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This Unit: Caches 

•  Memory hierarchy concepts 
•  Cache organization 
•  High-performance techniques 
•  Low power techniques 
•  Some example calculations 
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Motivation 

•  Processor can compute only as fast as memory 
•  A 3Ghz processor can execute an “add” operation in 0.33ns 
•  Today’s “Main memory” latency is 50-100ns 
•  Naïve implementation: loads/stores can be 300x slower than other 

operations 

•  Unobtainable goal: 
•  Memory that operates at processor speeds 
•  Memory as large as needed for all running programs 
•  Memory that is cost effective 

•  Can’t achieve all of these goals at once 
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Types of Memory 
•  Static RAM (SRAM) 

•  6-10 transistors per bit 
•  Optimized for speed (first) and density (second) 
•  Fast (sub-nanosecond latencies for small SRAM) 

•  Speed proportional to its area 
•  Mixes well with standard processor logic 

•  Dynamic RAM (DRAM) 
•  1 transistor + 1 capacitor per bit 
•  Optimized for density (in terms of cost per bit) 
•  Slow (>20ns internal access, >40ns pin-to-pin)  
•  Different fabrication steps (does not mix well with logic) 

•  Nonvolatile storage: Magnetic disk, Flash RAM 
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Storage Technology 
•  Cost - what can $300 buy today? 

•  SRAM - 4MB 
•  DRAM - 4,000MB (4GB)  ---  250x cheaper than SRAM 
•  Disk - 900,000MB (900GB) ---  450x cheaper than DRAM 

•  Latency  
•  SRAM - <1 to 5ns (on chip) 
•  DRAM - ~100ns  --- 100x or more slower 
•  Disk - 10,000,000ns or 10ms --- 100,000x slower (mechanical) 

•  Bandwidth 
•  SRAM - 10-100GB/sec 
•  DRAM - ~1-2GB/sec 
•  Disk - 100MB/sec (0.1 GB/sec) - sequential access only  

•  Aside: Flash, a non-traditional (and nonvolatile) memory 
•  4,000MB (4GB) for $300, cheaper than DRAM! 
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Storage Technology Trends 

Cost 

Access Time 
Copyright Elsevier Scientific 2003 
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The “Memory Wall” 

•  Processors are get faster more quickly than memory (note log scale) 
•  Processor speed improvement: 35% to 55% 
•  Memory latency improvement: 7% 

Copyright Elsevier Scientific 2003 
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Locality to the Rescue 

•  Locality of memory references 
•  Property of real programs, few exceptions 
•  Books and library analogy 

•  Temporal locality 
•  Recently referenced data is likely to be referenced again soon 
•  Reactive: cache recently used data in small, fast memory 

•  Spatial locality 
•  More likely to reference data near recently referenced data 
•  Proactive: fetch data in large chunks to include nearby data 

•  Holds for data and instructions 
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Known From the Beginning 

 
 “Ideally, one would desire an infinitely large memory 
capacity such that any particular word would be 
immediately available … We are forced to recognize the 
possibility of constructing a hierarchy of memories, each 
of which has a greater capacity than the preceding but 
which is less quickly accessible.” 

 
Burks, Goldstine, VonNeumann  

“Preliminary discussion of the logical design of an 
electronic computing instrument” 

 IAS memo 1946  
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Exploiting Locality: Memory Hierarchy 

•  Hierarchy of memory components 
•  Upper components 

•  Fast ↔ Small ↔ Expensive 
•  Lower components 

•  Slow ↔ Big ↔ Cheap 

•  Connected by buses 
•  Which also have latency and bandwidth issues 

•  Most frequently accessed data in M1 
•  M1 + next most frequently accessed in M2, etc. 
•  Move data up-down hierarchy 

•  Optimize average access time 
•  latencyavg = latencyhit + %miss * latencymiss 

•  Attack each component 

CPU 

M1 

M2 

M3 

M4 
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Concrete Memory Hierarchy 

•  1st level: Primary caches 
•  Split instruction (I$) and data (D$) 
•  Typically 8-64KB each 

•  2nd level: Second-level cache (L2$) 
•  On-chip, certainly on-package (with CPU) 
•  Made of SRAM (same circuit type as CPU) 
•  Typically 512KB to 16MB 

•  3rd level: main memory 
•  Made of DRAM 
•  Typically 512MB to 2GB for PCs 

•  Servers can have 100s of GB  

•  4th level: disk (swap and files) 
•  Made of magnetic iron oxide disks 
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This Unit: Caches 

•  Cache organization 
•  ABC 
•  Miss classification 

•  High-performance techniques 
•  Reducing misses 
•  Improving miss penalty 
•  Improving hit latency 

•  Low-power techniques 
•  Some example performance calculations 
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Disk 
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Looking forward: Memory and Disk 

•  Main memory 
•  Virtual memory 
•  DRAM-based memory systems 

•  Disks and Storage 
•  Properties of disks 
•  Disk arrays (for performance and reliability) 

CPU 

Main 
Memory 

Disk 

D$ 

L2$ 

I$ 
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Basic Memory Array Structure 

•  Number of entries 
•  2n, where n is number of address bits 
•  Example:  1024 entries, 10 bit address 
•  Decoder changes n-bit address to  

2n bit “one-hot” signal 
•  One-bit address travels on “wordlines” 

•  Size of entries 
•  Width of data accessed 
•  Data travels on “bitlines”  
•  256 bits (32 bytes) in example 
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Physical Cache Layout 

•  Logical layout 
•  Arrays are vertically contiguous 

•  Physical layout - roughly square 
•  Vertical partitioning to minimize wire lengths 
•  H-tree: horizontal/vertical partitioning layout 

•  Applied recursively 
•  Each node looks like an H 
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Physical Cache Layout 

•  Arrays and h-trees make caches easy to spot in µgraphs 
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Basic Cache Structure 
•  Basic cache: array of block frames 

•  Example: 32KB cache (1024 frames, 32B blocks) 
•  “Hash table in hardware” 

•  To find frame: decode part of address 
•  Which part? 
•  32-bit address 
•  32B blocks → 5 lowest bits locate byte in block 

•  These are called offset bits 
•  1024 frames → next 10 bits find frame 

•  These are the index bits 
•  Note: nothing says index must be these bits 
•  But these work best (think about why) 
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Basic Cache Structure 

•  Each frame can hold one of 217 blocks 
•  All blocks with same index bit pattern 

•  How to know which if any is currently there? 
•  To each frame attach tag and valid bit 
•  Compare frame tag to address tag bits 

•  No need to match index bits (why?) 

•  Lookup algorithm 
•  Read frame indicated by index bits 
•  “Hit” if tag matches and valid bit is set 
•  Otherwise, a “miss”.  Fetch block 
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Calculating Tag Overhead 

•  “32KB cache” means cache holds 32KB of data 
•  Called capacity 
•  Tag storage is considered overhead 

•  Tag overhead of 32KB cache with 1024 32B frames 
•  32B frames → 5-bit offset 
•  1024 frames → 10-bit index 
•  32-bit address – 5-bit offset – 10-bit index = 17-bit tag 
•  (17-bit tag + 1-bit valid)* 1024 frames = 18Kb tags = 2.2KB tags 
•  ~6% overhead 

•  What about 64-bit addresses? 
•  Tag increases to 49bits, ~20% overhead 
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Cache Performance Simulation 

•  Parameters: 8-bit addresses, 32B cache, 4B blocks 
•  Nibble notation (base 4) 
•  Initial contents: 0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 

Cache contents (prior to access) Address Outcome 

0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 3020 Miss 

0000, 0010, 3020, 0030, 0100, 0110, 0120, 0130 3030 Miss 

0000, 0010, 3020, 3030, 0100, 0110, 0120, 0130 2100 Miss 

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0012 Hit 

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0020 Miss 

0000, 0010, 0020, 3030, 2100, 0110, 0120, 0130 0030 Miss 

0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0110 Hit 

0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0100 Miss 

0000, 1010, 0020, 0030, 0100, 0110, 0120, 0130 2100 Miss 

1000, 1010, 0020, 0030, 2100, 0110, 0120, 0130 3020 Miss 

2 bits tag (3 bits) index (3 bits) 



Hill’s 3C Miss Rate Classification 

•  Compulsory 
•  Miss caused by initial access 

•  Capacity 
•  Miss caused by finite capacity 
•  I.e., would not miss in infinite cache 

•  Conflict 
•  Miss caused by finite associativity 
•  I.e., would not miss in a fully-associative cache 

•  Coherence (4th C, added by Jouppi) 
•  Miss caused by invalidation to enforce coherence 
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Miss Rate: ABC 

•  Capacity  
+  Decreases capacity misses 

–  Increases latencyhit 

•  Associativity 
+  Decreases conflict misses 
–  Increases latencyhit 

•  Block size 
–  Increases conflict/capacity misses (fewer frames) 
+  Decreases compulsory/capacity misses (spatial prefetching) 
•  No effect on latencyhit 

-  May increase latencymiss 
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Increase Cache Size 

•  Biggest caches always have better miss rates 
•  However latencyhit increases 

•  Diminishing returns 

Cache Size 

Miss 
Rate 

“working set” size 

Most workloads have multiple 
“critical” working sets 
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Block Size 

•  Given capacity, manipulate %miss by changing organization 
•  One option: increase block size 

•  Notice index/offset bits change 
•  Tag remain the same 

•  Ramifications 
+  Exploit spatial locality 

•  Caveat: past a certain point… 
+  Reduce tag overhead (why?) 
–  Useless data transfer (needs more bandwidth) 
–  Premature replacement of useful data 
–  Fragmentation 
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Effect of Block Size on Miss Rate 

•  Two effects on miss rate 
+  Spatial prefetching (good) 

•  For blocks with adjacent addresses 
•  Turns miss/miss into miss/hit pairs 

–  Interference (bad) 
•  For blocks with non-adjacent 

addresses (but in adjacent frames) 
•  Turns hits into misses by disallowing 

simultaneous residence 

•  Both effects always present  
•  Spatial prefetching dominates initially 

•  Depends on size of the cache 
•  Good block size is 16–128B  

•  Program dependent 

Block Size 

Miss 
Rate 

Pollution Point 
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Block Size and Tag Overhead 

•  Tag overhead of 32KB cache with 1024 32B frames 
•  32B frames → 5-bit offset 
•  1024 frames → 10-bit index 
•  32-bit address – 5-bit offset – 10-bit index = 17-bit tag 
•  (17-bit tag + 1-bit valid) * 1024 frames = 18Kb tags = 2.2KB tags 
•  ~6% overhead 

•  Tag overhead of 32KB cache with 512 64B frames 
•  64B frames → 6-bit offset 
•  512 frames → 9-bit index 
•  32-bit address – 6-bit offset – 9-bit index = 17-bit tag 
•  (17-bit tag + 1-bit valid) * 512 frames = 9Kb tags = 1.1KB tags 
+  ~3% overhead 
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Block Size and Performance 

•  Parameters: 8-bit addresses, 32B cache, 8B blocks 
•  Initial contents : 0000(0010), 0020(0030), 0100(0110), 0120(0130) 

Cache contents (prior to access) Address Outcome 

0000(0010), 0020(0030), 0100(0110), 0120(0130) 3020 Miss 

0000(0010), 3020(3030), 0100(0110), 0120(0130) 3030 Hit (spatial locality) 

0000(0010), 3020(3030), 0100(0110), 0120(0130) 2100 Miss 

0000(0010), 3020(3030), 2100(2110), 0120(0130) 0012 Hit 

0000(0010), 3020(3030), 2100(2110), 0120(0130) 0020 Miss 

0000(0010), 0020(0030), 2100(2110), 0120(0130) 0030 Hit (spatial locality) 

0000(0010), 0020(0030), 2100(2110), 0120(0130) 0110 Miss (conflict) 

0000(0010), 0020(0030), 0100(0110), 0120(0130) 0100 Hit (spatial locality) 

0000(0010), 0020(0030), 0100(0110), 0120(0130) 2100 Miss 

0000(0010), 0020(0030), 2100(2110), 0120(0130) 3020 Miss 

3 bits tag (3 bits) index (2 bits) 
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Large Blocks and Subblocking 

•  Large cache blocks can take a long time to refill 
•  refill cache line critical word first  
•  restart cache access before complete refill 

•  Large cache blocks can waste bus bandwidth if block size is 
larger than spatial locality 
•  divide a block into subblocks 
•  associate separate valid bits for each subblock 

•  Sparse access patterns can use 1/S of the cache 
•  S is subblocks per block 

tag subblock v subblock v subblock v 
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Conflicts 

•  What about pairs like 3030/0030, 0100/2100? 
•  These will conflict in any sized cache (regardless of block size) 

•  Will keep generating misses 

•  Can we allow pairs like these to simultaneously reside? 
•  Yes, reorganize cache to do so 

Cache contents (prior to access) Address Outcome 

0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 3020 Miss 

0000, 0010, 3020, 0030, 0100, 0110, 0120, 0130 3030 Miss 

0000, 0010, 3020, 3030, 0100, 0110, 0120, 0130 2100 Miss 

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0012 Hit 

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0020 Miss 

0000, 0010, 0020, 3030, 2100, 0110, 0120, 0130 0030 Miss 

0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0110 Hit 

2 bits tag (3 bits) index (3 bits) 
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Set-Associativity 
•  Set-associativity 

•  Block can reside in one of few frames 
•  Frame groups called sets 
•  Each frame in set called a way 
•  This is 2-way set-associative (SA) 
•  1-way → direct-mapped (DM) 
•  1-set → fully-associative (FA) 

+  Reduces conflicts 
–  Increases latencyhit: additional muxing 

•  Note: valid bit not shown 
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Set-Associativity 

•  Lookup algorithm 
•  Use index bits to find set 
•  Read data/tags in all frames in parallel 
•  Any (match and valid bit), Hit 

•  Notice tag/index/offset bits 
•  Only 9-bit index (versus 10-bit for 

direct mapped) 
•  Notice block numbering 
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Associativity and Performance 

•  Parameters: 32B cache, 4B blocks, 2-way set-associative 
•  Initial contents : 0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 

Cache contents Address Outcome 

[0000,0100], [0010,0110], [0020,0120], [0030,0130] 3020 Miss 

[0000,0100], [0010,0110], [0120,3020], [0030,0130] 3030 Miss 

[0000,0100], [0010,0110], [0120,3020], [0130,3030] 2100 Miss 

[0100,2100], [0010,0110], [0120,3020], [0130,3030] 0012 Hit 

[0100,2100], [0110,0010], [0120,3020], [0130,3030] 0020 Miss 

[0100,2100], [0110,0010], [3020,0020], [0130,3030] 0030 Miss 

[0100,2100], [0110,0010], [3020,0020], [3030,0030] 0110 Hit 

[0100,2100], [0010,0110], [3020,0020], [3030,0030] 0100 Hit (avoid conflict) 

[2100,0100], [0010,0110], [3020,0020], [3030,0030] 2100 Hit (avoid conflict) 

[0100,2100], [0010,0110], [3020,0020], [3030,0030] 3020 Hit (avoid conflict) 

2 bits tag (4 bits) index (2 bits) 
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Increase Associativity 

•  Higher associative caches have better miss rates 
•  However latencyhit increases 

•  Diminishing returns (for a single thread) 

Associative Degree 

Miss 
Rate 

~5 
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Replacement Policies 
•  Set-associative caches present a new design choice 

•  On cache miss, which block in set to replace (kick out)? 

•  Some options 
•  Random 
•  FIFO (first-in first-out) 
•  LRU (least recently used) 

•  Fits with temporal locality, LRU = least likely to be used in future 
•  NMRU (not most recently used)  

•  An easier to implement approximation of LRU 
•  Is LRU for 2-way set-associative caches 

•  Belady’s: replace block that will be used furthest in future 
•  Unachievable optimum 

•  Which policy is simulated in previous example? 
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NMRU and Miss Handling 
•  Add MRU field to each set 

•  MRU data is encoded “way” 
•  Hit? update MRU 

•  MRU/LRU bits updated on each 
access 
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Parallel or Serial Tag Access? 

•  Note: data and tags actually physically separate 
•  Split into two different arrays 

•  Parallel access example: 

data 

<< 

= = = = 

offset tag 2-bit index 

2-bit 

2-bit 

Four blocks transferred  



CS/ECE 752 (Wood): Caches 37 

Serial Tag Access 
•  Tag match first, then access only one data block 

•  Advantages: lower power, fewer wires/pins 
•  Disadvantages: slow 
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Best of Both? Way Prediction 
•  Predict “way” of block 

•  Just a “hint” 
•  Use the index plus some tag bits 
•  Table of n-bit for 2n associative cache 
•  Update on mis-prediction or replacement 

•  Advantages 
•  Fast 
•  Low-power 

•  Disadvantage 
•  More “misses” 
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Classifying Misses: 3(4)C Model 
•  Divide cache misses into three categories 

•  Compulsory (cold): never seen this address before 
•  Would miss even in infinite cache 
•  Identify? easy 

•  Capacity: miss caused because cache is too small 
•  Would miss even in fully associative cache 
•  Identify? Consecutive accesses to block separated by access to 

at least N other distinct blocks (N is number of frames in cache) 
•  Conflict: miss caused because cache associativity is too low 

•  Identify? All other misses 
•  (Coherence): miss due to external invalidations 

•  Only in shared memory multiprocessors 

•  Who cares? Different techniques for attacking different misses 
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Cache Performance Simulation 

•  Parameters: 8-bit addresses, 32B cache, 4B blocks 
•  Initial contents : 0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 
•  Initial blocks accessed in increasing order 

Cache contents Address Outcome 

0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 3020 Miss (compulsory) 

0000, 0010, 3020, 0030, 0100, 0110, 0120, 0130 3030 Miss (compulsory) 

0000, 0010, 3020, 3030, 0100, 0110, 0120, 0130 2100 Miss (compulsory) 

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0012 Hit 

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0020 Miss (capacity) 

0000, 0010, 0020, 3030, 2100, 0110, 0120, 0130 0030 Miss (capacity) 

0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0110 Hit 

0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0100 Miss (capacity) 

0000, 1010, 0020, 0030, 0100, 0110, 0120, 0130 2100 Miss (conflict) 

1000, 1010, 0020, 0030, 2100, 0110, 0120, 0130 3020 Miss (conflict) 
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Conflict Misses: Victim Buffer 

•  Conflict misses: not enough associativity 
•  High-associativity is expensive, but also rarely needed 

•  3 blocks mapping to same 2-way set and accessed (ABC)* 

•  Victim buffer (VB): small fully-associative cache 
•  Sits on I$/D$ fill path 
•  Small so very fast (e.g., 8 entries) 
•  Blocks kicked out of I$/D$ placed in VB 
•  On miss, check VB: hit? Place block back in I$/D$ 
•  8 extra ways, shared among all sets 

+ Only a few sets will need it at any given time 
+  Very effective for small caches 
•  Does VB reduce %miss or latencymiss?  

I$/D$ 

L2 

VB 
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Seznec’s Skewed-Associative Cache 

Bank1 Bank0 

   tag      idx        b.o.    

f1 f0 

Can get better utilization with less assoc?  
   average case? worst case? 

same index 
same set 

same index 
redistribute to  
different set 



CS/ECE 752 (Wood): Caches 43 

Software Restructuring: Data 
•  Capacity misses: poor spatial or temporal locality 

•  Several code restructuring techniques to improve both 
–  Compiler must know that restructuring preserves semantics 

•  Loop interchange: spatial locality 
•  Example: row-major matrix: X[i][j] followed by X[i][j+1] 
•  Poor code: X[i][j] followed by X[i+1][j] 

for (j = 0; j<NCOLS; j++) 
  for (i = 0; i<NROWS; i++) 
     sum += X[i][j];   // non-contiguous accesses 

•  Better code 
for (i = 0; i<NROWS; i++) 
   for (j = 0; j<NCOLS; j++) 
     sum += X[i][j];   // contiguous accesses 
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Software Restructuring: Data 
•  Loop blocking: temporal locality 

•  Poor code 
for (k=0; k<NITERATIONS; k++) 
   for (i=0; i<NELEMS; i++) 
      sum += X[i];   // say 

•  Better code 
•  Cut array into CACHE_SIZE chunks 
•  Run all phases on one chunk, proceed to next chunk 
for (i=0; i<NELEMS; i+=CACHE_SIZE) 
   for (k=0; k<NITERATIONS; k++) 
      for (ii=0; ii<i+CACHE_SIZE-1; ii++) 
         sum += X[ii]; 
 

–  Assumes you know CACHE_SIZE, do you? 
•  Loop fusion: similar, but for multiple consecutive loops 
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Restructuring Loops 

•  Loop Fusion 
•  Merge two independent loops 
•  Increase reuse of data 

•  Loop Fission 
•  Split loop into independent 

loops 
•  Reduce contention for cache 

resources 

Fusion Example: 
for (i=0; i < N; i++) 
     for (j=0; j < N; j++) 
           a[i][j] = 1/b[i][j]*c[i][j]; 
for (i=0; i < N; i++) 
     for (j=0; j < N; j++) 
           d[i][j] = a[i][j]+c[i][j]; 
 
Fused Loop: 
for (i=0; i < N; i++) 
     for (j=0; j < N ;j++) 
     { 
          a[i][j] = 1/b[i][j]*c[i][j]; 
          d[i][j] = a[i][j]+c[i][j]; 
     } 
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Software Restructuring: Code 
•  Compiler lays out code for temporal and spatial locality 

•  If (a) { code1; } else { code2; } code3; 
•  But, code2 case never happens (say, error condition) 

•  Intra-procedure, inter-procedure 
•  Related to trace scheduling 

Better 
locality 

Better 
locality 
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Miss Cost: Critical Word First/Early Restart 

•  Observation: latencymiss = latencyaccess + latencytransfer 
•  latencyaccess: time to get first word 
•  latencytransfer: time to get rest of block 
•  Implies whole block is loaded before data returns to CPU 

•  Optimization  
•  Critical word first: return requested word first 

•  Must arrange for this to happen (bus, memory must cooperate) 
•  Early restart: send requested word to CPU immediately 

•  Get rest of block load into cache in parallel  
•  latencymiss = latencyaccess 
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Miss Cost: Lockup Free Cache 
•  Lockup free: allows other accesses while miss is pending 

•  Consider: Load [r1] -> r2;   Load [r3] -> r4;    Add r2, r4 -> r5 
•  Only makes sense for… 

•  Data cache 
•  Processors that can go ahead despite D$ miss (out-of-order) 

•  Implementation: miss status holding register (MSHR) 
•  Remember: miss address, chosen frame, requesting instruction 
•  When miss returns know where to put block, who to inform 

•  Simplest scenario: “hit under miss” 
•  Handle hits while miss is pending 
•  Easy for OoO cores 

•  More common: “miss under miss” 
•  A little trickier, but common anyway 
•  Requires split-transaction bus/interconnect 
•  Requires multiple MSHRs: search to avoid frame conflicts 
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Prefetching 

•  Prefetching: put blocks in cache proactively/speculatively 
•  Key: anticipate upcoming miss addresses accurately 

•  Can do in software or hardware 

•  Simple example: next block prefetching 
•  Miss on address X → anticipate miss on X+block-size 
+ Works for insns: sequential execution 
+ Works for data: arrays 

•  Timeliness: initiate prefetches sufficiently in advance 
•  Coverage: prefetch for as many misses as possible 
•  Accuracy: don’t pollute with unnecessary data 

•  It evicts useful data 

I$/D$ 

L2 

prefetch logic 
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Software Prefetching 

•  Software prefetching: two kinds 
•  Binding: prefetch into register (e.g., software pipelining) 

+ No ISA support needed, use normal loads (non-blocking cache) 
–  Need more registers, and what about faults? 

•  Non-binding: prefetch into cache only 
–  Need ISA support: non-binding, non-faulting loads 
+ Simpler semantics 

•  Example 
for (i = 0; i<NROWS; i++) 
   for (j = 0; j<NCOLS; j+=BLOCK_SIZE) { 
      prefetch(&X[i][j]+BLOCK_SIZE); 
      for (jj=j; jj<j+BLOCK_SIZE-1; jj++) 
         sum += x[i][jj]; 
   } 
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Hardware Prefetching 
•  What to prefetch? 

•  One block ahead 
•  How much latency do we need to hide (Little’s Law)? 
•  Can also do N blocks ahead to hide more latency 
+ Simple, works for sequential things: insns, array data 

•  Address-prediction 
•  Needed for non-sequential data: lists, trees, etc. 

•  When to prefetch? 
•  On every reference? 
•  On every miss? 

+ Works better than doubling the block size 
•  Ideally: when resident block becomes dead (avoid useful evictions) 

–  How to know when that is? [“Dead-Block Prediction”, ISCA’01] 
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Address Prediction for Prefetching 

•  “Next-block” prefetching is easy, what about other 
options? 

•  Correlating predictor 
•  Large table stores (miss-addr → next-miss-addr) pairs 
•  On miss, access table to find out what will miss next 

•  It’s OK for this table to be large and slow 

•  Content-directed or dependence-based prefetching 
•  Greedily chases pointers from fetched blocks 

•  Jump pointers 
•  Augment data structure with prefetch pointers 
•  Can do in hardware too 

•  An active area of research 
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Write Issues 

•  So far we have looked at reading from cache (loads) 
•  What about writing into cache (stores)? 

•  Several new issues 
•  Tag/data access 
•  Write-through vs. write-back 
•  Write-allocate vs. write-not-allocate 

•  Buffers 
•  Store buffers (queues) 
•  Write buffers 
•  Writeback buffers 
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Tag/Data Access 

•  Reads: read tag and data in parallel 
•  Tag mis-match → data is garbage (OK) 

•  Writes: read tag, write data in parallel? 
•  Tag mis-match → clobbered data (oops) 
•  For associative cache, which way is written? 

•  Writes are a pipelined 2 cycle process 
•  Cycle 1: match tag 
•  Cycle 2: write to matching way 

1022 

1023 

off tag 

data 

index 

address 

= 

hit? 

0 

1 

2 

off index data 

data 
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Tag/Data Access 

•  Cycle 1: check tag 
•  Hit? Advance “store pipeline” 
•  Miss? Stall “store pipeline”  

1022 

1023 

off tag 

data 

index 

address hit? 

0 

1 

2 

off index data 

data 

= 
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Tag/Data Access 

•  Cycle 2: write data 
 
•  Advanced Technique 

•  Decouple write pipeline 
•  In the same cycle 

•  Check tag of storei 

•  Write data of storei-1 

•  Bypass data of storei-1 to loads 

1022 

1023 

off tag 

data 

index 

address hit? 

0 
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2 

off index data 

data 

= 
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Write-Through vs. Write-Back 
•  When to propagate new value to (lower level) memory? 

•  Write-through: immediately 
+ Conceptually simpler 
+ Uniform latency on misses 
–  Requires additional bus bandwidth 

•  Write-back: when block is replaced 
•  Requires additional “dirty” bit per block 
+ Lower bus bandwidth for large caches 

•  Only writeback dirty blocks 
–  Non-uniform miss latency 

•  Clean miss: one transaction with lower level (fill) 
•  Dirty miss: two transactions (writeback + fill) 

•  Writeback buffer: fill, then writeback (later) 

•  Common design: Write through L1, write-back L2/L3  
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Write-allocate vs. Write-non-allocate 

•  What to do on a write miss? 
•  Write-allocate: read block from lower level, write value into it 

+ Decreases read misses 
–  Requires additional bandwidth 
•  Used mostly with write-back 

•  Write-non-allocate: just write to next level 
–  Potentially more read misses 
+ Uses less bandwidth 
•  Used mostly with write-through 

•  Write allocate is common for write-back 
•  Write-non-allocate for write through 
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Buffering Writes 1 of 3: Store Queues 

•  (1) Store queues  
•   Part of speculative processor; transparent to architecture 
•   Hold speculatively executed stores 
•   May rollback store if earlier exception occurs 
•   Used to track load/store dependences 

•  (2) Write buffers 
•  (3) Writeback buffers 

$ $$/Memory CPU 
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Buffering Writes 2 of 3: Write Buffer 

•  (1) Store queues  
•  (2) Write buffers 

•   Holds committed architectural state 
•  Transparent to single thread 
•  May affect memory consistency model 

•   Hides latency of memory access or cache miss 
•   May bypass values to later loads (or stall) 
•   Store queue & write buffer may be in same physical structure 

•  (3) Writeback buffers 

$ $$/Memory CPU 
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Buffering Writes 3 of 3: Writeback Buffer 

•  (1) Store queues  
•  (2) Write buffers 

•  (3) Writeback buffers (Special case of Victim Buffer) 
•   Transparent to architecture 
•   Holds victim block(s) so miss/prefetch can start immediately 
•   (Logically part of cache for multiprocessor coherence) 

$ $$/Memory CPU 
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Increasing Cache Bandwidth 
•  What if we want to access the cache twice per cycle? 
•  Option #1: multi-ported cache 

•  Same number of six-transistor cells 
•  Double the decoder logic, bitlines, wordlines 

•  Areas becomes “wire dominated” -> slow 
•  OR, time multiplex the wires 

•  Option #2: banked cache 
•  Split cache into two smaller “banks” 
•  Can do two parallel access to different parts of the cache 
•  Bank conflict occurs when two requests access the same bank 

•  Option #3: replication 
•  Make two copies (2x area overhead) 
•  Writes both replicas (does not improve write bandwidth) 
•  Independent reads 
•  No bank conflicts, but lots of area 
•  Split instruction/data caches is a special case of this approach 
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Multi-Port Caches 

$ 

Pipe 1 

Addr 

Pipe 2 

Addr 

Pipe 1 

Data 

Pipe 2 

Data 

•  Superscalar processors requires multiple data references 
per cycle 

•  Time-multiplex a single port (double pump) 
•   need cache access to be faster than datapath clock 
•   not scalable 

•  Truly multiported SRAMs are 
 possible, but  

•   more chip area 
•   slower access   

  (very undesirable for L1-D) 
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Multi-Banking (Interleaving) Caches 

•  Address space is statically partitioned and assigned to 
different caches  Which addr bit to use for partitioning? 

•  A compromise (e.g. Intel P6, MIPS R10K) 
•   multiple references per cyc. if no conflict 
•   only one reference goes through  
   if conflicts are detected  
•   the rest are deferred  
    (bad news for scheduling logic) 
 

•  Most helpful if compiler knows 
about the interleaving rules 

Even $ 

Odd $ 
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Multiple Cache Copies: e.g. Alpha 21164 

•  Independent fast load paths 
•  Single shared store path  

•  Not a scalable solution  
•   Store is a bottleneck 
•   Doubles area 

$ 

Pipe 1 

Load 

Store 

Pipe 1 

Data 

$ Pipe 2 

Load 

Pipe 2 

Data 
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Evaluation Methods 

•  The three system evaluation methodologies 
1.  Hardware counters 
2.  Analytic modeling 
3.  Software simulation 
4.  Hardware prototyping and measurement 
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Methods: Hardware Counters 

•  See Clark, TOCS 1983 
ü   accurate 
ü   realistic workloads, system + user + others 
  difficult, why? 
  must first have the machine 
  hard to vary cache parameters 
  experiments not deterministic 

  use statistics! 
  take multiple measurements 
  compute mean and confidence measures 

•  Most modern processors have built-in hardware counters 
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Methods: Analytic Models 

•  Mathematical expressions 
ü   insightful: can vary parameters 
ü   fast 
  absolute accuracy suspect for models with few parameters 
  hard to determine parameter values 
  difficult to evaluate cache interaction with system 
  bursty behavior hard to evaluate 
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Methods: Trace-Driven Simulation 

Program 

Memory trace  
generator 

Cache simulator Repeat 

Miss ratio 
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Methods: Trace-Driven Simulation 

ü   experiments repeatable 
ü   can be accurate 
ü   much recent progress 
  reasonable traces are very large (gigabytes?) 
  simulation is time consuming 
  hard to say if traces are representative 
  don’t directly capture speculative execution 
  don’t model interaction with system 

 
 

 Widely used in industry 
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Methods: Execution-Driven Simulation 

•  Simulate the program execution 
•   simulates each instruction’s execution on the computer 
•   model processor, memory hierarchy, peripherals, etc. 
ü   reports execution time 

ü  accounts for all system interactions 
ü   no need to generate/store trace 
  much more complicated simulation model 
  time-consuming but good programming can help 
  multi-threaded programs exhibit variability 

✘  Very common in academia and industry today 

✘  Watch out for repeatability in multithreaded workloads 
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Low-Power Caches 

•  Caches consume significant power 
•  15% in Pentium4 
•  45% in StrongARM 

•  Three techniques 
•  Way prediction (already talked about) 
•  Dynamic resizing 
•  Drowsy caches 
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Low-Power Access: Dynamic Resizing 

•  Dynamic cache resizing 
•  Observation I: data, tag arrays implemented as many small arrays 
•  Observation II: many programs don’t fully utilize caches 

•  Idea: dynamically turn off unused arrays 
•  Turn off means disconnect power (VDD) plane 
+ Helps with both dynamic and static power 

•  There are always tradeoffs 
–  Flush dirty lines before powering down  → costs power↑ 
–  Cache-size↓  → %miss↑  → power↑, execution time↑ 
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Dynamic Resizing: When to Resize 

•  Use %miss feedback 
•  %miss near zero? Make cache smaller (if possible) 
•  %miss above some threshold? Make cache bigger (if possible) 

•  Aside: how to track miss-rate in hardware? 
•  Hard, easier to track miss-rate vs. some threshold 
•  Example: is %miss higher than 5%? 

•  N-bit counter (N = 8, say) 
•  Hit? counter –= 1 
•  Miss? counter += 19 
•  Counter positive? More than 1 miss per 19 hits (%miss > 5%) 
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Dynamic Resizing: How to Resize? 

•  Reduce ways  
•  [“Selective Cache Ways”, Albonesi, ISCA-98] 
+  Resizing doesn’t change mapping of blocks to sets → simple 
–  Lose associativity 

•  Reduce sets  
•  [“Resizable Cache Design”, Yang+, HPCA-02] 
–  Resizing changes mapping of blocks to sets → tricky 

•  When cache made bigger, need to relocate some blocks 
•  Actually, just flush them 

•  Why would anyone choose this way? 
+ More flexibility: number of ways typically small 
+ Lower %miss: for fixed capacity, higher associativity better 



Drowsy Caches 

•  Circuit technique to reduce leakage power 
•  Lower Vdd à Much lower leakage  
•  But too low Vdd à Unreliable read/destructive read 

•  Key: Drowsy state (low Vdd) to hold value w/ low leakage 
•  Key: Wake up to normal state (high Vdd) to access 

•  1-3 cycle additional latency 
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Low Vdd 

High Vdd 

Drowsy 

Vdd to cache SRAM 
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Memory Hierarchy Design 
•  Important: design hierarchy components together 
•  I$, D$: optimized for latencyhit and parallel access 

•  Insns/data in separate caches (for bandwidth) 
•  Capacity: 8–64KB, block size: 16–64B, associativity: 1–4 
•  Power: parallel tag/data access, way prediction? 
•  Bandwidth: banking or multi-porting/replication 
•  Other: write-through or write-back 

•  L2: optimized for %miss, power (latencyhit: 10–20) 
•  Insns and data in one cache (for higher utilization, %miss) 
•  Capacity: 128KB–2MB, block size: 64–256B, associativity: 4–16 
•  Power: parallel or serial tag/data access, banking 
•  Bandwidth: banking 
•  Other: write-back 

•  L3: starting to appear (latencyhit = 30-50) 
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Hierarchy: Inclusion versus Exclusion 

•  Inclusion 
•  A block in the L1 is always in the L2 
•  Good for write-through L1s (why?) 

•  Exclusion 
•  Block is either in L1 or L2 (never both) 
•  Good if L2 is small relative to L1  

•  Example: AMD’s Duron 64KB L1s, 64KB L2 

•  Non-inclusion 
•  No guarantees 
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Memory Performance Equation 

•  For memory component M 
•  Access: read or write to M 
•  Hit: desired data found in M 
•  Miss: desired data not found in M 

•  Must get from another (slower) component 
•  Fill: action of placing data in M 

•  %miss (miss-rate): #misses / #accesses 
•  thit: time to read data from (write data to) M 
•  tmiss: time to read data into M 

•  Performance metric 
•  tavg: average access time 

tavg = thit + %miss * tmiss 

CPU 

M 

thit 

tmiss 

%miss 
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Hierarchy Performance 

tavg  
tavg-M1 

thit-M1 + (%miss-M1*tmiss-M1) 
thit-M1 + (%miss-M1*tavg-M2) 
thit-M1 + (%miss-M1*(thit-M2 + (%miss-M2*tmiss-

M2))) 
thit-M1 + (%miss-M1* (thit-M2 + (%miss-M2*tavg-

M3))) 
… 

tmiss-M3 = tavg-M4 

CPU 

M1 

M2 

M3 

M4 

tmiss-M2 = tavg-M3 

tmiss-M1 = tavg-M2 

tavg = tavg-M1 
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Local vs Global Miss Rates 

•  Local hit/miss rate: 
•  Percent of references to cache hit (e.g, 90%) 
•  Local miss rate is (100% - local hit rate), (e.g., 10%) 

•  Global hit/miss rate: 
•  Misses per instruction (1 miss per 30 instructions) 
•  Instructions per miss (3% of instructions miss) 
•  Above assumes loads/stores are 1 in 3 instructions 

•  Consider second-level cache hit rate 
•  L1: 2 misses per 100 instructions 
•  L2: 1 miss per 100 instructions  
•  L2 “local miss rate” -> 50% 
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Performance Calculation I 

•  Parameters 
•  Reference stream: all loads 
•  D$: thit = 1ns, %miss = 5% 
•  L2: thit = 10ns, %miss = 20% 
•  Main memory: thit = 50ns 

•  What is tavgD$ without an L2? 
•  tmissD$ = thitM 

•  tavgD$ = thitD$ + %missD$*thitM = 1ns+(0.05*50ns) = 3.5ns 

•  What is tavgD$ with an L2? 
•  tmissD$ = tavgL2 
•  tavgL2 = thitL2+%missL2*thitM = 10ns+(0.2*50ns) = 20ns 
•  tavgD$ = thitD$ + %missD$*tavgL2 = 1ns+(0.05*20ns) = 2ns 
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Performance Calculation II 

•  In a pipelined processor, I$/D$ thit is “built in” (effectively 
0) 

•  Parameters 
•  Base pipeline CPI = 1 
•  Instruction mix: 30% loads/stores 
•  I$: %miss = 2%, tmiss = 10 cycles 
•  D$: %miss = 10%, tmiss = 10 cycles 

•  What is new CPI? 
•  CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle 
•  CPID$ = %memory*%missD$*tmissD$ = 0.30*0.10*10 cycles = 0.3 cycle 
•  CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3= 1.5 
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An Energy Calculation 

•  Parameters 
•  2-way SA D$ 
•  10% miss rate 
•  5µW/access tag way, 10µW/access data way 

•  What is power/access of parallel tag/data design? 
•  Parallel: each access reads both tag ways, both data ways 

•  Misses write additional tag way, data way (for fill) 
•  [2 * 5µW + 2 * 10µW] + [0.1 * (5µW + 10µW)] = 31.5 µW/access  

•  What is power/access of serial tag/data design? 
•  Serial: each access reads both tag ways, one data way 

•  Misses write additional tag way (actually…) 
•  [2 * 5µW + 10µW] + [0.1 * 5µW] = 20.5 µW/access  
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Summary 
•  Average access time of a memory component 

•  latencyavg = latencyhit + %miss * latencymiss 
•  Hard to get low latencyhit and %miss in one structure → hierarchy 

•  Memory hierarchy 
•  Cache (SRAM) → memory (DRAM) → swap (Disk) 
•  Smaller, faster, more expensive → bigger, slower, cheaper 

•  Cache ABCs (capacity, associativity, block size) 
•  3C miss model: compulsory, capacity, conflict 

•  Performance optimizations 
•  %miss: victim buffer, prefetching 
•  latencymiss: critical-word-first/early-restart, lockup-free design 

•  Power optimizations: way prediction, dynamic resizing 
•  Write issues 

•  Write-back vs. write-through/write-allocate vs. write-no-allocate 
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Backups 
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SRAM Technology 

•  SRAM: static RAM 
•  Static: bits directly connected to power/ground 

•  Naturally/continuously “refreshed”, never decay 
•  Designed for speed 

•  Implements all storage arrays in real processors 
•  Register file, caches, branch predictor, etc. 
•  Everything except pipeline latches 

•  Latches vs. SRAM 
•  Latches: singleton word, always read/write same one 
•  SRAM: array of words, always read/write different one 

•  Address indicates which one 
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(CMOS) Memory Components 

•  Interface 
•  N-bit address bus (on N-bit machine) 
•  Data bus 

•  Typically read/write on same data bus 
•  Can have multiple ports: address/data bus pairs 
•  Can be synchronous: read/write on clock edges 
•  Can be asynchronous: untimed “handshake” 

M 

address data 
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SRAM: First Cut 

•  4x2 (4 2-bit words) RAM 
•  2-bit addr 

•  First cut: bits are D-Latches 
•  Write port 

•  Addr decodes to enable signals 
•  Read port 

•  Addr decodes to mux selectors 
–  1024 input OR gate? 
–  Physical layout of output wires 

•  RAM width ∝ M 
•  Wire delay ∝ wire length 

read-data1 
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SRAM: Second Cut 

•  Second cut: tri-state wired-OR 
•  Read mux using tri-states 

+ Scalable, distributed “muxes” 
+ Better layout of output wires 

•  RAM width independent of M 

•  Standard RAM 
•  Bits in word connected by wordline 

•  1-hot decode address 
•  Bits in position connected by bitline 

•  Shared input/output wires 
•  Port: one set of wordlines/bitlines 
•  Grid-like design read-data1 

0 0 

1 1 

1 0 

1 0 

read-data0 

write-data1 write-data0 
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SRAM: Third Cut 

•  Third cut: replace latches with… 
–  28 transistors per bit 

•  Cross-coupled inverters (CCI) 
+  4 transistors 
•  Convention 

•  Right node is bit, left is ~bit 
•  Non-digital interface 

•  What is the input and output? 
•  Where is write enable? 

•  Implement ports in “analog” way 
•  Transistors, not full gates 

OUT WE 

IN 

bit 
OUT? IN? 

~bit 
IN? OUT? 
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SRAM: Register Files and Caches 

•  Two different SRAM port styles 
•  Regfile style 

•  Modest size: <4KB 
•  Many ports: some read-only, some write-only 
•  Write and read both take half a cycle (write first, read second) 

•  Cache style 
•  Larger size: >8KB 
•  Few ports: read/write in a single port 
•  Write and read can both take full cycle 
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Regfile-Style Read Port 

•  Two phase read 
•  Phase I: clk = 0 

•  Pre-charge bitlines to 1 
•  Negated bitlines are 0 

•  Phase II: clk = 1 
•  One wordline goes high 
•  All “1” bits in that row 

discharge their bitlines to 0 
•  Negated bitlines go to 1 
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Read Port In Action: Phase I 

•  CLK = 0 
•  p-transistors conduct 
•  Bitlines “pre-charge” to 1 
•  rdata1-0 are 0 

CLK=0 
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dd
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rdata1 rdata0 
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0 0 
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Read Port In Action: Phase II 

•  raddr = 1 
•  CLK = 1 

•  p-transistors close 
•  wordline1 = 1 
•  “1” bits on wordline1 create path 

from bitline to ground 
•  SRAM[1] 

•  Corresponding bitlines discharge 
•  bitline1 

•  Corresponding rdata bits go to 1 
•  rdata1 

•  That’s a read 

CLK=1 
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Regfile-Style Write Port 

•  Two phase write 
•  Phase I: clk = 1 

•  Stabilize one wordline high  
•  Phase II: clk = 0 

•  Open pass-transistors 
•  “Overwhelm” bits in selected word 

•  Actually: two clocks here 
•  Both phases in first half 

CLK 

w
ad

dr
 

wdata1 wdata0 

  pass transistor: like a tri-state buffer 

0 

1 0 

1 
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A 2-Read Port 1-Write Port Regfile 

CLK 

rdata10 rdata20 

wdata0 

rdata11 rdata21 

wdata1 

RD 

RS1 

RS2 

SRAM cell 

1 

0 

0 

1 
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Cache-Style Read/Write Port 

•  Double-ended bitlines 
•  Connect to both sides of bit 

•  Two-phase write 
•  Just like a register file 

•  Two phase read 
•  Phase I: clk = 1 

•  Equalize bitline pair voltage 
•  Phase II: clk = 0 

•  One wordline high 
•  “1 side” bitline swings up 
•  “0 side” bitline swings 

down 
•  Sens-amp translates swing 

addr 

wdata1 

sense-amplifier sense-amplifier 

~wdata1 wdata0 ~wdata0 

rdata1 rdata0 

RE&CLK 

WE&~CLK 

RE&~CLK || 
WE&CLK 

0 1 

1 1 
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Read/Write Port in Read Action: Phase I 
•  Phase I: clk = 1 

•  Equalize voltage on bitline pairs 
•  To (nominally) 0.5 

ad
dr

 

sense-amplifier sense-amplifier 

rdata1 rdata0 

RE&CLK 

RE&~CLK  
0 1 

1 1 

0.5 0.5 0.5 0.5 
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Read/Write Port in Read Action: Phase II 
•  Phase II: clk = 0 

•  wordline1 goes high 
•  “1 side” bitlines swing high 0.6 
•  “0 side” bitlines swing low 0.4 
•  Sens-amps interpret swing 

ad
dr

 

sense-amplifier sense-amplifier 

rdata1 rdata0 

RE&CLK 

RE&~CLK  
0 1 

1 0 

0.4 0.6 0.6 0.4 

1 0 
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Cache-Style SRAM Latency 
•  Assume 

•  M N-bit words 
•  Some minimum wire spacing L 
•  CCIs occupy no space 

•  4 major latency components: taken in series  
•  Decoder: ∝ log2M 
•  Wordlines: ∝ 2NL (cross 2N bitlines) 
•  Bitlines: ∝ ML (cross M wordlines) 
•  Muxes + sens-amps: constant 
•  32KB SRAM: red components contribute about equally 

•  Latency: ∝ (2N+M)L 
•  Make SRAMs as square as possible: minimize 2N+M 

•  Latency: ∝ √#bits 

sa 

0 1 
1 0 

sa 

N 

M 
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Multi-Ported Cache-Style SRAM Latency 

•  Previous calculation had hidden constant 
•  Number of ports P 

•  Recalculate latency components  
•  Decoder: ∝ log2M (unchanged) 
•  Wordlines: ∝ 2NLP (cross 2NP bitlines) 
•  Bitlines: ∝ MLP (cross MP wordlines) 
•  Muxes + sens-amps: constant (unchanged) 

•  Latency: ∝ (2N+M)LP 
•  Latency: ∝  √#bits * #ports 

•  How does latency scale? 

0 1 

1 0 

sa sa 

sa sa 

sa 

0 1 
1 0 

sa 
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Multi-Ported Cache-Style SRAM Power 

•  Same four components for power 
•  Pdynamic = C * VDD

2 * f, what is C? 
•  Decoder: ∝ log2M 
•  Wordlines: ∝ 2NLP 

–  Huge C per wordline (drives 2N gates) 
+ But only one ever high at any time (overall consumption low) 

•  Bitlines: ∝ MLP 
–  C lower than wordlines, but large 
+ Vswing << VDD (C * Vswing

2 * f) 
•  Muxes + sens-amps: constant 
•  32KB SRAM: sens-amps are 60–70% 

•  How does power scale? 

0 1 

1 0 

sa sa 

sa sa 
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Multi-Porting an SRAM 
•  Why multi-porting? 

•  Multiple accesses per cycle 

•  True multi-porting (physically adding a port) not good 
+  Any combination of accesses will work 
–  Increases access latency, energy ∝ P, area ∝ P2 

•  Another option: pipelining 
•  Timeshare single port on clock edges (wave pipelining: no latches) 
+  Negligible area, latency, energy increase 
–  Not scalable beyond 2 ports 

•  Yet another option: replication 
•  Don’t laugh: used for register files, even caches (Alpha 21164) 
•  Smaller and faster than true multi-porting 2*P2 < (2*P)2 
+  Adds read bandwidth, any combination of reads will work 
–  Doesn’t add write bandwidth, not really scalable beyond 2 ports 
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Banking an SRAM 

•  Still yet another option: banking (inter-leaving) 
•  Divide SRAM into banks 
•  Allow parallel access to different banks 
•  Two accesses to same bank? bank-conflict, one waits 
•  Low area, latency overhead for routing requests to banks 
•  Few bank conflicts given sufficient number of banks 

•  Rule of thumb: N simultaneous accesses → 2N banks 

•  How to divide words among banks? 
•  Round robin: using address LSB (least significant bits) 
•  Example: 16 word RAM divided into 4 banks 
•  b0: 0,4,8,12; b1: 1,5,9,13; b2: 2,6,10,14; b3: 3,7,11,15 
•  Why? Spatial locality 
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A Banked Cache 
•  Banking a cache 

•  Simple: bank SRAMs 
•  Which address bits determine bank? LSB of index 
•  Bank network assigns accesses to banks, resolves conflicts 

–  Adds some latency too 

0 

1022 

address0 

= 

1:0 [31:12] [11:3] 0 

data0 address1 

1:0 [31:12] [11:3] 1 

data1 

1 

1023 

= 

<< << 

hit1? hit0? 
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SRAM Summary 

•  Large storage arrays are not implemented “digitally” 
•  SRAM implementation exploits analog transistor properties 

•  Inverter pair bits much smaller than latch/flip-flop bits 
•  Wordline/bitline arrangement gives simple “grid-like” routing 
•  Basic understanding of read, write, read/write ports 

•  Wordlines select words 
•  Overwhelm inverter-pair to write 
•  Drain pre-charged line or swing voltage to read 

•  Latency proportional to √#bits * #ports 
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Aside: Physical Cache Layout I 

•  Logical layout 
•  Data and tags mixed together 

•  Physical layout 
•  Data and tags in separate RAMs 

512 
513 

1022 
1023 

514 

1:0 

data 

[10:2] << 

address 

= 

hit? 

0 
1 

510 
511 

2 

= 

[31:11] 
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Physical Cache Layout II 

•  Logical layout 
•  Data array is monolithic 

•  Physical layout 
•  Each data “way” in separate array 

512 

513 

1022 

1023 

514 

1:0 

data 

[10:2] 

address 

0 

1 

510 

511 

2 

[31:11] << 
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word0 word1 word2 word3 

Physical Cache Layout III 
•  Logical layout 

•  Data blocks are contiguous 

•  Physical layout 
•  Only if full block needed on read 

•  E.g., I$ (read consecutive words) 
•  E.g., L2 (read block to fill D$,I$) 

•  For D$ (access size is 1 word)… 
•  Words in same data blocks are bit-interleaved 

•  Word0.bit0 adjacent to word1.bit0 
+ Builds word selection logic into array 
+ Avoids duplicating sens-amps/muxes 

512 

513 

1022 

1023 

514 

1:0 

data 

[10:2] 

address 

0 

1 

510 

511 

2 

[31:11] 
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Physical Cache Layout IV 

•  Logical layout 
•  Arrays are vertically contiguous 

•  Physical layout 
•  Vertical partitioning to minimize wire lengths 
•  H-tree: horizontal/vertical partitioning layout 

•  Applied recursively 
•  Each node looks like an H 

512 

513 

1022 

1023 

767 

data address 

0 

1 

510 

511 

255 

256 768 
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Physical Cache Layout 

•  Arrays and h-trees make caches easy to spot in µgraphs 
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Full-Associativity 

•  How to implement full (or at least high) associativity? 
•  1K tag matches? unavoidable, but at least tags are small 
•  1K data reads? Terribly inefficient 

1 1023 

1:0 [31:2] 

0 1022 

= = = = 
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Full-Associativity with CAMs 

•  CAM: content associative memory 
•  Array of words with built-in comparators 
•  Matchlines instead of bitlines 
•  Output is “one-hot” encoding of match 

•  FA cache? 
•  Tags as CAM 
•  Data as RAM 

0 

1 

1022 

1023 

1:0 [31:2] 

= 

•  Hardware is not software 
•  No such thing as software CAM 

= 
= 

= 
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CAM Circuit 

•  CAM: reverse RAM 
•  Bitlines are inputs 

•  Called matchlines 
•  Wordlines are outputs 

•  Two phase match 
•  Phase I: clk=0 

•  Pre-charge wordlines 
•  Phase II: clk=1 

•  Enable matchlines 
•  Non-matching bits 

dis-charge wordlines 

~match1 ~match0 match1 
CLK 

match0 

0 1 

0 1 
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CAM Circuit In Action: Phase I 

•  Phase I: clk=0 
•  Pre-charge wordlines 

~match1 ~match0 match1 
CLK 

match0 

0 1 

0 1 

0 1 1 0 

1 

1 
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CAM Circuit In Action: Phase II 

•  Phase II: clk=1 
•  Enable matchlines  

•  Note: bits flipped 
•  Non-matching bit 

discharges wordline 
•  ANDs matches 
•  NORs non-matches 

•  Similar technique for 
doing a fast OR for hit 
detection 

~match1 ~match0 match1 
CLK 

match0 

0 1 

0 1 

0 1 1 0 

1 

0 
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CAM Upshot 

•  CAMs: effective but expensive 
–  Matchlines are very expensive (for nasty EE reasons) 
•  Used but only for 16 or 32 way (max) associativity 
•  Not for 1024-way associativity 

–  No good way of doing something like that 
+ No real need for it, either 


