
CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 1

U. Wisconsin CS/ECE 752
Advanced Computer Architecture I

Prof. David A. Wood

Unit 4: Multiple Issue and Static Scheduling

Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

Slides enhanced by Milo Martin, Mark Hill, and David Wood
with sources that included Profs. Asanovic, Falsafi, Hoe,
Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 2

Lots of Parallelism…

•  Last unit: pipeline-level parallelism
•  Work on execute of one instruction in parallel with decode of next

•  Next: instruction-level parallelism (ILP)
•  Execute multiple independent instructions fully in parallel
•  Today: limited multiple issue
•  Next Unit: dynamic scheduling

•  Extract much more ILP via out-of-order processing

•  Data-level parallelism (DLP)
•  Single-instruction, multiple data
•  Example: one instruction, four 16-bit adds (using 64-bit registers)

•  Thread-level parallelism (TLP)
•  Multiple software threads running on multiple processors

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 3

This Unit: Multiple Issue/Static Scheduling

•  Multiple issue scaling problems
•  Dependence-checks
•  Bypassing

•  Multiple issue designs
•  Statically-scheduled superscalar
•  VLIW/EPIC (IA64)

•  Advanced static scheduling

•  Advanced hardware technique
•  Grid processor

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 4

Scalar Pipeline and the Flynn Bottleneck

•  Scalar pipelines
•  One instruction per stage
–  Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1
–  Limit is never even achieved (hazards)
–  Diminishing returns from “super-pipelining” (hazards + overhead)

regfile

D$ I$

B
P

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 5

Multiple-Issue Pipeline

•  Overcome this limit using multiple issue
•  Also sometimes called superscalar
•  Two instructions per stage at once, or three, or four, or eight…
•  “Instruction-Level Parallelism (ILP)” [Fisher]

regfile

D$ I$

B
P

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 6

Superscalar Execution
Single-issue 1 2 3 4 5 6 7 8 9 10 11 12

ld [r1+0]r2 F D X M W
ld [r1+4]r3 F D X M W
ld [r1+8]r4 F D X M W
ld [r1+12]r5 F D X M W
add r2,r3r6 F D X M W
add r4,r6r7 F D X M W
add r5,r7r8 F D X M W
ld [r8]r9 F D X M W

M W d* X D F add r5,r7r8

W M X D F ld [r1+12]r5
W M X D F ld [r1+8]r4

W M X D F ld [r1+4]r3

11 8 9 10 6 7
W
5

M
4

X D F ld [r1+0]r2
3 2 1 Dual-issue

M W X D F add r2,r3r6
W X M d* D F add r4,r6r7

W M X d* D s* F ld [r8]r9

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 7

Superscalar Challenges - Front End

•  Wide instruction fetch
•  Modest: need multiple instructions per cycle
•  Aggressive: predict multiple branches, trace cache

•  Wide instruction decode
•  Replicate decoders
•  Dependences between instructions decoded in same cycle

•  Wide instruction issue
•  Determine when instructions can proceed in parallel
•  Not all combinations possible
•  More complex stall logic - order N2 for N-wide machine

•  Wide register read
•  One port for each register read
•  Example, 4-wide superscalar è >= 8 read ports

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 8

Superscalar Challenges - Back End

•  Wide instruction execution
•  Replicate arithmetic units
•  Multiple cache ports

•  Wide instruction register writeback
•  One write port per instruction that writes a register
•  Example, 4-wide superscalar è >= 4 write ports

•  Wide bypass paths
•  More possible sources for data values
•  Order (N2 * P) for N-wide machine with execute pipeline depth P

•  Fundamental challenge:
•  Amount of ILP (instruction-level parallelism) in the program
•  Compiler must schedule code and extract parallelism

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 9

Simple Dual-issue Pipeline

•  Fetch an entire 16B or 32B cache block
•  4 to 8 instructions (assuming 4-byte fixed length instructions)
•  Predict a single branch per cycle

•  Parallel decode
•  Need to check for conflicting instructions
•  Output of I1 is an input to I2
•  Other stalls, too (for example, load-use delay)

regfile

D$ I$

B
P

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 10

Simple Dual-issue Pipeline

•  Multi-ported register file
•  Larger area, latency, power, cost, complexity

•  Multiple execution units
•  Simple adders are easy, but bypass paths are expensive

•  Memory unit
•  Option #1: single load per cycle (stall at decode)
•  Option #2: add a read port to data cache

•  Larger area, latency, power, cost, complexity

regfile

D$ I$

B
P

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 11

Another Approach: Split Int/FP

•  Split integer and
floating point

•  1 integer + 1 FP
+  Limited modifications
–  Limited speedup

I$

I-regfile

D$

F-regfile

E/

E
+

E
+

E* E* E*

B
P

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 12

Four-issue pipeline (2 integer, 2 FP)

•  2 integer + 2 FP
•  Similar to

Alpha 21164
•  Floating point

loads execute in
“integer” pipe

F-regfile

E/

E
+

E
+

E* E* E*

regfile

D$ I$

B
P

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 13

Superscalar Challenges

•  High-performance machines are 4-, 6-, 8-issue machines
•  Hardware challenges

•  Wide instruction fetch
•  Wide instruction decode
•  Wide instruction issue
•  Wide register read
•  Wide instruction execution
•  Wide instruction register writeback
•  Wide bypass paths

•  Extracting and exploiting available ILP
•  Hardware and software

•  Let’s talk about some of these issues…

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 14

Wide Fetch - Sequential Instructions

•  What is involved in fetching multiple instructions per cycle?
•  In same cache block? → no problem

•  Favors larger block size (independent of hit rate)
•  Compilers align basic blocks to I$ lines (pad with nops)

–  Reduces effective I$ capacity
+  Increases fetch bandwidth utilization (more important)

•  In multiple blocks? → Fetch block A and A+1 in parallel
•  Banked I$ + combining network
–  May add latency (add pipeline stages to avoid slowing down clock)

I$

1020

1022 1023

1021

B
P

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 15

Wide Fetch - Non-sequential
•  Two related questions

•  How many branches predicted per cycle?
•  Can we fetch from multiple taken branches per cycle?

•  Simplest, most common organization: “1” and “No”
•  One prediction, discard post-branch insns if prediction is “Taken”
–  Lowers effective fetch width and IPC
•  Average number of instructions per taken branch?

•  Assume: 20% branches, 50% taken → ~10 instructions
•  Consider a 10-instruction loop body with an 8-issue processor

•  Without smarter fetch, ILP is limited to 5 (not 8)

•  Compiler can help
•  Unroll loops, reduce taken branch frequency

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 16

Parallel Non-Sequential Fetch

•  Allowing “embedded” taken branches is possible
•  Requires smart branch predictor, multiple I$ accesses in one cycle

•  Can try pipelining branch prediction and fetch
•  Branch prediction stage only needs PC
•  Transmits two PCs to fetch stage, PC and target PC
–  Elongates pipeline, increases branch penalty
•  Pentium II & III do something like this

I$
b0
I$
b1

B
P

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 17

Trace Cache

•  Trace cache (T$) [Peleg+Weiser, Rotenberg+]
•  Overcomes serialization of prediction and fetch by combining them
•  Different kind of I$ that stores dynamic, not static, insn seqs

•  Blocks can contain statically non-contiguous insns
•  Tag: PC of first insn + N/T of embedded branches

•  Used in Pentium 4 (actually stores decoded µops)
•  Coupled with trace predictor (TP)

•  Predicts next trace, not next branch

T$

T
P

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 18

Trace Cache Example

•  Traditional instruction cache

•  Trace cache

•  Traces can pre-decode dependence information
•  Helps fix the N2 dependence check problem

1 2
0: addi r1,4,r1 F D
1: beq r1,#4 F D
4: st r1,4(sp) f* F
5: call #32 f* F

Tag Data (insns)
0 addi,beq #4,ld,sub
4 st,call #32,ld,add

Tag Data (insns)
0:T addi,beq #4,st,call #32

1 2
0: addi r1,4,r1 F D
1: beq r1,#4 F D
4: st r1,4(sp) F D
5: call #32 F D

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 19

Aside: Multiple-issue CISC
•  How do we apply superscalar techniques to CISC

•  Such as x86
•  Or CISCy ugly instructions in some RISC ISAs

•  Break “macro-ops” into “micro-ops”
•  Also called “µops” or “RISC-ops”
•  A typical CISCy instruction “add [r1], [r2] è [r3]” becomes:

•  Load [r1] è t1 (t1 is a temp. register, not visible to software)
•  Load [r2] è t2
•  Add t1, t2 è t3
•  Store t3è[r3]

•  However, conversion is expensive (latency, area, power)
•  Solution: cache converted instructions in trace cache

•  Used by Pentium 4
•  Internal pipeline manipulates only these RISC-like instructions

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 20

Wide Decode

•  What is involved in decoding multiple (N) insns per cycle?
•  Actually doing the decoding?

•  Easy if fixed length (multiple decoders), doable if variable length

•  Reading input registers?
–  2N register read ports (latency ∝ #ports)
+  Actually less than 2N, most values come from bypasses

•  What about the stall logic?

regfile

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 21

N2 Dependence Cross-Check

•  Stall logic for 1-wide pipeline with full bypassing
•  Full bypassing = load/use stalls only

X/M.op==LOAD && (D/X.rs1==X/M.rd || D/X.rs2==X/M.rd)
•  Two “terms”: ∝ 2N

•  Now: same logic for a 2-wide pipeline
X/M1.op==LOAD && (D/X1.rs1==X/M1.rd || D/X1.rs2==X/M1.rd) ||
X/M1.op==LOAD && (D/X2.rs1==X/M1.rd || D/X2.rs2==X/M1.rd) ||
X/M2.op==LOAD && (D/X1.rs1==X/M2.rd || D/X1.rs2==X/M2.rd) ||
X/M2.op==LOAD && (D/X2.rs1==X/M2.rd || D/X2.rs2==X/M2.rd)

•  Eight “terms”: ∝ 2N2

•  This is the N2 dependence cross-check
•  Not quite done, also need

•  D/X2.rs1==D/X1.rd || D/X2.rs2==D/X1.rd

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 22

Superscalar Stalls

•  Invariant: stalls propagate upstream to younger insns
•  If older insn in pair stalls, younger insns must stall too
•  What if younger insn stalls?

•  Can older insn from younger group move up?
•  Fluid: yes, but requires some muxing

± Helps CPI a little, hurts clock a little
•  Rigid: no

± Hurts CPI a little, but doesn’t impact clock

Rigid 1 2 3 4 5
ld 0(r1),r4 F D X M W
addi r4,1,r4 F D d* d* X
sub r5,r2,r3 F p* p* D
st r3,0(r1) F p* p* D
ld 4(r1),r8 F

Fluid 1 2 3 4 5
ld 0(r1),r4 F D X M W
addi r4,1,r4 F D d* d* X
sub r5,r2,r3 F D p* X
st r3,0(r1) F p* p* D
ld 4(41),r8 F p* D

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 23

Wide Execute

•  What is involved in executing multiple (N) insns per cycle?
•  Multiple execution units … N of every kind?

•  N ALUs? OK, ALUs are small
•  N FP dividers? No, FP dividers are huge and fdiv is uncommon
•  How many branches per cycle?
•  How many loads/stores per cycle?
•  Typically some mix of functional units proportional to insn mix

•  Intel Pentium: 1 any + 1 ALU

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 24

Wide Memory Access
•  How do we allow multiple loads/stores to execute?

•  Option#1: Extra read ports on data cache
•  Higher latency, etc.

•  Option#2: “Bank” the cache
•  Can support a load to an “odd” and an “even” address
•  Problem: address not known to execute stage

•  Complicates stall logic
•  With two banks, conflicts will occur frequently

•  Option #3: Replicate the cache
•  Multiple read bandwidth only
•  Larger area, but no conflicts, can be faster than more ports
•  Independent reads to replicas, writes (stores) go to all replicas

•  Option #4: Pipeline the cache (“double pump”)
•  Start cache access every half cycle
•  Difficult circuit techniques

•  Example: the Alpha 21164 uses option #3
•  8KB L1-caches, supports two loads, but only one store

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 25

N2 Bypass Network

•  N2 stall and bypass logic
•  Actually OK
•  5-bit and 1-bit quantities

•  N2 bypass network
–  32-bit (or 64-bit) quantities
–  Routing lengthens wires
–  Expensive metal layer crossings
–  N+1 input muxes at each ALU input
–  And this is just one bypassing stage!

•  Bit-slicing
•  Mitigates routing problem somewhat
•  32 or 64 1-bit bypass networks

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 26

Clustering
•  Clustering: mitigates N2 bypass

•  Group FUs into K clusters
•  Full bypassing within a cluster
•  Limited bypassing between clusters

•  With a one cycle delay
•  (N/K) + 1 inputs at each mux
•  (N/K)2 bypass paths in each cluster

•  Steering: key to performance
•  Steer dependent insns to same cluster
•  Statically (compiler) or dynamically

•  E.g., Alpha 21264
•  Bypass wouldn’t fit into clock cycle
•  4-wide, 2 clusters, static steering
•  Replicates register file, too

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 27

Wide Writeback

•  What is involved in multiple (N) writebacks per cycle?
–  N register file write ports (latency ∝ #ports)
•  Usually less than N, stores and branches don’t do writeback
•  But some ISAs have update or auto-incr/decr addressing modes

•  Multiple exceptions per cycle?
•  No just the oldest one

regfile

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 28

Multiple-Issue Implementations
•  Statically-scheduled (in-order) superscalar

+  Executes unmodified sequential programs
–  Hardware must figure out what can be done in parallel
•  E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide)

•  Very Long Instruction Word (VLIW)
+  Hardware can be dumb and low power
–  Compiler must group parallel insns, requires new binaries
•  E.g., TransMeta Crusoe (4-wide)

•  Explicitly Parallel Instruction Computing (EPIC)
•  A compromise: compiler does some, hardware does the rest
•  E.g., Intel Itanium (6-wide)

•  Dynamically-scheduled superscalar
•  Pentium Pro/II/III (3-wide), Alpha 21264 (4-wide)

•  We’ve already talked about statically-scheduled superscalar

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 29

VLIW
•  Hardware-centric multiple issue problems

–  Wide fetch+branch prediction, N2 bypass, N2 dependence checks
–  Hardware solutions have been proposed: clustering, trace cache

•  Software-centric: very long insn word (VLIW)
•  Effectively, a 1-wide pipeline, but unit is an N-insn group
•  Compiler guarantees insns within a VLIW group are independent

•  If no independent insns, slots filled with nops
•  Group travels down pipeline as a unit

+ Simplifies pipeline control (no rigid vs. fluid business)
+ Cross-checks within a group un-necessary
•  Downstream cross-checks (maybe) still necessary

•  Typically “slotted”: 1st insn must be ALU, 2nd mem, etc.
+ Further simplification

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 30

History of VLIW

•  Started with “horizontal microcode”
•  Culler-Harrison array processors (’72-’91)
•  Floating Point Systems FPS-120B

•  Academic projects
•  Yale ELI-512 [Fisher, ‘85]
•  Illinois IMPACT [Hwu, ‘91]

•  Commercial attempts
•  Multiflow [Colwell+Fisher, ‘85] → failed
•  Cydrome [Rau, ‘85] → failed
•  Motorolla/TI embedded processors → successful
•  Intel Itanium [Colwell,Fisher+Rau, ‘97] → ??
•  Transmeta Crusoe [Ditzel, ‘99] → failed

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 31

Pure and Tainted VLIW
•  Pure VLIW: no hardware dependence checks at all

•  Not even between VLIW groups
+  Very simple and low power hardware
•  Compiler responsible for scheduling stall cycles
•  Requires precise knowledge of pipeline depth and structure

–  These must be fixed for compatibility
–  Doesn’t support caches well
•  Used in some cache-less micro-controllers and signal processors

•  Not useful for general-purpose computation

•  Tainted (more realistic) VLIW: inter-group checks
•  Compiler doesn’t schedule stall cycles
+  Precise pipeline depth and latencies not needed, can be changed
+  Supports caches
•  TransMeta Crusoe

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 32

What Does VLIW Actually Buy Us?

+  Simpler I$/branch prediction
•  No trace cache necessary

+  Simpler dependence check logic
•  Bypasses are the same

•  Clustering can help VLIW, too
•  Compiler can schedule for limited bypass networks

–  Not compatible across machines of different widths
•  Is non-compatibility worth all of this?

•  PS how does TransMeta deal with compatibility problem?
•  Dynamically translates x86 to internal VLIW

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 33

EPIC

•  Tainted VLIW
•  Compatible across pipeline depths
–  But not across pipeline widths and slot structures
–  Must re-compile if going from 4-wide to 8-wide
•  TransMeta sidesteps this problem by re-compiling transparently

•  EPIC (Explicitly Parallel Insn Computing)
•  New VLIW (Variable Length Insn Words)
•  Implemented as “bundles” with explicit dependence bits
•  Code is compatible with different “bundle” width machines
•  Compiler discovers as much parallelism as it can, hardware does rest
•  E.g., Intel Itanium (IA-64)

•  128-bit bundles (3 41-bit insns + 4 dependence bits)

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 34

ILP and Static Scheduling

•  No point to having an N-wide pipeline…
•  …if average number of parallel insns per cycle (ILP) << N

•  How can the compiler help extract parallelism?
•  These techniques applicable to regular superscalar
•  These techniques critical for VLIW/EPIC

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 35

Code Example: SAXPY
•  SAXPY (Single-precision A X Plus Y)

•  Linear algebra routine (used in solving systems of equations)
•  Part of early “Livermore Loops” benchmark suite

for (i=0;i<N;i++)
 Z[i]=A*X[i]+Y[i];

0: ldf X(r1),f1 // loop
1: mulf f0,f1,f2 // A in f0
2: ldf Y(r1),f3 // X,Y,Z are constant addresses
3: addf f2,f3,f4
4: stf f4,Z(r1)
5: addi r1,4,r1 // i in r1
6: blt r1,r2,0 // N*4 in r2

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 36

SAXPY Performance and Utilization

•  Scalar pipeline
•  Full bypassing, 5-cycle E*, 2-cycle E+, branches predicted taken
•  Single iteration (7 insns) latency: 16–5 = 11 cycles
•  Performance: 7 insns / 11 cycles = 0.64 IPC
•  Utilization: 0.64 actual IPC / 1 peak IPC = 64%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ldf X(r1),f1 F D X M W
mulf f0,f1,f2 F D d* E* E* E* E* E* W
ldf Y(r1),f3 F p* D X M W
addf f2,f3,f4 F D d* d* d* E+ E+ W
stf f4,Z(r1) F p* p* p* D X M W
addi r1,4,r1 F D X M W
blt r1,r2,0 F D X M W
ldf X(r1),f1 F D X M W

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 37

SAXPY Performance and Utilization

•  Dual issue pipeline (fluid)
•  Same + any two insns per cycle + embedded taken branches
+  Performance: 7 insns / 10 cycles = 0.70 IPC
–  Utilization: 0.70 actual IPC / 2 peak IPC = 35%
–  More hazards → more stalls (why?)
–  Each stall is more expensive (why?)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ldf X(r1),f1 F D X M W
mulf f0,f1,f2 F D d* d* E* E* E* E* E* W
ldf Y(r1),f3 F D p* X M W
addf f2,f3,f4 F p* p* D d* d* d* d* E+ E+ W
stf f4,Z(r1) F p* D p* p* p* p* d* X M W
addi r1,4,r1 F p* p* p* p* p* D X M W
blt r1,r2,0 F p* p* p* p* p* D d* X M W
ldf X(r1),f1 F D X M W

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 38

Schedule and Issue

•  Issue: time at which insns begin execution
•  Want to maintain issue rate of N

•  Schedule: order in which insns execute
•  In in-order pipeline, schedule + stalls determine issue
•  A good schedule that minimizes stalls is important

•  For both performance and utilization

•  Schedule/issue combinations
•  Pure VLIW: static schedule, static issue
•  Tainted VLIW: static schedule, partly dynamic issue
•  Superscalar, EPIC: static schedule, dynamic issue

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 39

Instruction Scheduling

•  Idea: place independent insns between slow ops and uses
•  Otherwise, pipeline stalls while waiting for RAW hazards to resolve
•  Have already seen pipeline scheduling

•  To schedule well need … independent insns
•  Scheduling scope: code region we are scheduling

•  The bigger the better (more independent insns to choose from)
•  Once scope is defined, schedule is pretty obvious
•  Trick is creating a large scope (must schedule across branches)

•  Compiler scheduling (really scope enlarging) techniques
•  Loop unrolling (for loops)
•  Trace scheduling (for non-loop control flow)

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 40

Aside: Profiling
•  Profile: statistical information about program tendencies

•  Software’s answer to everything
•  Collected from previous program runs (different inputs)
±  Works OK depending on information

•  Memory latencies (cache misses)
+ Identities of frequently missing loads stable across inputs
–  But are tied to cache configuration

•  Memory dependences
+ Stable across inputs
–  But exploiting this information is hard (need hw help)

•  Branch outcomes
–  Not so stable across inputs

–  More difficult to use, need to run program and then re-compile
•  Popular research topic

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 41

Loop Unrolling SAXPY

•  Goal: separate dependent insns from one another
•  SAXPY problem: not enough flexibility within one iteration

•  Longest chain of insns is 9 cycles
•  Load (1)
•  Forward to multiply (5)
•  Forward to add (2)
•  Forward to store (1)

–  Can’t hide a 9-cycle chain using only 7 insns
•  But how about two 9-cycle chains using 14 insns?

•  Loop unrolling: schedule two or more iterations together
•  Fuse iterations
•  Pipeline schedule to reduce RAW stalls
•  Pipeline schedule introduces WAR violations, rename registers to fix

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 42

Unrolling SAXPY I: Fuse Iterations

•  Combine two (in general K) iterations of loop
•  Fuse loop control: induction variable (i) increment + branch
•  Adjust implicit induction uses

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
blt r1,r2,0
ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
blt r1,r2,0

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)

ldf X+4(r1),f1
mulf f0,f1,f2
ldf Y+4(r1),f3
addf f2,f3,f4
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 43

Unrolling SAXPY II: Pipeline Schedule

•  Pipeline schedule to reduce RAW stalls
•  Have already seen this: pipeline scheduling

ldf X(r1),f1
ldf X+4(r1),f1
mulf f0,f1,f2
mulf f0,f1,f2
ldf Y(r1),f3
ldf Y+4(r1),f3
addf f2,f3,f4
addf f2,f3,f4
stf f4,Z(r1)
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
ldf X+4(r1),f1
mulf f0,f1,f2
ldf Y+4(r1),f3
addf f2,f3,f4
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 44

Unrolling SAXPY III: Rename Registers

•  Pipeline scheduling causes WAR violations
•  Rename registers to correct

ldf X(r1),f1
ldf X+4(r1),f5
mulf f0,f1,f2
mulf f0,f5,f6
ldf Y(r1),f3
ldf Y+4(r1),f7
addf f2,f3,f4
addf f6,f7,f8
stf f4,Z(r1)
stf f8,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

ldf X(r1),f1
ldf X+4(r1),f1
mulf f0,f1,f2
mulf f0,f1,f2
ldf Y(r1),f3
ldf Y+4(r1),f3
addf f2,f3,f4
addf f2,f3,f4
stf f4,Z(r1)
stf f4,Z+4(r1)
addi r1,8,r1
blt r1,r2,0

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 45

Unrolled SAXPY Performance/Utilization

+  Performance: 12 insn / 13 cycles = 0.92 IPC
+  Utilization: 0.92 actual IPC / 1 peak IPC = 92%
+  Speedup: (2 * 11 cycles) / 13 cycles = 1.69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ldf X(r1),f1 F D X M W
ldf X+4(r1),f5 F D X M W
mulf f0,f1,f2 F D E* E* E* E* E* W
mulf f0,f5,f6 F D E* E* E* E* E* W
ldf Y(r1),f3 F D X M W
ldf Y+4(r1),f7 F D X M s* s* W
addf f2,f3,f4 F D d* E+ E+ s* W
addf f6,f7,f8 F p* D E+ p* E+ W
stf f4,Z(r1) F D X M W
stf f8,Z+4(r1) F D X M W
addi r1,8,r1 F D X M W
blt r1,r2,0 F D X M W
ldf X(r1),f1 F D X M W

No propagation?
Different pipelines

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 46

Loop Unrolling Shortcomings
–  Static code growth more I$ misses

–  Limits practical unrolling limit
–  Poor scheduling along “seams” of unrolled copies
–  Need more registers to resolve WAR hazards
–  Doesn’t handle recurrences (inter-iteration dependences)

–  Handled by software pipelining
–  Software pipelining: Quick sketch

–  Break loop body into phases: load, execute, store
–  Overlap execution of phases

Load1 Load2 Load3 … Loadi … Loadn
 Exec1 Exec2 … Execi-1 … Execn-1 Execn
 Store1 ... Storei-2 … Storen-2 Storen-1 Storen

Prologue Loop Body Epilogue

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 47

Beyond Scheduling Loops

•  Problem: not everything is a loop
•  How to create large scheduling scopes from non-loop code?

•  Idea: trace scheduling [Ellis, ‘85]
•  Find common paths in program (profile)
•  Realign basic blocks to form straight-line “traces”

•  Basic-block: single-entry, single-exit insn sequence
•  Trace: fused basic block sequence

•  Schedule insns within a trace
•  This is the easy part

•  Create fixup code outside trace
•  In case implicit trace path doesn’t equal actual path
•  Nasty

•  Good scheduling needs ISA support for software speculation

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 48

Trace Scheduling Example

•  Problem: separate #6 (3 cycles) from #7
•  How to move mulf above if-then-else?
•  How to move ldf?

A = Y[i];
if (A == 0)
 A = W[i];
else
 Y[i] = 0;
Z[i] = A*X[i];

0: ldf Y(r1),f2
1: fbne f2,4
2: ldf W(r1),f2
3: jump 5
4: stf f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

0: ldf Y(r1),f2
1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
3: jump 5

NT T

A

B C

D

4 basic blocks: A,B,C,D Source code

Machine code

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 49

Superblocks

•  First trace scheduling construct: superblock
•  Use when branch is highly biased
•  Fuse blocks from most frequent path: A,C,D
•  Schedule
•  Create repair code in case real path was A,B,D

0: ldf Y(r1),f2
1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
3: jump 5

NT=5% T=95%

A

B C

D

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 50

Superblock and Repair Code

•  What did we do?
•  Change sense (test) of branch 1

•  Original taken target now fall-thru
•  Created repair block

•  May need to duplicate some code (here basic-block D)
•  Haven’t actually scheduled superblock yet

0: ldf Y(r1),f2
1: fbeq f2,2
4: stf f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
5’: ldf X(r1),f4
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 51

Superblocks Scheduling I

•  First scheduling move: move insns 5 and 6 above insn 4
•  Hmmm: moved load (5) above store (4)
•  We can tell this is OK, but can the compiler

•  If yes, fine
•  Otherwise, need to do something

0: ldf Y(r1),f2
1: fbeq f2,2
5: ldf X(r1),f4
6: mulf f4,f2,f6
4: stf f0,Y(r1)
7: stf f6,Z(r1)

2: ldf W(r1),f2
5’: ldf X(r1),f4
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 52

ISA Support for Load/Store Speculation

•  IA-64: change insn 5 to advanced load ldf.a
•  “Advanced” means advanced past some unknown store
•  Processor stores [address, reg] of advanced loads in table

•  Memory Conflict Buffer (MCB), Advanced Load Alias Table (ALAT)
•  Later stores search ALAT: matching address → invalidate ALAT entry
•  Insert check insn chk.a to make sure ALAT entry still valid
•  If not, jump to some more repair code (arghhh…)

0: ldf Y(r1),f2
1: fbeq f2,2
5: ldf.a X(r1),f4
6: mulf f4,f2,f6
4: stf f0,Y(r1)
8: chk.a f4,9
7: stf f6,Z(r1)

2: ldf W(r1),f2
5’: ldf X(r1),f4
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

Repair code 2

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 53

Superblock Scheduling II

•  Second scheduling move: move insn 5 and 6 above insn 1
•  That’s OK, load did not depend on branch…
•  And would have executed anyway

•  Scheduling non-move: don’t move insn 4 above insn 1
•  Why? Hard (but possible) to undo a store in repair code
•  (What about in a multiprocessor or multithreaded workload?)

•  Success: scheduled 3 insns between 6 and 7

0: ldf Y(r1),f2
5: ldf.a X(r1),f4
6: mulf f4,f2,f6
1: fbeq f2,2
4: stf f0,Y(r1)
8: chk.a f4,9
7: stf f6,Z(r1)

2: ldf W(r1),f2
5’: ldf X(r1),f4
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

Repair code 2

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 54

What If…

•  … branch 1 had the opposite bias?

0: ldf Y(r1),f2
1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
3: jump 5

NT=95% T=5%

A

B C

D

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 55

The Other Superblock and Repair Code

•  Notice
•  Branch 1 sense (test) unchanged

•  Original taken target now in repair code

0: ldf Y(r1),f2
1: fbne f2,4
2: ldf W(r1),f2
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

4: stf f0,Y(r1)
5’: ldf X(r1),f4
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 56

Superblock Scheduling III

•  First scheduling move: move insns 2, 5, and 6 above insn 1
•  Rename f2 to f8 to avoid WAR violation
•  Notice, can remove copy of insn 5 from repair code
•  Is this scheduling move legal?

•  From a store standpoint, yes
•  What about from a fault standpoint? What if insn 2 faults?

0: ldf Y(r1),f2
2: ldf W(r1),f8
5: ldf X(r1),f4
6: mulf f4,f8,f6
1: fbne f2,4
7: stf f6,Z(r1)

4: stf f0,Y(r1)
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 57

ISA Support for Load-Branch Speculation

•  IA-64: change insn 2 to speculative load ldf.s
•  “Speculative” means advanced past some unknown branch
•  Processor keeps exception bit with register f8
•  Inserted insn chk.s checks exception bit
•  If exception, jump to yet more repair code (arghhh…)

•  IA-64 also contains ldf.sa

0: ldf Y(r1),f2
2: ldf.s W(r1),f8
5: ldf X(r1),f4
6: mulf f4,f8,f6
1: fbne f2,4
8: chk.s f8
7: stf f6,Z(r1)

4: stf f0,Y(r1)
6’: mulf f4,f2,f6
7’: stf f6,Z(r1)

Superblock

Repair code

Repair code 2

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 58

Non-Biased Branches: Use Predication
0: ldf Y(r1),f2
1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
3: jump 5

NT=50% T=50%

A

B C

D

0: ldf Y(r1),f2
1: fspne f2,p1
2: ldf.p p1,W(r1),f2
4: stf.np p1,f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

Using Predication

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 59

Predication
•  Conventional control

•  Conditionally executed insns also conditionally fetched

•  Predication
•  Conditionally executed insns unconditionally fetched
•  Full predication (ARM, IA-64)

•  Can tag every insn with predicate, but extra bits in instruction
•  Conditional moves (Alpha, IA-32)

•  Construct appearance of full predication from one primitive
cmoveq r1,r2,r3 // if (r1==0) r3=r2;

– May require some code duplication to achieve desired effect
+ Only good way of adding predication to an existing ISA

•  If-conversion: replacing control with predication
+  Good if branch is unpredictable (save mis-prediction)
–  But more instructions fetched and “executed”

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 60

ISA Support for Predication

•  IA-64: change branch 1 to set-predicate insn fspne
•  Change insns 2 and 4 to predicated insns

•  ldf.p performs ldf if predicate p1 is true
•  stf.np performs stf if predicate p1 is false

0: ldf Y(r1),f2
1: fspne f2,p1
2: ldf.p p1,W(r1),f2
4: stf.np p1,f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 61

Hyperblock Scheduling

•  Second trace scheduling construct: hyperblock
•  Use when branch is not highly biased
•  Fuse all four blocks: A,B,C,D
•  Use predication to conditionally execute insns in B and C
•  Schedule

0: ldf Y(r1),f2
1: fbne f2,4

4: stf f0,Y(r1)

5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

2: ldf W(r1),f2
3: jump 5

NT=50% T=50%

A

B C

D

0: ldf Y(r1),f2
1: fspne f2,p1
2: ldf.p p1,W(r1),f2
4: stf.np p1,f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 62

Static Scheduling Summary

•  Goal: increase scope to find more independent insns
•  Loop unrolling

+  Simple
–  Expands code size, can’t handle recurrences or non-loops

•  Software pipelining
•  Handles recurrences
•  Complex prologue/epilogue code
•  Requires register copies (unless rotating register file….)

•  Trace scheduling
•  Superblocks and hyperblocks
+  Works for non-loops
–  More complex, requires ISA support for speculation and predication
–  Requires nasty repair code

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 63

Multiple Issue Summary

•  Problem spots
•  Wide fetch + branch prediction → trace cache?
•  N2 dependence cross-check
•  N2 bypass → clustering?

•  Implementations
•  Statically scheduled superscalar
•  VLIW/EPIC
•  Research: Grid Processor

•  What’s next:
•  Finding more ILP by relaxing the in-order execution requirement

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 64

Additional Slides

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 65

Loop Unrolling Shortcomings
–  Static code growth more I$ misses (relatively minor)
–  Poor scheduling along “seams” of unrolled copies
–  Need more registers to resolve WAR hazards
–  Doesn’t handle recurrences (inter-iteration dependences)

for (i=0;i<N;i++)
 X[i]=A*X[I-1];

ldf X-4(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
addi r1,4,r1
blt r1,r2,0
ldf X-4(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
addi r1,4,r1
blt r1,r2,0

ldf X-4(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
mulf f0,f2,f3
stf f3,X+4(r1)
addi r1,4,r1
blt r1,r2,0

•  Two mulf’s are not parallel

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 66

What About Leftover Iterations?

•  What to do if N % K != 0
•  What to do with extra iterations?

•  Main unrolled loop executes N / K times
•  Add non-unrolled loop that executes N % K times

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 67

Software Pipelining

•  Software pipelining: deals with these shortcomings
•  Also called “symbolic loop unrolling” or “poly-cyclic scheduling”
•  Reinvented a few times [Charlesworth, ‘81], [Rau, ‘85] [Lam, ‘88]
•  One physical iteration contains insns from multiple logical iterations

•  The pipeline analogy
•  In a hardware pipeline, a single cycle contains…

•  Stage 3 of insn i, stage 2 of insn i+1, stage 1 of insn i+2
•  In a software pipeline, a single physical (SP) iteration contains…

•  Insn 3 from iter i, insn 2 from iter i+1, insn 1 from iter i+2

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 68

Software Pipelined Recurrence Example

•  Goal: separate mulf from stf
•  Physical iteration (box) contains

•  stf from original iteration i
•  ldf, mulf from original iteration i+1
•  Prologue: get pipeline started (ldf, mulf from iteration 0)
•  Epilogue: finish up leftovers (stf from iteration N–1)

ldf X-4(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
addi r1,4,r1
blt r1,r2,0
ldf X-4(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
addi r1,4,r1
blt r1,r2,0

ldf X-4(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
ldf X(r1),f1
mulf f0,f1,f2
addi r1,4,r1
blt r1,r2,3
stf f2,X(r1)

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 69

Software Pipelining Pipeline Diagrams

•  Same diagrams, new terminology
•  Across: cycles physical → iterations
•  Down: insns logical → iterations
•  In the squares: stages → insns

•  How many physical software pipelined iterations?
•  N–K
•  N: number of logical (original) iterations
•  K: number of logical iterations in one physical iteration

1 2 3 4 5
1 LM S
2 LM S
3 LM S
4 LM S

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 70

Software Pipelined Example II

•  Vary software pipelining structure to tolerate more latency
•  Example: physical iteration combines three logical iterations

ldf X(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
addi r1,4,r1
blt r1,r2,0
ldf X(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
addi r1,4,r1
blt r1,r2,0
ldf X(r1),f1
mulf f0,f1,f2
stf f2,X(r1)
addi r1,4,r1
blt r1,r2,0

ldf X-4(r1),f1
mulf f0,f1,f2
ldf X(r1),f1
stf f2,X-4(r1)
mulf f0,f1,f2
ldf X+4(r1),f1
addi r1,4,r1
blt r1,r2,0
stf f2,X+4(r1)
mulf f0,f1,f2
stf f2,X+8(r1)

•  Notice: no recurrence this time
•  Can’t software pipeline recurrence three times

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 71

Software Pipelining Pipeline Diagram

•  Things to notice
•  Within physical iteration (column)...
•  Original iteration insns are in reverse order
•  That’s OK, they are from different logical iterations
•  And are independent of each other
+  Perfect for VLIW/EPIC

1 2 3 4 5 6
1 L M S
2 L M S
3 L M S
4 L M S

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 72

Software Pipelining
+  Doesn’t increase code size
+  Good scheduling at iteration “seams”
+  Can vary degree of pipelining to tolerate longer latencies

•  “Software super-pipelining”
•  One physical iteration: insns from logical iterations i, i+2, i+4

–  Hard to do conditionals within loops
•  Easier with loop unrolling

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 73

Scheduling: Compiler or Hardware
•  Each has some advantages
•  Compiler

+  Potentially large scheduling scope (full program)
+  Simple hardware → fast clock, short pipeline, and low power
–  Low branch prediction accuracy (profiling?)
–  Little information on memory dependences and latencies

(profiling?)
–  Pain to speculate and recover from mis-speculation (h/w support?)

•  Hardware
+  High branch prediction accuracy
+  Dynamic information about memory dependences and latencies
+  Easy to speculate and recover from mis-speculation
–  Finite buffering resources fundamentally limit scheduling scope
–  Scheduling machinery adds pipeline stages and consumes power

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 74

Research: Frames

•  New experimental scheduling construct: frame
•  rePLay [Patel+Lumetta]
•  Frame: an atomic superblock

•  Atomic means all or nothing, i.e., transactional
•  Two new insns

•  begin_frame: start buffering insn results
•  commit_frame: make frame results permanent
•  Hardware support required for buffering

•  Any branches out of frame: abort the entire thing
+  Eliminates nastiest part of trace scheduling … nasty repair code

•  If frame path is wrong just jump to original basic block code
•  Repair code still exists, but it’s just the original code

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 75

Frames

•  What about frame optimizations?
+  Load-branch optimizations can be done without support

•  Natural branch “undo”
•  Load-store optimizations still require ISA support

•  Fixup code still simpler

8: begin_frame
0: ldf Y(r1),f2
2: ldf W(r1),f2
5: ldf X(r1),f4
6: mulf f4,f2,f6
1: fbne f2,0
7: stf f6,Z(r1)
9: commit_frame

Frame
0: ldf Y(r1),f2
1: fbne f2,4
2: ldf W(r1),f2
3: jump 5
4: stf f0,Y(r1)
5: ldf X(r1),f4
6: mulf f4,f2,f6
7: stf f6,Z(r1)

Repair Code

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 76

Research: Grid Processor

•  Grid processor architecture (aka TRIPS)
•  [Nagarajan, Sankaralingam, Burger+Keckler]
•  EDGE (Explicit Dataflow Graph Execution) execution model
•  Holistic attack on many fundamental superscalar problems

•  Specifically, the nastiest one: N2 bypassing
•  But also N2 dependence check
•  And wide-fetch + branch prediction

•  Two-dimensional VLIW
•  Horizontal dimension is insns in one parallel group
•  Vertical dimension is several vertical groups

•  Executes atomic hyperblocks

•  IBM looking into building it

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 77

Grid Processor

•  Components
•  next h-block logic/predictor (NH), I$, D$, regfile
•  NxN ALU grid: here 4x4

•  Pipeline stages
•  Fetch h-block to grid
•  Read registers
•  Execute/memory

•  Cascade
•  Write registers

•  Block atomic
•  No intermediate regs
•  Grid limits size/shape

ALU

read read read read

regfile

ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

ALU ALU

I$
D$

NH

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 78

Grid Processor SAXPY

•  An h-block for this Grid processor has 5 4-insn words
•  The unit is all 5

•  Some notes about Grid ISA
•  read: read register from register file
•  pass: null operation
•  –1,0,1: routing directives send result to next word

•  one insn left (-1), insn straight down (0), one insn right (1)
•  Directives specify value flow, no need for interior registers

read r2,0 read f1,0 read r1,0,1 nop
pass 0 pass 1 pass -1,1 ldf X,-1
pass 0 pass 0,1 mulf 1 ldf Y,0
pass 0 addi pass 1 addf 0
blt nop pass 0,r1 stf Z

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 79

Grid Processor SAXPY Cycle 1

•  Map hyperblock to grid

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$
D$

NH

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 80

Grid Processor SAXPY Cycle 2

•  Read registers

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$
D$

NH

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 81

Grid Processor SAXPY Cycle 3

•  Execute first grid row
•  Execution proceeds in “data flow” fashion

•  Not lock step

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$
D$

NH

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 82

Grid Processor SAXPY

•  When all instructions are done
•  Write registers and next hyperblock PC

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$
D$

NH

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 83

Grid Processor SAXPY Performance

•  Performance
•  1 cycle fetch
•  1 cycle read regs
•  8 cycles execute
•  1 cycle write regs
•  11 cycles total (same)

•  Utilization
•  7 / (11 * 16) = 4%

•  What’s the point?
+  Simpler components
+  Faster clock?

pass

r2 f1 r1

regfile

pass

pass pass

pass addi

ble

pass ldf

mulf ldf

pass addf

pass stf

I$
D$

NH

CS/ECE 752 (Wood): Multiple Issue & Static Scheduling 84

Grid Processor Pros and Cons
+  Naturally aligned I$
+  No hardware dependence checks period

•  Insns explicitly encode rather than hardware reconstruct
•  Still get dynamic issue

+  Simple, forward only, short-wire bypassing
•  No wraparound routing, no metal layer crossings, low input muxes

–  Code size
•  Lots of nop and pass operations

–  Poor scheduling between hyperblocks
–  Non-compatibility

•  Code assumes horizontal and vertical grid layout
•  Overcome with transparent dynamic translation? Like TransMeta

–  Utilization
•  Overcome by multiple concurrent executing hyperblocks

