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This Unit: Pipelining 

•  Basic Pipelining 
•  Single, in-order issue 
•  Clock rate vs. IPC 

•  Data Hazards 
•  Hardware: stalling and bypassing 
•  Software: pipeline scheduling 

•  Control Hazards 
•  Branch prediction  

•  Precise state 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Quick Review 

•  Basic datapath: fetch, decode, execute 
•  Single-cycle control: hardwired 

+  Low CPI (1) 
–  Long clock period (to accommodate slowest instruction) 

•  Multi-cycle control: micro-programmed 
+  Short clock period 
–  High CPI 

•  Can we have both low CPI and short clock period? 
•  Not if datapath executes only one instruction at a time 
•  No good way to make a single instruction go faster 

insn0.fetch, dec, exec 
Single-cycle 

Multi-cycle 

insn1.fetch, dec, exec 

insn0.dec insn0.fetch 
insn1.dec insn1.fetch 

insn0.exec 
insn1.exec 
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Pipelining 

•  Important performance technique 
•  Improves instruction throughput rather instruction latency 

•  Begin with multi-cycle design 
•  When instruction advances from stage 1 to 2 
•  Allow next instruction to enter stage 1 
•  Form of parallelism: “insn-stage parallelism” 
•  Individual instruction takes the same number of stages 
+  But instructions enter and leave at a much faster rate 

•  Automotive assembly line analogy 

insn0.dec insn0.fetch 
insn1.dec insn1.fetch Multi-cycle 

Pipelined 

insn0.exec 
insn1.exec 

insn0.dec insn0.fetch 
insn1.dec insn1.fetch 
insn0.exec 

insn1.exec 
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5 Stage Pipelined Datapath 

•  Temporary values (PC,IR,A,B,O,D) re-latched every stage 
•  Why? 5 insns may be in pipeline at once, they share a single PC? 
•  Notice, PC not latched after ALU stage (why not?) 

PC I$ Register 
File 

s1 s2 d D$ 

+ 
4 

PC 
 
 
 
 
 
 
 
 
 
IR 

PC 
 
 
 
 
A 
 
 
B 
 
IR 

 
 
O 
 
 
B 
IR 

O 
 
D 
 
 
 
IR 
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Pipeline Terminology 

•  Five stage: Fetch, Decode, eXecute, Memory, Writeback 
•  Nothing magical about the number 5 (Pentium 4 has 22 stages) 

•  Latches (pipeline registers) named by stages they separate 
•  PC, F/D, D/X, X/M, M/W 

PC I$ Register 
File 

s1 s2 d D$ 

+ 
4 

PC 
 
 
 
 
 
 
 
 
 
IR 

PC 
 
 
 
 
A 
 
 
B 
 
IR 

 
 
O 
 
 
B 
IR 

O 
 
D 
 
 
 
IR PC 

F/D D/X X/M M/W 
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Pipeline Control 

•  One single-cycle controller, but pipeline the control signals 

PC I$ Register 
File 

s1 s2 d D$ 

+ 
4 

PC 
 
 
 
 
 
 
 
 
 
IR 

PC 
 
 
 
 
A 
 
 
B 
 
IR 

 
 
O 
 
 
B 
IR 

O 
 
D 
 
 
 
IR 

CTRL 

xC 

mC 

wC 

mC 

wC 

wC 
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Abstract Pipeline 

•  This is an integer pipeline 
•  Execution stages are X,M,W 

•  Usually also one or more floating-point (FP) pipelines 
•  Separate FP register file 
•  One “pipeline” per functional unit: E+, E*, E/ 

•  “Pipeline”: functional unit need not be pipelined (e.g, E/) 
•  Execution stages are E+,E+’,W (no M) 

regfile 

D$ 

PC F/D D/X X/M M/W 

I$ 

+ 
4 
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Floating Point Pipelines 

I$ 

I-regfile 

D$ 

+ 
4 

F-regfile 

E/ 

E 
+ 

E 
+’ 

E* E*’ E*’’ 
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Pipeline Diagram 

•  Pipeline diagram 
•  Cycles across, insns down 
•  Convention: X means ld r4,0(r5) finishes execute stage and 

writes into X/M latch at end of cycle 4 

•  Reverse stream analogy 
•  “Downstream”: earlier stages, younger insns 
•  “Upstream”: later stages, older insns 
•  Reverse? instruction stream fixed, pipeline flows over it 

•  Architects see instruction stream as fixed by program/compiler 

1 2 3 4 5 6 7 8 9 
add r3,r2,r1 F D X M W 
ld r4,0(r5) F D X M W 
st r6,4(r7) F D X M W 
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Pipeline Performance Calculation 

•  Back of the envelope calculation 
•  Branch: 20%, load: 20%, store: 10%, other: 50% 

•  Single-cycle 
•  Clock period = 50ns, CPI = 1 
•  Performance = 50ns/insn 

•  Pipelined 
•  Clock period = 12ns 
•  CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle) 
•  Performance = 12ns/insn 
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Principles of Pipelining 
•  Let: insn execution require N stages, each takes tn time 
•  Single-cycle execution 

•  L1 (1-insn latency) = ∑tn 

•  T (throughput) = 1/L1 

•  LM (M-insn latency, where M>>1) = M*L1 

•  Now: N-stage pipeline 
•  L1+P = L1 

•  T+P = 1/max(tn) ≤ N/L1 

•  If tn are equal (i.e., max(tn) = L1/N), throughput = N/L1  
•  LM+P = M*max(tn) ≥ M*L1/N 
•  S+P (speedup) = [M*L1 / (≥ M*L1/N)] = ≤ N 

•  Q: for arbitrarily high speedup, use arbitrarily high N? 
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No, Part I: Pipeline Overhead 

•  Let: O be extra delay per pipeline stage 
•  Latch overhead: pipeline latches take time 
•  Clock/data skew 

•  Now: N-stage pipeline with overhead 
•  Assume max(tn) = L1/N 
•  L1+P+O = L1 + N*O 

•  T+P+O = 1/(L1/N + O) = 1/(1/T + O) ≤ T, ≤ T/O 

•  LM+P+O = M*L1/N + M*O = LM+P + M*O  
•  S+P+O = [M*L1 / (M*L1/N + M*O)] = ≤ N = S+P, ≤ L1/O 

•  O limits throughput and speedup → useful N 
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No, Part II: Hazards 
•  Dependence: relationship that serializes two insns 

•  Data: two insns use the same value or storage location 
•  Control: one instruction affects whether another executes at all 
•  Maybe: two insns may have a dependence 

•  Hazard: dependence causes potential incorrect execution 
•  Possibility of using or corrupting data or execution flow  
•  Structural: two insns want to use same structure, one must wait 
•  Often fixed with stalls: insn stays in same stage for multiple cycles 

•  Let: H be average number of hazard stall cycles per instruction 
•  L1+P+H = L1+P (no hazards for one instruction) 
•  T+P+H = [N/(N+H)]*N/L1 = [N/(N+H)] * T+P 
•  LM+P+H = M* L1/N * [(N+H)/N] = [(N+H)/N] * LM+P 

•  S+P+H = M*L1 / M*L1/N*[(N+H)/N] = [N/(N+H)]*S+P 

•  H also limit throughput, speedup → useful N 
•  N↑→ H↑ (more insns “in flight” → more dependences become hazards) 
•  Exact H depends on program, requires detailed simulation/model 
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Clock Rate vs. IPC 

•  Deeper pipeline (bigger N) 
+  frequency↑ 
–  IPC↓ 
•  Ultimate metric is IPC * frequency 

•  But Intel got people to buy frequency, not IPC * frequency 

•  Trend has been for deeper pipelines 
•  Intel example: 

•  486: 5 stages (50+ gate delays / clock) 
•  Pentium: 7 stages 
•  Pentium II/III: 12 stages 
•  Pentium 4: 22 stages (10 gate delays / clock) 
•  800 MHz Pentium III was faster than 1 GHz Pentium4 
•  Intel Core2: 14 stages, less than Pentium 4 
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Optimizing Pipeline Depth 

•  Parameterize clock cycle in terms of gate delays 
•  G gate delays to process (fetch, decode, execute) a single insn 
•  O gate delays overhead per stage 
•  X average stall per instruction per stage 

•  Simplistic: real X function much, much more complex 

•  Compute optimal N (pipeline stages) given G,O,X 
•  IPC = 1 / (1 + X * N) 
•  f = 1 / (G / N + O) 
•  Example: G = 80, O = 1, X = 0.16,  

N IPC = 1/(1+0.16*N) freq=1/(80/N+1) IPC*freq 
5 0.56 0.059 0.033 
10 0.38 0.110 0.042 
20 0.33 0.166 0.040 

Optimizes performance! 
What about power? 
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Managing a Pipeline 
•  Proper flow requires two pipeline operations 

•  Mess with latch write-enable and clear signals to achieve 

•  Operation I: stall 
•  Effect: stops some insns in their current stages 
•  Use: make younger insns wait for older ones to complete 
•  Implementation: de-assert write-enable 

•  Operation II: flush 
•  Effect: removes insns from current stages 
•  Use: see later 
•  Implementation: assert clear signals 

•  Both stall and flush must be propagated to younger insns 
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Structural Hazards 

•  Structural hazard: resource needed twice in one cycle 
•  Example: shared I/D$ 

1 2 3 4 5 6 7 8 9 
ld r2,0(r1) F D X M W 
add r1,r3,r4 F D X M W 
sub r1,r3,r5 F D X M W 
st r6,0(r1) F D X M W 
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Fixing Structural Hazards 

•  Can fix structural hazards by stalling 
•  s* = structural stall 
•  Q: which one to stall: ld or and? 

•  Always safe to stall younger instruction (here and) 
•  Fetch stall logic: (X/M.op == ld || X/M.op == st) 

•  But not always the best thing to do performance wise (?) 
+  Low cost, simple 
–  Decreases IPC 
•  Upshot: better to avoid by design than to fix 

1 2 3 4 5 6 7 8 9 
ld r2,0(r1) F D X M W 
add r1,r3,r4 F D X M W 
sub r1,r3,r5 F D X M W 
and r6,r1,r2 s* F D X M W 
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Avoiding Structural Hazards (PRS) 
•  Pipeline the contended resource 

+  No IPC degradation, low area, power overheads 
–  Sometimes tricky to implement (e.g., for RAMs) 
•  For multi-cycle resources (e.g., multiplier) 

•  Replicate the contended resource 
+  No IPC degradation 
–  Increased area, power, latency (interconnect delay?) 
•  For cheap, divisible, or highly contended resources (e.g, I$/D$) 

•  Schedule pipeline to reduce structural hazards (RISC) 
•  Design ISA so insn uses a resource at most once  

•  Eliminate same insn hazards 
•  Always in same pipe stage (hazards between two of same insn) 

•  Reason why integer operations forced to go through M stage 
•  And always for one cycle 
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Data Hazards 

•  Real insn sequences pass values via registers/memory 
•  Three kinds of data dependences (where’s the fourth?) 

add r2,r3r1 
sub r1,r4r2 
or r6,r3r1 
Read-after-write (RAW) 

True-dependence 

add r2,r3r1 
sub r5,r4r2 
or r6,r3r1 
Write-after-read (WAR) 

Anti-dependence 

add r2,r3r1 
sub r1,r4r2 
or r6,r3r1 
Write-after-write (WAW) 

Output-dependence 

•  Only one dependence between any two insns (RAW has priority) 
•  Dependence is property of the program and ISA 

•  Data hazards: function of data dependences and pipeline 
•  Potential for executing dependent insns in wrong order 
•  Require both insns to be in pipeline (“in flight”) simultaneously 
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Dependences and Loops 

•  Data dependences in loops 
•  Intra-loop: within same iteration 
•  Inter-loop: across iterations 
•  Example: DAXPY (Double precision A X Plus Y) 

for (i=0;i<100;i++) 
 Z[i]=A*X[i]+Y[i]; 

 
0: ldf f2,X(r1) 
1: mulf f2,f0,f4 
2: ldf f6,Y(r1) 
3: addf f4,f6,f8 
4: stf f8,Z(r1) 
5: addi r1,8,r1 
6: cmplti r1,800,r2 
7: beq r2,Loop 

•  RAW intra: 0→1(f2), 1→3(f4), 
2→3(f6), 3→4(f8), 5→6(r1), 6→7(r2) 

•  RAW inter: 5→0(r1), 5→2(r1), 
5→4(r1), 5→5(r1) 

•  WAR intra: 0→5(r1), 2→5(r1), 4→5(r1) 
•  WAR inter: 1→0(f2), 3→1(f4), 

3→2(f6), 4→3(f8), 6→5(r1), 7→6(r2) 
•  WAW intra: none 
•  WAW inter: 0→0(f2), 1→1(f4), 

2→2(f6), 3→3(f8), 6→6(r2) 
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RAW 

•  Read-after-write (RAW) 

add r2,r3r1 
sub r1,r4r2 
or r6,r3r1 
 
•  Problem: swap would mean sub uses wrong value for r1 
•  True: value flows through this dependence 

•  Using different output register for add doesn’t help 
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RAW: Detect and Stall 

•  Stall logic: detect and stall reader in D 
(F/D.rs1 & (F/D.rs1==D/X.rd | F/D.rs1==X/M.rd | F/D.rs1==M/W.rd)) | 
(F/D.rs2 & (F/D.rs2==D/X.rd | F/D.rs2==X/M.rd | F/D.rs2==M/W.rd)) 
•  Re-evaluated every cycle until no longer true 
+  Low cost, simple 
–  IPC degradation, dependences are the common case 

regfile 

D$ 

PC F/D D/X X/M M/W 

I$ 

+ 
4 
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Two Stall Timings (without bypassing) 
•  Depend on how D and W stages share regfile 

•  Each gets regfile for half a cycle 
–  1st half D reads, 2nd half W writes 3 cycle stall 
•  d* = data stall, p* = propagated stall 

+  1st half W writes, 2nd half D reads 2 cycle stall 
•  How does the stall logic change here? 

1 2 3 4 5 6 7 8 9 10 
add r2,r3r1 F D X M W 
sub r1,r4r2 F d* d* d* D X M W 
add r5,r6r7 p* p* p* F D X M W 

1 2 3 4 5 6 7 8 9 10 
add r2,r3r1 F D X M W 
sub r1,r4r2 F d* d* D X M W 
add r5,r6r7 p* p* F D X M W 
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Reducing RAW Stalls with Bypassing 

•  Why wait until W stage? Data available after X or M stage 
•  Bypass (aka forward) data directly to input of X or M 

•  MX: from beginning of M (X output) to input of X  
•  WX: from beginning of W (M output) to input of X 
•  WM: from beginning of W (M output) to data input of M 
•  Two each of MX, WX (figure shows 1) + WM = full bypassing 

+  Reduces stalls in a big way 
–  Additional wires and muxes may increase clock cycle 

regfile 

D$ 

D/X X/M M/W 
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Bypass Logic 

•  Bypass logic: similar to but separate from stall logic 
•  Stall logic controls latches, bypass logic controls mux inputs 
•  Complement one another: can’t bypass → must stall 
•  ALU input mux bypass logic 

•  (D/X.rs2 & X/M.rd==D/X.rs2) → 2   // check first 
•  (D/X.rs2 & M/W.rd==D/X.rs2) → 1  // check second 
•  (D/X.rs2) → 0                                // check last 

regfile 

D$ 

D/X X/M M/W 
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Pipeline Diagrams with Bypassing 

•  If bypass exists, “from”/“to” stages execute in same cycle 
•  Example: full bypassing, use MX bypass 

1 2 3 4 5 6 7 8 9 10 
add r2,r3r1 F D X M W 
sub r1,r4r2 F D X M W 

•  Example: full bypassing, use WX bypass  
1 2 3 4 5 6 7 8 9 10 

add r2,r3r1 F D X M W 
ld [r7]r5 F D X M W 
sub r1,r4r2 F D X M W 

1 2 3 4 5 6 7 8 9 10 
add r2,r3r1 F D X M W 
? F D X M W 

•  Example: WM bypass  

•  Can you think of a code example that uses the WM bypass? 
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Load-Use Stalls 

•  Even with full bypassing, stall logic is unavoidable 
•  Load-use stall 

•  Load value not ready at beginning of M → can’t use MX bypass  
•  Use WX bypass 

1 2 3 4 5 6 7 8 9 10 
ld [r3+4]r1 F D X M W 
sub r1,r4r2 F D d* X M W 

•  Aside: with WX bypassing, stall logic can be in D or X  

1 2 3 4 5 6 7 8 9 10 
ld [r3+4]r1 F D X M W 
sub r1,r4r2 F d* D X M W 

•  Aside II: how does stall/bypass logic handle cache misses? 
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Research: Razor 

•  Razor [Uht, Ernst+] 
•  Identify pipeline stages with narrow signal margins (e.g., X) 
•  Add “Razor” X/M latch: relatches X/M input signals after safe delay 
•  Compare X/M latch with “safe” razor X/M latch, different? 

•  Flush F,D,X & M 
•  Restart M using X/M razor latch, restart F using D/X latch 

+  Pipeline will not “break” → reduce VDD until flush rate too high 
+  Alternatively: “over-clock” until flush rate too high 

regfile 

D$ I$ 
B 
P 

== 
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Compiler Scheduling 

•  Compiler can schedule (move) insns to reduce stalls 
•  Basic pipeline scheduling: eliminate back-to-back load-use pairs 
•  Example code sequence: a = b + c; d = f – e; 
•  MIPS Notation:  

•  “ld r2,4(sp)” is “ld [sp+4]èr2”  “st r1, 0(sp)” is “st r1è[sp+0]” 

Before 
 
ld r2,4(sp) 
ld r3,8(sp) 
add r3,r2,r1  //stall 
st r1,0(sp) 
ld r5,16(sp) 
ld r6,20(sp) 
sub r5,r6,r4  //stall 
st r4,12(sp) 

After 
 
ld r2,4(sp) 
ld r3,8(sp) 
ld r5,16(sp) 
add r3,r2,r1  //no stall 
ld r6,20(sp) 
st r1,0(sp) 
sub r5,r6,r4  //no stall 
st r4,12(sp) 
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Compiler Scheduling Requires 

•  Large scheduling scope 
•  Independent instruction to put between load-use pairs 
+  Original example: large scope, two independent computations 
–  This example: small scope, one computation 

Before 
 
ld r2,4(sp) 
ld r3,8(sp) 
add r3,r2,r1  //stall 
st r1,0(sp) 

After 
 
ld r2,4(sp) 
ld r3,8(sp) 
add r3,r2,r1  //stall 
st r1,0(sp) 
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Compiler Scheduling Requires 

•  Enough registers 
•  To hold additional “live” values 
•  Example code contains 7 different values (including sp) 
•  Before: max 3 values live at any time → 3 registers enough 
•  After: max 4 values live → 3 registers not enough → WAR violations 

Original 
 
ld r2,4(sp) 
ld r1,8(sp) 
add r1,r2,r1  //stall 
st r1,0(sp) 
ld r2,16(sp) 
ld r1,20(sp) 
sub r2,r1,r1  //stall 
st r1,12(sp) 

Wrong! 
 
ld r2,4(sp) 
ld r1,8(sp) 
ld r2,16(sp) 
add r1,r2,r1  //WAR 
ld r1,20(sp) 
st r1,0(sp)   //WAR 
sub r2,r1,r1 
st r1,12(sp) 
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Compiler Scheduling Requires 

•  Alias analysis 
•  Ability to tell whether load/store reference same memory locations 

•  Effectively, whether load/store can be rearranged 
•  Example code: easy, all loads/stores use same base register (sp) 
•  New example: can compiler tell that r8 = sp? 

Before 
 
ld r2,4(sp) 
ld r3,8(sp) 
add r3,r2,r1  //stall 
st r1,0(sp) 
ld r5,0(r8) 
ld r6,4(r8) 
sub r5,r6,r4  //stall 
st r4,8(r8) 

Wrong(?) 
 
ld r2,4(sp) 
ld r3,8(sp) 
ld r5,0(r8) 
add r3,r2,r1   
ld r6,4(r8) 
st r1,0(sp) 
sub r5,r6,r4 
st r4,8(r8) 
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WAW Hazards 

•  Write-after-write (WAW) 
add r2,r3,r1 
sub r1,r4,r2 
or r6,r3,r1 

•  Compiler effects 
•  Scheduling problem: reordering would leave wrong value in r1 

•  Later instruction reading r1 would get wrong value 
•  Artificial: no value flows through dependence 

•  Eliminate using different output register name for or 

•  Pipeline effects 
•  Doesn’t affect in-order pipeline with single-cycle operations 

•  One reason for making ALU operations go through M stage 
•  Can happen with multi-cycle operations (e.g., FP or cache misses) 
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Handling WAW Hazards 

•  What to do? 
•  Option I: stall younger instruction (addf) at writeback 

+ Intuitive, simple 
–  Lower performance, cascading W structural hazards 

•  Option II: cancel older instruction (divf) writeback 
+ No performance loss 
– What if divf or stf cause an exception (e.g., /0, page fault)? 

1 2 3 4 5 6 7 8 9 10 
div f0,f1f2 F D E/ E/ E/ E/ E/ W 
stf f2[r1] F D d* d* d* X M W 
addf f0,f1f2 F D E+ E+ W 
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Handling Interrupts/Exceptions 

•  How are interrupts/exceptions handled in a pipeline? 
•  Interrupt: external, e.g., timer, I/O device requests 
•  Exception: internal, e.g., /0, page fault, illegal instruction 
•  We care about restartable interrupts (e.g. stf page fault) 

1 2 3 4 5 6 7 8 9 10 
divf f0,f1f2 F D E/ E/ E/ E/ E/ W 
stf f2[r1] F D d* d* d* X M W 
addf f0,f1f2 F D E+ E+ W 

•  VonNeumann says 
•  “Insn execution should appear sequential and atomic” 

•  Insn X should complete before instruction X+1 should begin 
+ Doesn’t physically have to be this way (e.g., pipeline) 
•  But be ready to restore to this state at a moments notice 

•  Called precise state or precise interrupts 
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Handling Interrupts 

•  In this situation 
•  Make it appear as if divf finished and stf, addf haven’t started 
•  Allow divf to writeback 
•  Flush stf and addf (so that’s what a flush is for) 

•  But addf has already written back 
–  Keep an “undo” register file? Complicated 
–  Force in-order writebacks? Slow 
–  Other solutions? Later 

•  Invoke exception handler 
•  Restart stf 

1 2 3 4 5 6 7 8 9 10 
divf f0,f1f2 F D E/ E/ E/ E/ E/ W 
stf f2[r1] F D d* d* d* X M W 
addf f0,f1f2 F D E+ E+ W 
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More Interrupt Nastiness 

•  What about two simultaneous in-flight interrupts 
•  Example: stf page fault, divf /0 
•  Interrupts must be handled in program order (stf first) 

•  Handler for stf must see program as if divf hasn’t started 
•  Must defer interrupts until writeback and force in-order writeback 

•  In general: interrupts are really nasty 
•  Some processors (Alpha) only implement precise integer interrupts 
•  Easier because fewer WAW scenarios 
•  Most floating-point interrupts are non-restartable anyway 

•  divf /0 à rescale computation to prevent underflow 
•  Typically doesn’t restart computation at excepting instruction 

1 2 3 4 5 6 7 8 9 10 
divf f0,f1f2 F D E/ E/ E/ E/ E/ W 
stf f2[r1] F D d* d* d* X M W 
divf f0,f4f2 F D E/ E/ E/ E/ E/ W 
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Research: Runahead Execution 

•  In-order writebacks essentially imply stalls on D$ misses 
•  Can save power … or use idle time for performance 

•  Runahead execution [Dundas+] 
•  Shadow regfile kept in sync with main regfile (write to both) 
•  D$ miss: continue executing using shadow regfile (disable stores) 
•  D$ miss returns: flush pipe and restart with stalled PC 
+  Acts like a smart prefetch engine 
+  Performs better as cache tmiss grows (relative to clock period) 

regfile 

D$ I$ 

+ 
4 

S-regfile 
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WAR Hazards 
•  Write-after-read (WAR) 

add r2,r3,r1 
sub r5,r4,r2 
or r6,r3,r1 
 

•  Compiler effects 
•  Scheduling problem: reordering would mean add uses wrong value 

for r2 
•  Artificial: solve using different output register name for sub 

•  Pipeline effects 
•  Can’t happen in simple in-order pipeline 
•  Can happen with out-of-order execution 
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Memory Data Hazards 

•  So far, have seen/dealt with register dependences 
•  Dependences also exist through memory 

st r2[r1] 
ld [r1]r4 
st r5[r1] 
Read-after-write (RAW) 

st r2[r1] 
ld [r1]r4 
st r5[r1]  
Write-after-read (WAR) 

st r2[r1] 
ld [r1]r4 
st r5[r1]  
Write-after-write (WAW) 

•  But in an in-order pipeline like ours, they do not become hazards 
•  Memory read and write happen at the same stage 

•  Register read happens three stages earlier than register write 
•  In general: memory dependences more difficult than register 

1 2 3 4 5 6 7 8 9 10 
st r2[r1] F D X M W 
ld [r1]r4 F D X M W 
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Control Hazards 

•  Control hazards 
•  Must fetch post branch insns before branch outcome is known 
•  Default: assume “not-taken” (at fetch, can’t tell it’s a branch) 
•  Control hazards indicated with c* (or not at all) 
•  Taken branch penalty is 2 cycles 

•  Back of the envelope calculation 
•  Branch: 20%, other: 80%, 75% of branches are taken 
•  CPIBASE = 1 
•  CPIBASE+BRANCH = 1 + 0.20*0.75*2 = 1.3 
–  Branches cause 30% slowdown 

1 2 3 4 5 6 7 8 9 
addi r1,1r3 F D X M W 
bnez r3,targ F D X M W 
st r6[r7+4] c* c* F D X M W 
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ISA Branch Techniques 

•  Fast branch: resolves at D, not X 
•  Test must be comparison to zero or equality, no time for ALU 
+  New taken branch penalty is 1 
–  Additional comparison insns (e.g., cmplt, slt) for complex tests 
–  Must bypass into decode now, too 

•  Delayed branch: branch that takes effect one insn later 
•  Insert insns that are independent of branch into “branch delay slot” 
•  Preferably from before branch (always helps then) 
•  But from after branch OK too 

•  As long as no undoable effects (e.g., a store) 
•  Upshot: short-sighted feature (MIPS regrets it) 

–  Not a big win in today’s pipelines 
–  Complicates interrupt handling 
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Big Idea: Speculation 

•  Speculation 
•  “Engagement in risky transactions on the chance of profit” 

•  Speculative execution 
•  Execute before all parameters known with certainty 

•  Correct speculation 
+  Avoid stall, improve performance 

•  Incorrect speculation (mis-speculation) 
–  Must abort/flush/squash incorrect instructions 
–  Must undo incorrect changes (recover pre-speculation state) 

The “game”: [%correct * gain] > [(1–%correct) * penalty] 
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Control Hazards: Control Speculation 
•  Deal with control hazards with control speculation 

•  Unknown parameter: are these the correct insns to execute next? 

•  Mechanics 
•  Guess branch target, start fetching at guessed position 
•  Execute branch to verify (check) guess 

•  Correct speculation? keep going 
•  Mis-speculation? Flush mis-speculated insns 

•  Don’t write registers or memory until prediction verified 

•  Speculation game for in-order 5 stage pipeline 
•  Gain = 2 cycles 
•  Penalty = 0 cycles 

•  No penalty → mis-speculation no worse than stalling 
•  %correct = branch prediction 

•  Static (compiler) ~85%, dynamic (hardware) >95% 
•  Not much better? Static has 3X mispredicts! 
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Control Speculation and Recovery 

•  Mis-speculation recovery: what to do on wrong guess 
•  Not too painful in an in-order pipeline 
•  Branch resolves in X 
+  Younger insns (in F, D) haven’t changed permanent state 
•  Flush insns currently in F/D and D/X (i.e., replace with nops) 

1 2 3 4 5 6 7 8 9 
     addi r1,1r3 F D X M W 
     bnez r3,targ F D X M W 
     st r6[r7+4] F D X M W 
targ:add r4,r5r4   F D X M W 

1 2 3 4 5 6 7 8 9 
     addi r1,1r3 F D X M W 
     bnez r3,targ F D X M W 
     st r6[r7+4] F D -- -- -- 
targ:add r4,r5r4   F -- -- -- -- 
targ:add r4,r5r4 F D X M W 

Correct: 

Recovery: 

speculative 
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Dynamic Branch Prediction 

•  BP part I: target predictor 
•  Applies to all control transfers 
•  Supplies target PC, tells if insn is a branch prior to decode 
+  Easy 

•  BP part II: direction predictor 
•  Applies to conditional branches only 
•  Predicts taken/not-taken 
–  Harder 

regfile 

D$ I$ 
B 
P 
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Branch Target Buffer 

•  Branch target buffer (BTB) 
•  A small cache: address = PC, data = target-PC 

•  Hit? This is a control insn and it’s going to target-PC (if “taken”) 
•  Miss? Not a control insn, or one I have never seen before 

•  Partial data/tags: full tag not necessary, target-PC is just a guess 
•  Aliasing: tag match, but not actual match (OK for BTB) 

•  Pentium4 BTB: 2K entries, 4-way set-associative 

[13:2] [19:10] 

[9:2] 1:0 [31:10] 

[13:2] [19:10] 

PC 

= [9:2] 1:0 [31:13] [13:2] 
target-PC branch? 
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Why Does a BTB Work? 

•  Because control insn targets are stable  
•  Direct means constant target, indirect means register target 
+  Direct conditional branches? Check 
+  Direct calls? Check 
+  Direct unconditional jumps? Check 

+  Indirect conditional branches? Not that useful→not widely supported 
•  Indirect calls? Two idioms 

+ Dynamically linked functions (DLLs)? Check 
+ Dynamically dispatched (virtual) functions? Pretty much check 

•  Indirect unconditional jumps? Two idioms 
–  Switches? Not really, but these are rare 
–  Returns? Nope, but… 
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Return Address Stack (RAS) 

•  Return addresses are easy to predict without a BTB 
•  Hardware return address stack (RAS) tracks call sequence 
•  Calls push PC+4 onto RAS 
•  Prediction for returns is RAS[TOS] 
•  Q: how can you tell if an insn is a return before decoding it? 
•  A1: Add tags to make RAS a cache 
•  A2: (Better) attach pre-decode bits to I$ 

•  Written after first time insn executes 
•  Two useful bits: return?, conditional-branch? 

I$ 
PC 

BTB DIRP RAS 
+4 

instruction next-PC 
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Branch Direction Prediction 

•  Direction predictor (DIRP) 
•  Map conditional-branch PC to taken/not-taken (T/N) decision 
•  Seemingly innocuous, but quite difficult to do well 
•  Individual conditional branches often unbiased or weakly biased 

•  90%+ one way or the other considered “biased” 
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Branch History Table (BHT) 

•  Branch history table (BHT): simplest direction predictor 
•  PC indexes table of bits (0 = N, 1 = T), no tags 
•  Essentially: branch will go same way it went last time 
•  Problem: consider inner loop branch below (* = mis-prediction) 

for (i=0;i<100;i++) 
   for (j=0;j<3;j++) 
      // whatever 

–  Two “built-in” mis-predictions per inner loop iteration 
–  Branch predictor “changes its mind too quickly” 

State/prediction N* T T T* N* T T T* N* T T T* 

Outcome T T T N T T T N T T T N 
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Two-Bit Saturating Counters (2bc) 

•  Two-bit saturating counters (2bc) [Smith] 
•  Replace each single-bit prediction 

•  (0,1,2,3) = (N,n,t,T) 
•  Force DIRP to mis-predict twice before “changing its mind” 

+  Fixes this pathology (which is not contrived, by the way) 

State/prediction N* n* t T* t T T T* t T T T* 

Outcome T T T N T T T N T T T N 
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Correlated Predictor 

•  Correlated (two-level) predictor [Patt] 
•  Exploits observation that branch outcomes are correlated 
•  Maintains separate prediction per (PC, BHR) 

•  Branch history register (BHR): recent branch outcomes 
•  Simple working example: assume program has one branch 

•  BHT: one 1-bit DIRP entry 
•  BHT+2BHR: 4 1-bit DIRP entries 

–  We didn’t make anything better, what’s the problem? 

State/prediction BHR=NN N* T T T T T T T T T T T 

“active pattern” BHR=NT N N* T T T T T T T T T T 

BHR=TN N N N N N* T T T T T T T 

BHR=TT N N N* T* N N N* T* N N N* T* 
Outcome T T T N T T T N T T T N 
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Correlated Predictor 

•  What happened? 
•  BHR wasn’t long enough to capture the pattern 
•  Try again: BHT+3BHR: 8 1-bit DIRP entries 

+  No mis-predictions after predictor learns all the relevant patterns 

State/prediction BHR=NNN N* T T T T T T T T T T T 

BHR=NNT N N* T T T T T T T T T T 

BHR=NTN N N N N N N N N N N N N 

“active pattern” BHR=NTT N N N* T T T T T T T T T 

BHR=TNN N N N N N N N N N N N N 

BHR=TNT N N N N N N* T T T T T T 

BHR=TTN N N N N N* T T T T T T T 

BHR=TTT N N N N N N N N N N N N 

Outcome T T T N T T T N T T T N 
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Correlated Predictor 
•  Design choice I: one global BHR or one per PC (local)? 

•  Each one captures different kinds of patterns 
•  Global is better, captures local patterns for tight loop branches 

•  Design choice II: how many history bits (BHR size)? 
•  Tricky one 
+  Longer BHRs are better for some apps, shorter better for others 
–  BHT utilization decreases w/ long BHRs 

– Many history patterns are never seen 
– Many branches are history independent (don’t care) 
•  PC ^ BHR allows multiple PCs to dynamically share BHT 
•  BHR length < log2(BHT size) 

–  Predictor takes longer to train 
•  Typical length: 8–12 
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Hybrid Predictor 

•  Hybrid (tournament) predictor [McFarling] 
•  Attacks correlated predictor BHT utilization problem 
•  Idea: combine two predictors 

•  Simple BHT predicts history independent branches 
•  Correlated predictor predicts only branches that need history 
•  Chooser assigns branches to one predictor or the other 
•  Branches start in simple BHT, move mis-prediction threshold 

+  Correlated predictor can be made smaller, handles fewer branches 
+  90–95% accuracy 

PC 

BHR B
H

T 
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Research: Perceptron Predictor 
•  Perceptron predictor [Jimenez] 

•  Attacks BHR size problem using machine learning approach 
•  BHT replaced by table of function coefficients Fi (signed) 

•  Predict taken if ∑(BHRi*Fi)> threshold 

+  Table size #PC*|BHR|*|F|  (can use long BHR: ~60 bits) 
–  Equivalent correlated predictor would be #PC*2|BHR| 

•  How does it learn? Update Fi when branch is taken 
•  BHRi == 1 ? Fi++ : Fi– –; 
•  “don’t care” Fi bits stay near 0, important Fi bits saturate 

+  Hybrid BHT/perceptron accuracy: 95–98% 

PC 

BHR 

F 

∑ Fi*BHRi > thresh 
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Branch Prediction Performance 

•  Same parameters 
•  Branch: 20%, load: 20%, store: 10%, other: 50% 
•  75% of branches are taken 

•  Dynamic branch prediction 
•  Branches predicted with 95% accuracy 
•  CPI = 1 + 0.20*0.05*2 = 1.02 
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Pipeline Performance Summary 

•  Base CPI is 1, but hazards increase it 

•  Nothing magical about a 5 stage pipeline 
•  Pentium4 has 22 stage pipeline 

•  Increasing pipeline depth  
+  Increases clock frequency (that’s why companies do it) 
–  But decreases IPC 
•  Branch mis-prediction penalty becomes longer 

•  More stages between fetch and whenever branch computes 
•  Non-bypassed data hazard stalls become longer 

•  More stages between register read and write 
•  At some point, CPI losses offset clock gains, question is when? 
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Dynamic Pipeline Power 

•  Remember control-speculation game 
•  [2 cycles * %correct] – [0 cycles * (1–%correct)] 
•  No penalty → mis-speculation no worse than stalling 
•  This is a performance-only view 
•  From a power standpoint, mis-speculation is worse than stalling 

•  Power control-speculation game 
•  [0 nJ * %correct] – [X nJ * (1–%correct)] 
•  No benefit → correct speculation no better than stalling 

•  Not exactly, increased execution time increases static power 
•  How to balance the two? 
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Research: Speculation Gating 

•  Speculation gating [Manne+] 
•  Extend branch predictor to give prediction + confidence 
•  Speculate on high-confidence (mis-prediction unlikely) branches 
•  Stall (save energy) on low-confidence branches 

•  Confidence estimation 
•  What kind of hardware circuit estimates confidence?  
•  Hard in absolute sense, but easy relative to given threshold 
•  Counter-scheme similar to %miss threshold for cache resizing 
•  Example: assume 90% accuracy is high confidence 

•  PC-indexed table of confidence-estimation counters 
•  Correct prediction?  table[PC]+=1 : table[PC]–=9; 
•  Prediction for PC is confident if table[PC] > 0; 
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Summary 

•  Principles of pipelining 
•  Effects of overhead and hazards 
•  Pipeline diagrams 

•  Data hazards 
•  Stalling and bypassing 

•  Control hazards 
•  Branch prediction 

•  Power techniques 
•  Dynamic power: speculation gating 
•  Static and dynamic power: razor latches 


