dest, src1, src2
L3: bnez R2, L7
L4: add R6, R1, R5
L5: sub R1, R2, R4
L6: jump end
L7: add R3, R6, R1
L8: lw R0, 8(R2)
L9: lw R1, 16(R2)
L10: sub R4, R6, R1
end: halt

Execution follows this sequence: instruction dispatch begins at L0 and advances to the branch
instruction, which is predicted taken and control transfers to the code at L7; a misprediction is
detected just before dispatch of the sub instruction at L10, and execution restarts at L4. The table
to the left shows the register map prior to renaming the instruction marked by the label. For
example, the state in the column L0 is the state of the register map just before the first instruction
is remapped. The table to the right is the active list (reorder buffer) before the first instruction is
dispatched. The free list (below) shows which physical registers are available. Fill in the tables
assuming that instruction dispatch has continued to the instruction at the label ‘end’. Fur-
ther assume that the ‘lw’ instruction at L1 has NOT completed execution, but that all other
independent instructions have completed. Also, show the state of the free list at this
point.

Register Map

Logical
Register

Physical Register

L0 L7 L10 end

R1 7

R2 9

R3 11

R4 13

R5 15

R6 1

Active List (ROB)

PC
(use label)

Result
Register

Previous
Mapping Done

Tail@L0

Head@L0

14 12 10 8 6 4 2 0 3 5 7 15
RD_PTR WR_PTR

Free List

