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What Is An ISA? 
•  ISA (instruction set architecture) 

•  A well-define hardware/software interface 

•  The “contract” between software and hardware 
•  Functional definition of operations, modes, and storage 

locations supported by hardware 
•  Precise description of how to invoke, and access them 

•  No guarantees regarding 
•  How operations are implemented 
•  Which operations are fast and which are slow and when 
•  Which operations take more power and which take less 
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A Language Analogy for ISAs 

•  A ISA is analogous to a human language 
•  Allows communication 

•  Language: person to person 
•  ISA: hardware to software 

•  Need to speak the same language/ISA 
•  Many common aspects 

•  Part of speech: verbs, nouns, adjectives, adverbs, etc. 
•  Common operations: calculation, control/branch, memory 

•  Many different languages/ISAs, many similarities, many differences 
•  Different structure 

•  Both evolve over time 

•  Key differences: ISAs must be unambiguous 
•  ISAs are explicitly engineered and extended 
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RISC vs CISC Foreshadowing 

•  Recall performance equation: 
•  (instructions/program) * (cycles/instruction) * (seconds/cycle) 

•  CISC (Complex Instruction Set Computing) 
•  Improve “instructions/program” with “complex” instructions 
•  Easy for assembly-level programmers, good code density 

•  RISC (Reduced Instruction Set Computing) 
•  Improve “cycles/instruction” with many single-cycle instructions 
•  Increases “instruction/program”, but hopefully not as much 

•  Help from smart compiler 
•  Perhaps improve clock cycle time (seconds/cycle)  

•  via aggressive implementation allowed by simpler instructions  
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What Makes a Good ISA? 

•  Programmability 
•  Easy to express programs efficiently? 

•  Implementability 
•  Easy to design high-performance implementations? 
•  More recently 

•  Easy to design low-power implementations? 
•  Easy to design high-reliability implementations? 
•  Easy to design low-cost implementations? 

•  Compatibility 
•  Easy to maintain programmability (implementability) as languages 

and programs (technology) evolves? 
•  x86 (IA32) generations: 8086, 286, 386, 486, Pentium, PentiumII, 

PentiumIII, Pentium4,… 
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Programmability 

•  Easy to express programs efficiently? 
•  For whom? 

•  Early: human 
•  Compilers were terrible, most code was hand-assembled 
•  Want high-level coarse-grain instructions 

•  As similar to high-level language as possible 

•  Last decades: compiler 
•  Optimizing compilers usually generate better code than you or I 
•  Want low-level fine-grain instructions 

•  Compiler can’t tell if two high-level idioms match exactly or not  
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Human Programmability 

•  What makes an ISA easy for a human to program in? 
•  Proximity to a high-level language (HLL) 

•  Closing the “semantic gap” 
•  Semantically heavy (CISC-like) insns that capture complete idioms 

•  “Access array element”, “loop”, “procedure call” 
•  Example: SPARC save/restore 
•  Bad example: x86 rep movsb (copy string) 
•  Ridiculous example: VAX insque (insert-into-queue) 

•  “Semantic clash”: what if you have many high-level languages? 

•  Stranger than fiction 
•  People once thought computers would execute language directly 
•  Fortunately, never really happened (except Symbol) 
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Compilers 101 
•  Compiler goals: 

•   all correct programs execute correctly 
•   most compiled programs execute fast 
•   compile fast 
•   provide support for debugging 

•  Use multiple phases to manage complexity 
•   Lexical analysis (e.g., “+” means “add”, “foobar” is an identifier) 
•   Parsing  (e.g., “x = a + b” means assign sum of variables a and b to x) 

•  Generates intermediate representation 
•   Optimization & code generation (transforms intermediate representation) 

•   Procedure In-lining, Loop optimizations, 
Common sub-expression elimination,  
Jump optimization, Constant propagation, 
Register allocation, Strength reduction, 
Pipeline scheduling, Interprocedural analysis 

•   Generation of assembly code 

Which comes first?���
Phase ordering ���

problem.	
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Compiler Programmability 

•  What makes an ISA easy for a compiler to program in? 
•  Low level primitives from which solutions can be synthesized 

•  Wulf: “primitives not solutions” 
•  Compilers good at breaking complex structures to simple ones 

•  Requires decomposition 
•  Not so good at combining simple structures into complex ones 

•  Requires search, pattern matching (why AI is hard) 
•  Easier to synthesize complex insns than to compare them 

•  Rules of thumb 
•  Regularity: “principle of least astonishment” 
•  Orthogonality & composability 
•  One-vs.-all 
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Implementability 

•  Every ISA can be implemented 
•  Not every ISA can be implemented efficiently (at least easily) 

 

•  Classic high-performance implementation techniques 
•  Pipelining, parallel execution, out-of-order execution (more later) 

•  Certain ISA features make these difficult 
–  Variable instruction lengths/formats: complicate decoding 
–  Implicit state: complicates dynamic scheduling 
–  Variable latencies: complicates scheduling 
–  Difficult to interrupt instructions: complicate many things 

–  A solution: High-performance x86 machines dynamically translate CISC 
instructions into internal micro-ops (e.g., RISC-ops) 
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Compatibility 
•  No-one buys new hardware… if it requires new software 

•  IBM did this for mainframes; Intel for PCs 
•  ISA must remain compatible, no matter what 

•  x86 arguably one of the worst  ISAs EVER, but survives 
•  As does IBM’s 360/370/390 (the first  “ISA family”) 

•  Backward compatibility 
•  New processors must support old programs  

•  Can’t drop features, but can deprecate and emulate 
•  Very important 

•  Forward (upward) compatibility 
•  Old processors must support new programs (with software help) 

•  New processors redefine only previously-illegal opcodes 
•  Allow software to detect support for specific new instructions 
•  Old processors emulate new instructions in low-level software 
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The Compatibility Trap 

•  Easy compatibility requires forethought 
•  Temptation: use some ISA extension for 5% performance gain 
•  Frequent outcome: gain diminishes, disappears, or turns to loss 

– Must continue to support gadget for eternity 
 
•  Example: register windows (SPARC) 

•  Reduces register spills and fills 
•  Adds cost and complexity to out-of-order implementations of 

SPARC 
•  Example: branch delay slot (most RISCs) 

•  Eliminates branch hazard in simple 5-stage pipeline 
•  Complicates multi-instruction issue (superscalar) 
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The Compatibility Trap Door 

•  Compatibility’s friends 
•  Trap: instruction makes low-level “function call” to OS handler 
•  Nop: “no operation” - instructions with no functional semantics 

•  Backward compatibility 
•  Handle rarely used but hard to implement “legacy” opcodes 
•  Define to trap in new implementation and emulate in software 

•  Rid yourself of some ISA mistakes of the past 
•  Problem: performance suffers for legacy codes 

•  Forward compatibility 
•  Reserve sets of trap & nop opcodes (don’t define uses) 
•  Add ISA functionality by overloading traps 

•  Release firmware patch to “add” to old implementation 
•  Add ISA hints by overloading nops 



Blocking the Compatibility Trap Door 

•  Temptation: 
•  Define “unused” instruction fields as “don’t cares” 

•  E.g., MIPS “shift length” field in an “add” instruction 
•  Simplifies hardware logic needed to decode instructions 

•  Trap: 
•  Can’t use “unused” values for new instructions 
•  Same problem for special registers (e.g., Interrupt status register) 

•  Solution: 
•  Define all bits (usually to be zero). 
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Aspects of ISAs 

•  Von Neumann model 
•  Implicit structure of most ISAs 

•  Format 
•  Length and encoding  

•  Operand model 
•  Where (other than memory) are operands stored? 

•  Datatypes and operations  
•  Control 

 
•  Overview only 

•  Read about the rest in the book and appendices 
•  You MUST be comfortable with MIPS ISA 
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The Sequential Model 
•  Implicit model of all modern commercial ISAs 

•  Called von Neuman, but in ENIAC design before   

•  Basic feature: the program counter (PC) 
•  Defines total order on dynamic instruction 

•  Next PC is PC++ unless insn says otherwise  
•  Order and named storage define computation 

•  Value flows from insn X to Y via storage A iff… 
•  X names A as output, Y names A as input… 
•  And Y after X in total order 

•  Processor logically executes loop at left 
•  Instruction execution assumed atomic 
•  Instruction X finishes before insn X+1 starts 

•  Alternatives have been proposed… 

Fetch PC 

Decode 

Read Inputs 

Execute 

Write Output 

Next PC 
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Format 

•  Length 
•  Fixed length 

•  Most common is 32 bits 
+ Simple implementation: compute next PC using only PC 
–  Code density: 32 bits to increment a register by 1? 

–  x86 can do this in one 8-bit instruction 
•  Variable length 

–  Complex implementation 
+ Code density 

•  Compromise: two lengths 
•  MIPS16 or ARM’s Thumb 

•  Encoding 
•  A few simple encodings simplify decoder implementation 
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Example: MIPS Format 

•  Length 
•  32-bits 

•  Encoding 
•  3 formats, simple encoding 
•  Q: how many instructions can be encoded? A: 64? 127? 4096? 

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type 

Op(6) Rs(5) Rt(5) Immed(16) I-type 

Op(6) Target(26) J-type 
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Operand Model: Memory Only 
•  Where (other than memory) can operands come from? 

•  And how are they specified? 
•  Example: A = B + C 
•  Several options 

•  Memory only 
add B,C,A        mem[A] = mem[B] + mem[C] 
•  Not practical 
 
 

MEM 
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Operand Model: Accumulator 

•  Accumulator: implicit single element storage 
load B                           ACC = mem[B] 
add C                             ACC = ACC + mem[C]  
store A                         mem[A] = ACC 

MEM 

ACC 
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Operand Model: Stack 

•  Stack: TOS implicit in instructions 
push B           stk[TOS++] = mem[B]  
push C           stk[TOS++] = mem[C]  
add     stk[TOS++] = stk[--TOS] + stk[--TOS]  
pop A            mem[A] = stk[--TOS] 

MEM 

TOS 
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Operand Model: Registers 

•  General-purpose register: multiple explicit accumulator 
load B,R1                       R1 = mem[B] 
add C,R1                         R1 = R1 + mem[C] 
store R1,A                     mem[A] = R1 

•  Load-store: GPR and only loads/stores access memory 
load B,R1                       R1 = mem[B] 
load C,R2            R2 = mem[C] 
add R1,R2,R1                 R1 = R1 + R2 
store R1,A                     mem[A] = R1 

MEM 
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Operand Model Pros and Cons 

•  Metric I: static code size 
•  Number of instructions needed to represent program, size of each 
•  Want many implicit operands, high level instructions 
•  Good → bad: accumulator, stack, GP-register, load-store 

•  Metric II: data memory traffic 
•  Number of bytes move to and from memory 
•  Want as many long-lived operands in on-chip storage 
•  Good → bad: load-store / GP-register, stack, accumulator,  

•  Metric III: cycles per instruction 
•  Want short (1 cycle?), little variability, few nearby dependences 
•  Good → bad: load-store, GP-register, stack, accumulator 

•  Upshot: most new ISAs are load-store (or GP-register) 
•  Question: Any recent stack architectures? 
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How Many Registers? 

•  Registers faster than memory, have as many as possible? 
•  No 
•  One reason registers are faster is that there are fewer of them 

•  Small is fast (Speed of light, diffusion equation, etc.) 
•  Another is that they are directly addressed (no address calc) 

– More of them, means larger specifiers 
–  Fewer registers per instruction or indirect addressing 

•  Not everything can be put in registers 
•  Structures, arrays, anything pointed-to 
•  Although compilers are getting better at putting more things in 

–  More registers means more saving/restoring 

•  Upshot: trend to more registers: 8 (x86)→32 (MIPS) →128 (IA64) 
•  64-bit x86 has 16 64-bit integer and 16 128-bit FP registers  
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Register Windows 

•  Register windows: hardware activation records 
•  Sun SPARC (from the RISC I) 
•  32 integer registers divided into: 8 global, 8 local, 8 input, 8 output 
•  Explicit save/restore instructions 

•  Global registers fixed 
•   save: inputs “pushed”, outputs → inputs, locals zeroed  
•   restore: locals zeroed, inputs → outputs, inputs “popped” 
•  Hardware stack provides few (8) on-chip register frames 
•  Spilled-to/filled-from memory on over/under flow 

+  Automatic parameter passing, caller-saved registers 
+  No memory traffic on shallow (<8 deep) call graphs 
–  Hidden memory operations (some restores fast, others slow) 
–  A nightmare for register renaming (more later) 
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Virtual Address Size 

•  What is an n-bit processor? 
•  Support memory size of 2n 

•  Alternative (wrong) definition: size of calculation operations 

•  Virtual address size 
•  Determines maximum size of addressable (usable) memory 

•  Current 32-bit or 64-bit address spaces 
•  All ISAs moving to (if not already at) 64 bits 

•  Most implementations limited to 40-50 bits 
•  A pain to overcome too-small virtual address space 

•  x86 evolution: 
•  12-bit (4004), 14-bit (8008), 16-bit (8086), 24-bit (80286),  
•  32-bit + protected memory (80386) 
•  64-bit (AMD’s Opteron & Intel’s EM64T Pentium4)  



CS/ECE 752 (Wood): Instruction Set Architecture 27 

Memory Addressing 

•  Addressing mode: way of specifying address 
•  Used in memory-memory or load/store instructions in register ISA 

•  Examples 
•  Register-Indirect:  R1=mem[R2]  
•  Displacement:  R1=mem[R2+immed]  
•  Index-base:  R1=mem[R2+R3]  
•  Memory-indirect: R1=mem[mem[R2]]  
•  Auto-increment: R1=mem[R2], R2= R2+1 
•  Auto-indexing: R1=mem[R2+immed], R2=R2+immed 
•  Scaled:  R1=mem[R2+R3*immed1+immed2] 
•  PC-relative: R1=mem[PC+imm] 

•  What high-level program idioms are these used for? 
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Op(6) Rs(5) Rt(5) Immed(16) I-type 

Example: MIPS Addressing Modes 

•  MIPS implements only displacement 
•  Why? Experiment on VAX (ISA with every mode) found distribution 
•  Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%  
•  80% use small displacement or register indirect (displacement 0) 

•  I-type instructions: 16-bit displacement 
•  Is 16-bits enough?  
•  Yes? VAX experiment showed 1% accesses use displacement >16 

•  SPARC adds Reg+Reg mode 
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Two More Addressing Issues 
•  Access alignment: address % size == 0? 

•  Aligned: load-word @XXXX00, load-half @XXXXX0 
•  Unaligned: load-word @XXXX10, load-half @XXXXX1 
•  Question: what to do with unaligned accesses (uncommon case)? 

•  Support in hardware? Makes all accesses slow 
•  Trap to software routine? Possibility 
•  Use regular instructions 

•  Load, shift, load, shift, and 
•  MIPS? ISA support: unaligned access using two instructions 

lwl @XXXX10; lwr @XXXX10 

•  Endian-ness: arrangement of bytes in a word 
•  Big-endian: sensible order (e.g., MIPS, PowerPC)  

•  A 4-byte integer: “00000000 00000000 00000010 00000011” is 515  
•  Little-endian: reverse order (e.g., x86) 

•  A 4-byte integer: “00000011 00000010 00000000 00000000 ” is 515 
•  Why little endian? To be different? To be annoying? Nobody knows 
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Control Instructions 

•  One issue: testing for conditions 
•  Option I: compare and branch insns 

branch-less-than R1,10,target 
+ Simple, – two ALUs: one for condition, one for target address  

•  Option II: implicit condition codes 
subtract R2,R1,10   // sets “negative” CC 
branch-neg target 

+ Condition codes set “for free”, – implicit dependence is tricky 
•  Option III: condition registers, separate branch insns 

set-less-than R2,R1,10 
branch-not-equal-zero R2,target 

–  Additional instructions, + one ALU per, + explicit dependence 
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Example: MIPS Conditional Branches 
•  MIPS uses combination of options II/III 

•  Compare 2 registers and branch: beq, bne 
•  Equality and inequality only 
+ Don’t need an adder for comparison 

•  Compare 1 register to zero and branch: bgtz, bgez, bltz, blez 
•  Greater/less than comparisons 
+ Don’t need adder for comparison 

•  Set explicit condition registers: slt, sltu, slti, sltiu, etc. 

•  Why?  
•  More than 80% of branches are (in)equalities or comparisons to 0 
•  OK to take two insns to do remaining branches (MCCF) 

•  Power-PC has separate condition registers and ops 



CS/ECE 752 (Wood): Instruction Set Architecture 32 

Control Instructions II 
•  Another issue: computing targets 

•  Option I: PC-relative 
•  Position-independent within procedure 
•  Used for branches and jumps within a procedure 

•  Option II: Absolute 
•  Position independent outside procedure 
•  Used for procedure calls 

•  Option III: Indirect (target found in register) 
•  Needed for jumping to dynamic targets 
•  Used for returns, dynamic procedure calls, switches 

•  How far do you need to jump? 
•  Typically not so far within a procedure (they don’t get that big) 
•  Further from one procedure to another 



CS/ECE 752 (Wood): Instruction Set Architecture 33 

MIPS Control Instructions 

•  MIPS uses all three 
•  PC-relative conditional branches: bne, beq, blez, etc.  

•  16-bit relative offset, <0.1% branches need more 

•  Absolute jumps unconditional jumps: j 
•  26-bit offset 

•  Indirect jumps: jr 

Op(6) Rs(5) Rt(5) Immed(16) I-type 

Op(6) Target(26) J-type 

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type 
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Control Instructions III 

•  Another issue: support for procedure calls? 
•  Link (remember) address of calling insn + 4 so we can return to it 

•  MIPS 
•  Implicit return address register is $31 
•  Direct jump-and-link: jal 
•  Indirect jump-and-link: jalr 
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RISC & CISC 
•  RISC: reduced-instruction set 

computer (coined by Patterson) 
•  Berkeley RISC-I, Stanford MIPS, 

& IBM 801 
•  PowerPC, ARM, SPARC, Alpha, 

PA-RISC 
•  Single-cycle execution 
•  Hardwired control 
•  Load/store architecture 
•  Few memory addressing modes 
•  Fixed instruction format 
•  Reliance on compiler 

optimizations 

•  CISC: complex-instruction set 
computer (coined by Patterson) 

•   
 

•  x86, VAX, Motorola 68000, etc. 
 

•  Many multicycle operations 
•  Microcoded multi-cycle operations 
•  Register-memory & memory-

memory 
•  Many addressing modes 
•  Many formats and lengths 
•  Assembly for best performance 
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Current Winner (units sold): ARM 
•  ARM (Advanced RISC Machine) 

•  First ARM chip in mid-1980s (from Acorn Computer Ltd). 
•  Over 10 billion units sold (75% of 32/64-bit CPUs) 
•  Low-power and embedded devices (iPod, for example) 

•  32-bit RISC ISA 
•  16 registers 
•  Many addressing modes (for example, auto increment) 
•  Condition codes, each instruction can be conditional 

•  Multiple compatible implementations 
•  Intel’s X-scale (was DEC’s) 
•  Others: Freescale (was Motorola), IBM, Texas Instruments, 

Nintendo, STMicroelectronics, Samsung, Sharp, Philips, etc. 

•  “Thumb” 16-bit wide instructions 
•  Increase code density 
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Current Winner (revenue): x86 

•  x86 was first 16-bit chip by ~2 years 
•  IBM put it into its PCs because there was no competing choice 
•  Rest is historical inertia and “financial feedback” 

•  x86 is "Difficult to explain and impossible to love" 

•  Complex architecture due to "growth" 
•  Typical of many older ISAs, e.g. IBM 360/370/390 
•  Started as 16-bit microprocessor (later, 32-bits) 
•  Upward compatible from 8080 (accumulator-based) 
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x86: Registers 

•  4 arithmetic,  
•  4 address, 
•  4 segment, 
•  2 control 

•  Accumulator 
•  AH, AL (8 bits) 
•  AX (16 bits) 
•  EAX (32 bits) 
•  RAX (64 bits) 
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x86 Addressing 

•  Seven address modes 
•  Absolute 
•  Register indirect 
•  Based 
•  Indexed 
•  Based indexed with displacement 
•  Based with scaled indexed 
•  Based with scaled indexed and displacement 
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x86 Instruction Formats 

•  Many  instruction formats 
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x86 Outside = RISC Inside 

•  1993: Intel wanted out-of-order execution in Pentium Pro 
•  OOO was very hard to do with a coarse grain ISA like x86 
•  Their solution? Translate x86 to RISC uops in hardware 

push $eax 
is translated (dynamically in hardware) to  
store $eax [$esp-4] 
addi $esp,$esp,-4 

•  Processor maintains x86 ISA for external compatibility 
•  But executes RISC µISA for internal implementability 

•  Translation itself is proprietary, but 1.6 uops per x86 insn 

•  Given translator, x86 almost as easy to implement as RISC 
•  Result: Intel implemented OOO before any RISC company 

•  VAX 8800 pioneered µOp conversion w/ 5-stage pipeline in 1987 
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Transmeta’s Take: Code Morphing 

•  Code morphing: x86 translation performed in software 
•  Crusoe/Astro are x86 emulators, no actual x86 hardware anywhere 
•  Only “code morphing” translation software written in native ISA 
•  Native ISA is invisible to applications, OS, even BIOS 
•  Different Crusoe versions have (slightly) different ISAs: can’t tell 
•  How was it done? 

•  Code morphing software resides in boot ROM 
•  On startup boot ROM hijacks 16MB of main memory 
•  Translator loaded into 512KB, rest is translation cache 
•  Software starts running in interpreter mode 
•  Interpreter profiles to find “hot” regions: procedures, loops 
•  Hot region compiled to native, optimized, cached 
•  Gradually, more and more of application starts running native 
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Emulation/Binary Translation 

•  Compatibility is still important but definition has changed 
•  Less necessary that processor ISA be compatible 
•  As long as some combination of ISA + software translation layer is 
•  Advances in emulation, binary translation have made this possible 
•  Binary-translation: transform static image, run native 
•  Emulation: unmodified image, interpret each dynamic insn 

•  Typically optimized with just-in-time (JIT) compilation 
•  Examples 

•  FX!32: x86 on Alpha 
•  IA32EL: x86 on IA64 
•  Rosetta: PowerPC on x86 

•  Downside: performance overheads  
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Virtual ISAs 

•  Java and C# use an ISA-like interface 
•  JavaVM uses a stack-based bytecode 
•  C# has the CLR (common language runtime) 
•  Higher-level than machine ISA 

•  Design for translation (not direct execution) 
•  Goals: 

•  Portability (abstract away the actual hardware) 
•  Target for high-level compiler (one per language) 
•  Source for low-level translator (one per ISA) 
•  Flexibility over time 

•  May allow ISA research to overcome compatibility “gorilla” 
•  But Intel wants x86 to be the winning “virtual ISA” 
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Summary 

•  What makes a good ISA 
•  {Programm|Implement|Compat}-ability 
•  Compatibility is a powerful force 
•  Compatibility and implementability: µISAs, binary translation 

•  Aspects of ISAs 
•  CISC and RISC 
 


