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This Unit 

•  What is a computer and what is computer architecture 

•  Forces that shape computer architecture 
•  Applications (covered last time) 
•  Semiconductor technology 

•  Evaluation metrics: parameters and technology basis 
•  Cost 
•  Performance 
•  Power 
•  Reliability 
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What is Computer Architecture? (review) 
•  Design of interfaces and implementations… 
•  Under constantly changing set of external forces… 

•  Applications: change from above (discussed last time) 
•  Technology: changes transistor characteristics from below 
•  Inertia: resists changing all levels of system at once 

•  To satisfy different constraints 
•  This course mostly about performance 
•  Cost  
•  Power 
•  Reliability  

•  Iterative process driven by empirical evaluation 
•  The art/science of tradeoffs 
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Abstraction and Layering 

•  Abstraction: only way of dealing with complex systems 
•  Divide world into objects, each with an… 

•  Interface: knobs, behaviors, knobs → behaviors 
•  Implementation: “black box” (ignorance+apathy) 

•  Specialists deal with implementation; others interface 
•  Example: car drivers vs. mechanics 

•  Layering: abstraction discipline makes life even simpler 
•  Removes need to even know interfaces of most objects 
•  Divide objects in system into layers 
•  Layer X objects 

•  Implemented in terms of interfaces of layer X-1 objects 
•  Don’t even need to know interfaces of layer X-2 objects 
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Abstraction, Layering, and Computers 

•  Computers are complex systems, built in layers 
•  Applications 
•  O/S, compiler 
•  Firmware, device drivers 
•  Processor, memory, raw I/O devices 
•  Digital circuits, digital/analog converters 
•  Gates 
•  Transistors 

•  99% of users don’t know hardware layers implementation 
•  90% of users don’t know implementation of any layer 
•  That’s OK, world still works just fine 

•  But unfortunately, the layers sometimes breakdown 
•  Someone needs to understand what’s “under the hood” 
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Gray box: Peeking though the layers   
•  Layers of abstraction in a car 

•  Interface (drivers): steering 
wheel, clutch, shift, brake 

•  Implementation (mechanic): 
engine, fuel injection, 
transmission 

•  But high-performance drivers 
know the torque curve 
•  Achieve maximum performance 

•  Similar examples for computers 
•  Cache organization/locality 
•  Pipeline scheduling/interlocks 

•  Power users peek across layers 
Keep RPM in range where 

torgue is maximized 



CS/ECE 752 (Wood): Technology, Cost, Performance, Power, etc. 7 

A Computer Architecture Picture 

•  Computer architecture 
•  Definition of ISA to facilitate implementation of software layers 

•  This course mostly on computer micro-architecture 
•  Design CPU, Memory, I/O to implement ISA …  

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 

Hardware 

Software 

Instruction Set Architecture (ISA) 
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Semiconductor Technology Background 
•  Transistor (1947) 

•  A key invention of 20th century 
•  Fabrication 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Shaping Force: Technology 

•  Basic technology element: MOSFET 

•  MOS: metal-oxide-semiconductor 
•  Conductor, insulator, semi-conductor 

•  FET: field-effect transistor 
•  Solid-state component acts like electrical switch 
•  Channel conducts source→drain when voltage applied to gate 

•  Channel length: characteristic parameter (short → fast) 
•  Aka “feature size” or “technology” 
•  Currently: 22nm (0.022 micron) 
•  Continued miniaturization (scaling) known as “Moore’s Law” 

•  Won’t last forever, physical limits approaching (or are they?) 

channel 

source 

drain 

gate 
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Complementary MOS (CMOS) 

•  Voltages as values 
•  Power (VDD) = 1, Ground = 0 

•  Two kinds of MOSFETs 
•  N-transistors 

•  Conduct when gate voltage is 1 
•  Good at passing 0s 

•  P-transistors 
•  Conduct when gate voltage is 0 
•  Good at passing 1s 

•  CMOS: complementary n-/p- networks form boolean logic  

power (1) 

ground (0) 

input output 
(“node”) 

n-transistor 

p-transistor 
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CMOS Examples 

•  Example I: inverter 
•  Case I: input = 0 

•  P-transistor closed, n-transistor open 
•  Power charges output (1) 

•  Case II: input = 1 
•  P-transistor open, n-transistor closed 
•  Output discharges to ground (0) 

•  Example II: look at truth table 
•  0, 0 → 1         0, 1 → 1 
•  1, 0 → 1         1, 1 → 0 
•  Result: this is a NAND (NOT AND) 
•  NAND is universal (can build any logic function) 

0 
1 

1 0 

B A 

A 

B 



CS/ECE 752 (Wood): Technology, Cost, Performance, Power, etc. 12 

More About CMOS and Technology 
•  Two different CMOS families 
 
•  SRAM (logic): used to make processors 

•  Storage implemented as inverter pairs 
•  Optimized for speed 

•  DRAM (memory): used to make memory 
•  Storage implemented as capacitors 
•  Optimized for density, cost, power 

•  FLASH memory 
•  also a technology, but we will discuss later. 

•  Disk is also a “technology”, but isn’t transistor-based 



CS/ECE 752 (Wood): Technology, Cost, Performance, Power, etc. 13 

Aside: VLSI + Manufacturing 
•  VLSI (very large scale integration) 

•  Transistor manufacturing process 
•  Integrated Circuit (1958) as important as transistor itself 
•  Multi-step photochemical and electrochemical process 
•  Fixed cost per step 
•  Cost per transistor shrinks with transistor size 

•  Other production costs 
•  Packaging 
•  Test 
•  Mask set 
•  Design 

First integrated circuit (1958) 
Jack Kilby (UW, MSEE, 1950) 

and Robert Noyce 
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MOSFET Side View 

•  MOS: three materials needed to make a transistor 
•  Metal - Aluminum, Tungsten, Copper: conductor 
•  Oxide - Silicon Dioxide (SiO2): insulator 
•  Semiconductor - doped Si: conducts under certain conditions 

•  FET: field effect (the mechanism) transistor 
•  Voltage on gate: current flows source to drain (transistor on) 
•  No voltage on gate: no current (transistor off) 

channel source drain 
insulator 

gate 

Substrate 

Note: former UW Chancellor Wiley co-invented the barrier layer process 
that enables the use of copper interconnects. 
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Manufacturing Process 

•  Start with silicon wafer 
•  Grow SiO2 
•  Deposit photo-resist 
•  Burn positive bias mask 

•  Ultraviolet light lithography 

•  Dissolve unburned photo-resist 
•  Chemical etch 

•  Dissolve exposed SiO2 
•  Dissolve remaining photo-resist 

•  Chemical etch 

•  Continue with device formation 
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Manufacturing: Gate formation 

•  Deposit/grow gate oxide 
•  Deposit polysilicon 
•  Deposit/burn/dissolve photo resist 
•  Etch polysilicon, dissolve 

unexposed resist 
•  Bomb wafer with negative ions (P) 

•  Doping gates, sources, and drains 
•  Self-aligning gate process 
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Manufacturing Process 

•  Grow SiO2 

•  Grow photo-resist 
•  Burn “via-level-1” mask 
•  Dissolve unburned photo-resist 

•  And underlying SiO2 

•  Grow tungsten “vias” 
•  Dissolve remaining photo-resist 
•  Continue with next layer 
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Manufacturing Process 

•  Grow SiO2 

•  Grow photo-resist 
•  Burn “wire-level-1” mask 
•  Dissolve unburned photo-resist 

•  And underlying SiO2 

•  Grow copper “wires” 
•  Dissolve remaining photo-resist 
•  Continue with next wire layer… 

•  Typical number of wire layers: 3-8 
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Defects 

•  Defects can arise 
•  Under-/over-doping 
•  Over-/under-dissolved insulator 
•  Mask mis-alignment 
•  Particle contaminants 

•  Try to minimize defects 
•  Process margins 
•  Design rules 

•  Minimal transistor size, separation 

•  Or, tolerate defects 
•  Redundant or “spare” memory cells 

Defective: 

Defective: 

Slow: 
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Empirical Evaluation 

•  Metrics 
•  Cost  
•  Performance 
•  Power  
•  Reliability 

•  Often more important in combination than individually 
•  Performance/cost (MIPS/$) 
•  Performance/power (MIPS/W) 

•  Basis for 
•  Design decisions 
•  Purchasing decisions 
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Cost 

•  Metric: $ 

•  In grand scheme: CPU accounts for fraction of cost 
•  Some of that is profit (Intel’s, Dell’s) 

•  We are concerned about Intel’s cost (transfers to you) 
•  Unit cost: costs to manufacture individual chips 
•  Startup cost: cost to design chip, build the fab line, marketing 

Desktop Laptop PDA Phone 
$ $100–$300 $150-$350 $50–$100 $10–$20 
% of total 10–30% 10–20% 20–30% 20-30% 
Other costs Memory, display, power supply/battery, disk, packaging 
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Unit Cost: Integrated Circuit (IC) 
•  Chips built in multi-step chemical processes on wafers 

•  Cost / wafer is constant, f(wafer size, number of steps) 

•  Chip (die) cost is proportional to area 
•  Larger chips means fewer of them 
•  Larger chips means fewer working ones 
•  Why? Uniform defect density 

•  Chip cost ~ chip areaα	


•   α = 2-3	



•  Wafer yield: % wafers that are  
    worth testing  

•  Die yield: % chips/wafer that work 
•  Yield is increasingly non-binary - fast vs slow chips 
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Yield/Cost Examples 

•  Parameters 
•  wafer yield = 90%, α = 2, defect density = 2/cm2 

Die size (mm2) 100 144 196 256 324 400 
Die yield 23% 19% 16% 12% 11% 10% 
6” Wafer 139(31) 90(16) 62(9) 44(5) 32(3) 23(2) 
8” Wafer 256(59) 177(32) 124(19) 90(11) 68(7) 52(5) 
10” Wafer 431(96) 290(53) 206(32) 153(20) 116(13) 90(9) 

Wafer 
Cost 

Defect 
(/cm2) 

Area 
(mm2) 

Dies Yield Die 
Cost 

Package 
Cost (pins) 

Test 
Cost 

Total 

Intel 486DX2 $1200 1.0 81 181 54% $12 $11(168) $12 $35 
IBM PPC601 $1700 1.3 196 66 27% $95 $3(304) $21 $119 
DEC Alpha $1500 1.2 234 53 19% $149 $30(431) $23 $202 
Intel Pentium $1500 1.5 296 40 9% $417 $19(273) $37 $473 
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Startup Costs (NREs) 

•  Startup costs: must be amortized over chips sold 
•  Research and development: ~$300M per chip 

•  1500 person-years @ $200K per 
•  Fabrication facilities: ~$2B per new line 

•  Clean rooms (bunny suits), lithography, testing equipment 

•  If you sell 10M chips, fab startup adds ~$200/chip 
•  Must amortize the fab costs over many designs! 

•  R&D costs add $30/chip for 10M chips 
•  Reuse basic design many times 
•  Pentium Pro, Pentium II, Pentium III, and Pentium M share 

common microarchitecture (more or less) 
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Moore’s Effect on Cost 

•  Scaling has opposite effects on unit and startup costs 
+  Reduces unit integrated circuit cost  

•  Either lower cost for same functionality… 
•  Or same cost for more functionality 

–  Increases startup cost 
•  More expensive fabrication equipment 
•  Takes longer to design, verify, and test chips 
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Performance 

•  Two definitions 
•  Latency (execution time): time to finish a fixed task 
•  Throughput (bandwidth): number of tasks in fixed time 
•  Very different: throughput can exploit parallelism, latency cannot 

•  Baking bread analogy 
•  Often contradictory 
•  Choose definition that matches goals (most frequently thruput)  

•  Example: move people from A to B, 10 miles 
•  Car: capacity = 5, speed = 60 miles/hour 
•  Bus: capacity = 60, speed = 20 miles/hour 
•  Latency: car = 10 min, bus = 30 min 
•  Throughput: car = 15 PPH (count return trip), bus = 60 PPH 
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Performance Improvement 

•  Processor A is X times faster than processor B if 
•  Latency(P,A) = Latency(P,B) / X 
•  Throughput(P,A) = Throughput(P,B) * X 

•  Processor A is X% faster than processor B if 
•  Latency(P,A) = Latency(P,B) / (1+X/100) 
•  Throughput(P,A) = Throughput(P,B) * (1+X/100) 

•  Car/bus example 
•  Latency? Car is 3 times (and 200%) faster than bus 
•  Throughput? Bus is 4 times (and 300%) faster than car 
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What Is ‘P’ in Latency(P,A)? 

•  Program 
•  Latency(A) makes no sense, processor executes some program 
•  But which one? 

•  Actual target workload? 
+  Accurate 
–  Not portable/repeatable, overly specific, hard to pinpoint problems 

•  Some representative benchmark program(s)? 
+  Portable/repeatable, pretty accurate 
–  Hard to pinpoint problems, may not be exactly what you run 

•  Some small kernel benchmarks (micro-benchmarks) 
+  Portable/repeatable, easy to run, easy to pinpoint problems 
–  Not representative of complex behaviors of real programs 
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SPEC Benchmarks 

•  SPEC (Standard Performance Evaluation Corporation) 
•  http://www.spec.org/ 
•  Consortium of companies that collects, standardizes, and 

distributes benchmark programs 
•  Post SPECmark results for different processors 

•  1 number that represents performance for entire suite 
•  Benchmark suites for CPU, Java, I/O, Web, Mail, etc. 
•  Updated every few years: so companies don’t target benchmarks 

•  SPEC CPU 2006 
•  12 “integer”: bzip, gccs, perl, mcf, etc. 
•  17 “floating point”: mesa (openGL), equake, facerec, etc.  
•  Written in C and Fortran (a few in C++) 



CS/ECE 752 (Wood): Technology, Cost, Performance, Power, etc. 30 

Other Benchmarks 

•  Parallel benchmarks 
•  SPLASH2 - Stanford Parallel Applications for Shared Memory 
•  NAS 
•  SPEC’s OpenMP benchmarks 
•  SPECjbb - Java multithreaded database-like workload 

•  Transaction Processing Council (TPC) 
•  TPC-C: On-line transaction processing (OLTP) 
•  TPC-H/R: Decision support systems (DSS) 
•  TPC-W: E-commerce database backend workload 
•  Have parallelism (intra-query and inter-query) 
•  Heavy I/O and memory components 



CS/ECE 752 (Wood): Technology, Cost, Performance, Power, etc. 31 

Adding/Averaging Performance Numbers 
•  You can add latencies, but not throughput 

•  Latency(P1+P2, A) = Latency(P1,A) + Latency(P2,A) 
•  Throughput(P1+P2,A) != Throughput(P1,A) + Throughput(P2,A) 

•  1 mile @ 30 miles/hour + 1 mile @ 90 miles/hour 
•  Average is not 60 miles/hour 

•  0.033 hours at 30 miles/hour + 0.01 hours at 90 miles/hour  
•  Average is only 47 miles/hour! (2 miles / (0.033 + 0.01 hours)) 

•  Throughput(P1+P2,A) = 
              1 / [(1/ Throughput(P1,A)) + (1/ Throughput(P2,A))] 

•  Same goes for means (averages) 
•  Arithmetic: (1/N) * ∑P=1..N Latency(P) 

•  For units that are proportional to time (e.g., latency) 
•  Harmonic: N / ∑P=1..N 1/Throughput(P) 

•  For units that are inversely proportional to time (e.g., throughput) 
•  Geometric: N√∏P=1..N Speedup(P) 

•  For unitless quantities (e.g., speedups) 
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SPECmark 

•  Reference machine: Sun Ultra Enterprise II 
•  Latency SPECmark 

•  For each benchmark 
•  Take odd number of samples: on both machines 
•  Choose median 
•  Take latency ratio (Sun Ultrasparc / your machine) 

•  Take GMEAN of ratios over all benchmarks 

•  Throughput SPECmark 
•  Run multiple benchmarks in parallel on multiple-processor system 

•  Recent (latency) leaders 
•  SPECint: Intel 3.2 GHz Xeon X5482 (24.6) 
•  SPECfp: Fujitsu SPARC Enterprise M8000 (25) 
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CPU Performance Equation 
•  Multiple aspects to performance: helps to isolate them 

•  Latency(P,A) = seconds / program = 
•  (instructions / program) * (cycles / instruction) * (seconds / cycle) 

•  Instructions / program: dynamic instruction count 
•  Function of program, compiler, instruction set architecture (ISA) 

•  Cycles / instruction: CPI 
•  Function of program, compiler, ISA, micro-architecture 

•  Seconds / cycle: clock period 
•  Function of micro-architecture, technology parameters 

•  For low latency (better performance) minimize all three 
•  Hard: often pull against the other 
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Danger: Partial Performance Metrics 
•  Micro-architects often ignore dynamic instruction count 

•  Typically work in one ISA/one compiler → treat it as fixed 
•  Not always accurate for multithreaded workloads! 

•  CPU performance equation becomes 
•  seconds / instruction = (cycles / instruction) * (seconds / cycle) 
•  This is a latency measure, if we care about throughput … 
•  Instructions / second = (instructions / cycle) * (cycles / second) 

•  MIPS (millions of instructions per second) 
•  Instructions / second * 10-6 

•  Cycles / second: clock frequency (in MHz) 
•  Example: CPI = 2, clock = 500 MHz, what is MIPS? 

•  0.5 * 500 MHz * 10-6 = 250 MIPS 
•  Example problem situation:  

•  compiler removes instructions, program faster 
•  However, “MIPS” goes down (misleading) 
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MIPS and MFLOPS (MegaFLOPS) 
•  Problem: MIPS may vary inversely with performance 

–  Some optimizations actually add instructions 
–  Work per instruction varies (e.g., FP mult vs. integer add) 
–  ISAs are not equivalent 

•  MFLOPS: like MIPS, but counts only FP ops, because… 
+  FP ops can’t be optimized away 
+  FP ops have longest latencies anyway 
+  FP ops are same across machines 

•  May have been valid in 1980, but today… 
–  Many programs are “integer”, i.e., light on FP 
–  Loads from memory take much longer than FP divide 
–  Even FP instructions sets are not equivalent 

•  Upshot: Neither MIPS nor MFLOPS are broadly useful 
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Danger: Partial Performance Metrics II 

•  Micro-architects often ignore dynamic instruction count… 
•  … but general public (mostly) also ignores CPI 

•  Equates clock frequency with performance!! 

•  Which processor would you buy? 
•  Processor A: CPI = 2, clock = 500 MHz 
•  Processor B: CPI = 1, clock = 300 MHz 
•  Probably A, but B is faster (assuming same ISA/compiler) 

•  (Not so) Recent example 
•  800 MHz PentiumIII faster than 1 GHz Pentium4 
•  Same ISA and compiler 
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Cycles per Instruction (CPI) 
•  This course is mostly about improving CPI 

•  Cycle/instruction for average instruction 
•  IPC = 1/CPI 

•  Used more frequently than CPI, but harder to compute with 
•  Different instructions have different cycle costs 

•  E.g., integer add typically takes 1 cycle, FP divide takes > 10 
•  Assumes you know something about instruction frequencies 

•  CPI example 
•  A program executes equal integer, FP, and memory operations 
•  Cycles per instruction type: integer = 1, memory = 2, FP = 3 
•  What is the CPI? (0.33 * 1) + (0.33 * 2) + (0.33 * 3) = 2 
•  Caveat: this sort of calculation ignores dependences completely 

•  Back-of-the-envelope arguments only 
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Another CPI Example 

•  Assume a processor with instruction frequencies and costs 
•  Integer ALU: 50%, 1 cycle 
•  Load: 20%, 5 cycle 
•  Store: 10%, 1 cycle 
•  Branch: 20%, 2 cycle 

•  Which change would improve performance more? 
•  A. Branch prediction to reduce branch cost to 1 cycle? 
•  B. A bigger data cache to reduce load cost to 3 cycles? 

•  Compute CPI 
•  Base = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*2 = 2 
•  A = 0.5*1 + 0.2*5 + 0.1*1 + 0.2*1 = 1.8 
•  B = 0.5*1 + 0.2*3 + 0.1*1 + 0.2*2 = 1.6  (winner) 
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Increasing Clock Frequency: Pipelining 

•  CPU is a pipeline: compute stages separated by latches 

•  Clock period: maximum delay of any stage 
•  Number of gate levels in stage 
•  Delay of individual gates (these days, wire delay more important) 

PC Insn 
Mem 

Register 
File 

s1 s2 d 
Data 
Mem 
a 

d 

+ 
4 
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Increasing Clock Frequency: Pipelining 

•  Reduce pipeline stage delay 
•  Reduce logic levels and wire lengths (better design) 
•  Complementary to technology efforts (described later) 
•  Increase number of pipeline stages (multi-stage operations) 
–  Often causes CPI to increase 
–  At some point, actually causes performance to decrease 
•  “Optimal” pipeline depth is program and technology specific 

•  Remember example 
•  PentiumIII: 12 stage pipeline, 800 MHz 
                  faster than 
•  Pentium4: 22 stage pipeline, 1 GHz 
•  Current Intel design (Haswell): more like PentiumIII 
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CPI and Clock Frequency 
•  System components “clocked” independently 

•  CPI = CPICPU + CPIMEM 
•  E.g., Increasing processor clock frequency doesn’t improve 

memory performance 

•  Example 
•  Processor A: CPICPU = 1, CPIMEM = 1, clock = 500 MHz 

•  Base: CPI = 2 → IPC = 0.5 → MIPS = 250 
•  What is the speedup if we double clock frequency? 

•  Clock *= 2 → CPIMEM *= 2 → CPIMEM = 2  
•  New: CPI = 3 → IPC = 0.33 → MIPS = 333 
•  Speedup = 333/250 = 1.33 << 2 

•  What about an infinite clock frequency? 
•  Only a x2 speedup (Example of Amdahl’s Law) 

Speedup  
     = Told/Tnew 
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Measuring CPI 

•  How are CPI and execution-time actually measured? 
•  Execution time: time (Unix): wall clock + CPU + system 
•  CPI = CPU time / (clock frequency * dynamic insn count) 
•  How is dynamic instruction count measured? 
•  Want CPI breakdowns (CPICPU, CPIMEM, etc.) to see what to fix 

•  CPI breakdowns 
•  Hardware event counters 

•  Calculate CPI using counter frequencies/event costs 
•  Cycle-level micro-architecture simulation (e.g., SimpleScalar) 

+ Measures breakdown “exactly” provided 
+ Models micro-architecture faithfully 
+ Ran realistic workload 

•  Method of choice for many micro-architects (and you) 



CS/ECE 752 (Wood): Technology, Cost, Performance, Power, etc. 43 

Improving CPI 
•  This course is more about improving CPI than frequency 

•  Historically, clock accounts for 70%+ of performance improvement 
•  Achieved via deeper pipelines 

•  That will (have to) change 
•  Deep pipelining is not power efficient 
•  Physical speed limits are approaching 
•  1GHz: 1999, 2GHz: 2001, 3GHz: 2002, 3.8GHz: 2004, 5GHz: 2008 
•  Intel Core 2: 1.8-3.2GHz: 2008 

•  Techniques we will look at 
•  Caching, speculation, multiple issue, out-of-order issue 
•  Vectors, multiprocessing, more… 

•  Moore helps because CPI reduction requires transistors 
•  The definition of parallelism is “more transistors” 
•  But best example is caches 
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Moore’s Effect on Performance 

•  Moore’s Curve: common interpretation of Moore’s Law 
•  “CPU performance doubles every 18 months” 
•  Self fulfilling prophecy 

•  2X every 18 months is ~1% per week 
•  Q: Would you add a feature that improved performance 20% if 

it took 8 months to design and test? 
•  Processors under Moore’s Curve (arrive too late) fail spectacularly 

•  E.g., Intel’s Itanium, Sun’s Millennium 
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Performance Rules of Thumb 

•  Make common case fast 
•  “Amdahl’s Law” 
•  Speedupoverall = 1 / ((1 – fractionx) + fractionx/Speedupx) 
•  Corollary: don’t optimize 5% to the detriment of other 95% 
•  Speedupoverall = 1 / ((1 – 5%) + 5%/infinity) = 1.05 

•  Build a balanced system 
•  Don’t over-engineer capabilities that cannot be utilized 
•  Try to be “bound” by the most expensive resourses 

(if not everywhere) 

•  Design for actual, not peak, performance 
•  For actual performance X, machine capability must be > X 
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Little’s Law 

•  Key Relationship between latency and bandwidth: 
•  Average number in system = arrival rate * avg. holding time 

•  Example: 
•  How big a wine cellar should I build? 
•  My family drinks (and buys) an average of 4 bottles per week 
•  On average, I want to age my wine 5 years 

•  bottles in cellar = 4 bottles/week * 52 weeks/year * 5 years 
•          = 1040 bottles (!!!) 
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More Little’s Law 

•  How many outstanding cache misses? 
•   Want to sustain 5 GB/s bandwidth 
•   64 byte blocks 
•   100ns miss latency 

•  Requests in system = arrival rate * time in system 
    = (5 GB/s / 64 byte blocks) * 100ns 
    = 8 misses 

•  That’s an AVERAGE. Need to support many more if we 
hope to sustain this bandwidth. (Rule of thumb is 2X) 
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Transistor Speed, Power, and Reliability 

•  Transistor characteristics and scaling impact: 
•  Switching speed 
•  Power 
•  Reliability 

•  “Undergrad” gate delay model for architecture 
•  Each Not, NAND, NOR, AND, OR gate has delay of “1” 
•  Reality is not so simple 



CS/ECE 752 (Wood): Technology, Cost, Performance, Power, etc. 49 

Transistors and Wires 

IBM SOI Technology 

©
IB

M
 

From slides © Krste Asanović, MIT 



CS/ECE 752 (Wood): Technology, Cost, Performance, Power, etc. 50 

Transistors and Wires 

IBM CMOS7, 6 layers of copper wiring 

©
IB

M
 

From slides © Krste Asanović, MIT 
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1→0 
I 

0→1 

1→0 

1→0 

Simple RC Delay Model 

•  Switching time is a RC circuit (charge or discharge) 
•  R - Resistance: slows rate of current flow 

•  Depends on material, length, cross-section area 
•  C - Capacitance: electrical charge storage 

•  Depends on material, area, distance 

•  Voltage affects speed, too 
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1→0 
I 

0→1 

1→0 

1→0 

Resistance 

•  Transistor channel resistance 
•  function of Vg (gate voltage) 

•  Wire resistance (negligible for short wires) 

1 

1 

Off 
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1→0 
I 

0→1 

1→0 

1→0 

Capacitance 

•  Source/Drain capacitance 
•  Gate capacitance  
•  Wire capacitance (negligible for short wires) 

1 

1 



RC Delay 

•  Delay = RC 
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1→0 
I 

0→1 
1→0 

1 

Off 

R 

C 
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Which is faster?  Why? 
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Transistor Width 

•  Useful for driving large “loads” like long or off-chip wires 

•  “Wider” transistors have lower resistance, more drive 
•  Specified per-device 
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1→0 
I 

0→1 

1→0 

1→0 

RC Delay Model Ramifications 

•  Want to reduce resistance 
•  “wide” drive transistors (width specified per device) 
•  Short wires 

•  Want to reduce capacitance 
•  Number of connected devices 
•  Less-wide transistors  

(gate capacitance  
of next stage) 

•  Short wires 

1 

1 
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Transistor Scaling 

•  Transistor length is key property of a “process generation” 
•  90nm refers to the transistor gate length, same for all transistors 

•  Shrink transistor length: 
•  Lower resistance of channel (shorter) 
•  Lower gate/source/drain capacitance 

•  Result: transistor drive strength linear as gate length shrinks 

Gate 
Source 

Drain 

Bulk 

Width 

Length 

Minimum Length=2λ	



Width=4λ	

Source Drain 

Gate 

Diagrams © Krste Asanović, MIT 
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Wires 
Pitch 

Width 

Length Height 

•  Resistance fixed by (length*resistivity) / (height*width) 
•  Intel’s 45nm process uses copper with 3.3 Ω/µm on M1-M3 

•  Capacitance depends on geometry of surrounding wires and relative 
permittivity, εr,of dielectric 

•  silicon dioxide εr = 3.9, new low-k dielectrics in range 1.2-3.1 
•  Intel’s 45nm M1-M3 have 0.20 fF/µm (160 nm pitch) 

From slides © Krste Asanović, MIT 
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Wire Delay 

•  RC Delay of wires 
•  Resistance proportional to length 
•  Capacitance proportional to length 

•  Result: delay of a wire is quadratic in length 
•  Insert “inverter” repeaters for long wires to 
•  Bring it back to linear delay 
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Moore’s Effect on RC Delay 

•  Scaling helps reduce wire and gate delays 
+  Wires become shorter (Length↓ → Resistance↓) 
+  Wire “surface areas” become smaller (Capacitance↓) 
+  Transistors become shorter (Resistance↓) 
+  Transistors become narrower (Capacitance↓, Resistance↑) 

•  But also increases wire and gate delays 
–  Wires become narrower (Resistance↑) 
–  Wires become closer together (Resistance↑) 
–  Gate insulator thickness becomes smaller (Capacitance↑) 
–  Distance between wires becomes smaller (Capacitance↑) 

•  Bottom line: Long wires dominate delay 
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Improving RC Delay 
•  Exploit good effects of scaling 
•  Fabrication technology improvements 

+  Use copper instead of aluminum for wires (ρ↓ → Resistance↓) 

+  Use lower-dielectric insulators (κ↓ → Capacitance↓) 
+  Design implications 

+  Use bigger cross-section wires (Area↑ → Resistance↓) 
•  Typically means taller, otherwise fewer of them 
•  Need more layers à higher fabrication cost 

–  Increases “surface area” and capacitance (Capacitance↑) 
+  Use wider transistors (Area↑ → Resistance↓) 

–  Increases capacitance (not for you, for upstream transistors) 
–  Increases power (to charge/discharge capacitance) 
–  Use selectively 
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Another Constraint: Power and Energy 

•  Power (Watt or Joule/Second): short-term (peak, max) 
•  Was mostly a dissipation (heat) concern, now $$$ too  

•  Power-density (Watt/cm2): important related metric 
–  Thermal cycle: power dissipation↑ →  power density↑ → 

temperature↑ → resistance↑ → power dissipation↑… 
•  Cost (and form factor): packaging, heat sink, fan, etc. 

•  Energy (Joule): long-term 
•  Mostly a consumption concern 
•  Primary issue is battery life (cost, weight of battery, too) 
•  Low-power implies low-energy, but not the other way around 

•  10 years ago, nobody cared except in embedded apps 



Power Density 
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Year 
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Sources of Energy Consumption 

CL 

Diode Leakage Current 

Subthreshold Leakage Current 

Short-Circuit 
Current 

Capacitor 
Charging 
Current 

Dynamic power: 
•  Capacitor Charging (85-90% of active power) 

•  Energy is ½ CV2 per transition 
•  Short-Circuit Current (10-15% of active power) 

•  When both p and n transistors turn on during signal transition 
Static power: 
•  Subthreshold Leakage (dominates when inactive) 

•  Transistors don’t turn off completely 
•  Diode Leakage (negligible) 

•  Parasitic source and drain diodes leak to substrate 
From slides © Krste Asanović, MIT 
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Moore’s Effect on Power 

•  Scaling has largely good effects on local power 
+  Shorter wires/smaller transistors (Length↓ → Capacitance↓) 
–  Shorter transistor length (Resistance↓, Capacitance↓) 
–  Global effects largely undone by increased transistor counts 

•  Scaling has a largely negative effect on power density 
+  Transistor/wire power decreases linearly 
–  Transistor/wire density decreases quadratically 
–  Power-density increases linearly 

•  Thermal cycle 
•  Controlled somewhat by reduced VDD (5→3.3→1.6→1.3→1.1) 

•  Reduced VDD sacrifices some switching speed 
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Reducing Power 

•  Power proportional to CVDD
2f 

•  Reduce supply voltage (VDD) 
+  Reduces dynamic power quadratically and static power linearly 
•  But poses a tough choice regarding VT 
–  Constant VT slows circuit speed → clock frequency → performance 
–  Reduced VT increases static power exponentially 

•  Reduce clock frequency (f) 
+  Reduces dynamic power linearly 
–  Doesn’t reduce static power 
–  Reduces performance linearly 
•  Generally doesn’t make sense without also reduced VDD … 

•  Except that frequency can be adjusted cycle-to-cycle and locally 
•  More on this later 
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Dynamic Voltage Scaling (DVS) 
•  Dynamic voltage scaling (DVS) 

•  OS reduces voltage/frequency when peak performance not needed 

±  X-Scale is power efficient (6200 MIPS/W), but not IA32 compatible 

Mobile PentiumIII 
“SpeedStep” 

TM5400 
“LongRun” 

Intel X-Scale 
(StrongARM2) 

Frequency 300–1000MHz 
(50MHz steps) 

200–700MHz 
(33MHz steps) 

50–800MHz 
(50MHz steps) 

Voltage 0.9–1.7V        
(0.1V steps) 

1.1–1.6V 
(continuous) 

0.7–1.65V 
(continuous) 

High-speed 3400MIPS @ 34W 1600MIPS @ 2W 800MIPS @ 0.9W  
Low-power 1100MIPS @ 4.5W 300MIPS @ 0.25W 62MIPS @ 0.01W 
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Reducing Power: Processor Modes 
•  Modern electrical components have low-power modes 

•  Note: no low-power disk mode, magnetic (non-volatile) 

•  “Standby” mode 
•  Turn off internal clock 
•  Leave external signal controller and pins on 
•  Restart clock on interrupt 
±  Cuts dynamic power linearly, doesn’t effect static power 
•  Laptops go into this mode between keystrokes 

•  “Sleep” mode 
•  Flush caches, OS may also flush DRAM to disk 
•  Turn off processor power plane 
–  Needs a “hard” restart 
+  Cuts dynamic and static power 
•  Laptops go into this mode after ~10 idle minutes 
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Reliability 

•  Mean Time Between Failures (MTBF) 
•  How long before you have to reboot or buy a new one 

•  CPU reliability small in grand scheme 
•  Software most unreliable component in a system 

•  Much more difficult to specify & test 
•  Much more of it 

•  Most unreliable hardware component … disk 
•  Subject to mechanical wear 
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Moore’s Bad Effect on Reliability 
•  CMOS devices: CPU and memory 

•  Historically almost perfectly reliable 
•  Moore has made them less reliable over time 

•  Two common sources of electrical faults 
•  Energetic particle strikes (e.g., from sun) 

•  Randomly charge nodes, cause bits to flip, transient 
•  Electro-migration: change in electrical interfaces/properties  

•  Temperature-driven, happens gradually, permanent 

•  Large, high-energy transistors are immune to these effects 
–  Scaling makes node energy closer to particle energy 
–  Scaling increases power-density which increases temperature 
•  Memory (DRAM) was hit first: denser, smaller devices than SRAM 
•  Now SRAM is more susceptible (smaller capacitances) 
•  Flip-flops (e.g., registers and microarchitectural state) at risk??? 
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Moore’s Good Effect on Reliability 
•  The key to providing reliability is redundancy 

•  The same scaling that makes devices less reliable… 
•  Also increase device density to enable redundancy 

•  Classic example 
•  Error correcting code (ECC) for DRAM 
•  ECC now on caches and register files for many designs 
•  More reliability techniques later 

•  Today’s big open questions 
•  How to efficiently protect logic? 
•  Can architectural techniques help hardware reliability? 
•  Can architectural techniques help with software reliability? 
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Summary: A Global Look at Moore 
•  Device scaling (Moore’s Law) 

+  Increases performance 
•  Reduces transistor/wire delay 
•  Gives us more transistors with which to reduce CPI 

+  Reduces local power consumption 
– Which is quickly undone by increased integration 
–  Aggravates power-density and temperature problems 

–  Aggravates reliability problem 
+ But gives us the transistors to solve it via redundancy 

+  Reduces unit cost 
–  But increases startup cost 

•  Will we fall off Moore’s Cliff? (for real, this time?) 
•  What’s next: nanotubes, quantum-dots, optical, spin-tronics, DNA?  
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Summary 

•  What is computer architecture 
•  Abstraction and layering: interface and implementation, ISA 
•  Shaping forces: application and semiconductor technology 
•  Moore’s Law 

•  Cost 
•  Unit and startup 

•  Performance 
•  Latency and throughput 
•  CPU performance equation: insn count * CPI * clock frequency 

•  Power and energy 
•  Dynamic and static power 

•  Reliability 
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A Computer Archtecture Picture 

 
•  Mostly about micro-architecture 
•  Mostly about CPU/Memory 
•  Mostly about general-purpose 
•  Mostly about performance 
•  We’ll still only scratch the surface 
 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 


