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This Unit: Main Memory 

•  Memory hierarchy review 
•  Virtual memory 

•  Address translation and page tables 
•  Virtual memory’s impact on caches 
•  Page-based protection 

•  Organizing a memory system 
•  Bandwidth matching 
•  Error correction 
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Static Random Access Memory 
-  Read Sequence 

1. address decode 
2. drive row select 
3. selected bit-cells drive bitlines 
4. diff. sensing and col. select 
5. precharge all bitlines 

-  Access latency dominated by steps 2 and 3 
-  Cycling time dominated by steps 2, 3 and 5 

-  step 2 proportional to 2m 

-  step 3 and 5 proportional to 2n 

-  usually encapsulated by synchronous 
(sometime pipelined) interface logic 
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Dynamic Random Access Memory 

-  Bits stored as charges on node 
capacitance (non-restorative) 
-  bit cell loses charge when read 
-  bit cell loses charge over time 

-  Read Sequence 
1~3 same as SRAM 
4. a “flip-flopping” sense amp amplifies 

and regenerates the bitline, data bit is 
mux’ed out 

5. precharge all bitlines 

-  A DRAM controller must periodically, 
either distributed or in a burst, read all 
rows within the allowed refresh time 
(10s of ms) synchronous interfaces 

-  various hacks to allow faster repeated 
reads to the same row  
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Brief History of DRAM 

•  DRAM (memory): a major force behind computer industry 
•  Modern DRAM came with introduction of IC (1970) 
•  Preceded by magnetic “core” memory (1950s) 

•  Each cell was a small magnetic “donut”  
•  And by mercury delay lines before that (ENIAC) 

•  Re-circulating vibrations in mercury tubes 

 
“the one single development that put computers on their feet was the 

invention of a reliable form of memory, namely the core memory… It’s 
cost was reasonable, it was reliable, and because it was reliable it 
could in due course be made large” 

 Maurice Wilkes 
Memoirs of a Computer Programmer, 1985 



DRAM Basics [Jacob and Wang] 

•  Precharge and Row Access 
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DRAM Basics, cont. 

•  Column Access 
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DRAM Basics, cont. 

•  Data Transfer 
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Open v. Closed Pages 

•  Open Page 
•  Row stays active until another row needs to be accessed 
•  Acts as memory-level cache to reduce latency 
•  Variable access latency complicates memory controller 
•  Higher power dissipation (sense amps remain active) 

•  Closed Page 
•  Immediately deactivate row after access 
•  All accesses become Activate Row, Read/Write, Precharge  

•  Complex power v. performance trade off 
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DRAM Bandwidth 

•  Use multiple DRAM chips to increase bandwidth 
•  Recall, access are the same size as second-level cache 
•  Example, 16 2-byte wide chips for 32B access 

•  DRAM density increasing faster than demand 
•  Result: number of memory chips per system decreasing 

•  Need to increase the bandwidth per chip 
•  Especially important in game consoles 
•  SDRAM è DDR è DDR2 è FBDIMM è DDR3 è ??? 
•  Rambus - high-bandwidth memory 

•  Used by several game consoles 
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DRAM Evolution 

•  Survey by Cuppu et al. 
1.  Early Asynchronous Interface 
2.  Fast Page Mode/Nibble Mode/Static Column (skip)  
3.  Extended Data Out 
4.  Synchronous DRAM & Double Data Rate 
5.  Rambus & Direct Rambus 
6.  FB-DIMM 
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Old 64MbitDRAM Example from Micron 

Clock Recovery 
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Extended Data Out (EDO) 

Row add Column add 

Data 

Column add 

Data 

RAS’ 

CAS’ 

•  Similar to Fast Page Mode 
•  But overlapped Column Address assert with Data Out 

Column add 

Data 
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Synchronous DRAM (SDRAM) 

Row add 
Column add 

Data 

RAS’ 

CAS’ 

Data Data 

•  Add Clock and Wider data! 
•  Also multiple transfers per RAS/CAS 
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Enhanced SDRAM & DDR 

•  Evolutionary Enhancements on SDRAM: 
1.  ESDRAM (Enhanced): Overlap row buffer access with 

refresh 

2.  DDR (Double Data Rate): Transfer on both clock edges 
3.  DDR2’s small improvements 

 lower voltage, on-chip termination, driver calibration 
 prefetching, conflict buffering 

4.  DDR3, more small improvements 
 lower voltage, 2X speed, 2X prefetching,  
 2X banks, “fly-by topology”, automatic calibration 



Wide v. Narrow Interfaces 

•  High frequency è short wavelength è data skew issues 
•  Balance wire lengths 
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DDR-2 serpentine board routing FB-DIMM board routing 
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Rambus RDRAM 

•  High-frequency, narrow channel 
•  Time multiplexed “bus” è dynamic point-to-point channels 
•  ~40 pins è 1.6GB/s 

•  Proprietary solution 
•  Never gained industry-wide acceptance (cost and power) 
•  Used in some game consoles (e.g., PS2) 
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FB-DIMM 



BOB: Buffer on (mother-) Board 
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BIG MEMORIES

Bruce Jacob

University of 
Maryland

SLIDE

Solution I: BOB

Buffer On (mother-)Board
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Single Chip BOB System 

BIG MEMORIES

Bruce Jacob

University of 
Maryland

SLIDE

Solution II: Micron HMC

A single-chip BOB system
10
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Micron HMC 
BIG MEMORIES

Bruce Jacob

University of 
Maryland

SLIDE

Solution II: Micron HMC

9
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DRAM Reliability 
•  One last thing about DRAM technology… errors 

•  DRAM bits can flip from 0è1 or 1è0 
•  Small charge stored per bit 
•  Energetic α-particle strikes disrupt stored charge 
•  Many more bits 

•  Modern DRAM systems: built-in error detection/correction 
•  Today all servers; most new desktop and laptops 

•  Key idea: checksum-style redundancy 
•  Main DRAM chips store data, additional chips store f(data) 

•  |f(data)| < |data| 
•  On read: re-compute f(data), compare with stored f(data) 

•  Different ? Error… 
•  Option I (detect): kill program  
•  Option II (correct): enough information to fix error? fix and go on 



CS/ECE 752 (Wood): Main Memory 23 

DRAM Error Detection and Correction 

•  Performed by memory controller (not the DRAM chip) 
•  Error detection/correction schemes distinguished by… 

•  How many (simultaneous) errors they can detect 
•  How many (simultaneous) errors they can correct 

4M 
x 

2B 

4M 
x 

2B 

4M 
x 

2B 

4M 
x 

2B 
0 1 2 3 

4M 
x 

2B 
f 

f 

error data address 



CS/ECE 752 (Wood): Main Memory 24 

•  Divide memory into M banks and “interleave” addresses 
across them, so word A is  
•   in bank (A mod M)  
•   at word (A div M) 

 
Interleaved memory increases memory BW without wider bus   

•  Use parallelism in memory banks to hide memory latency 

Interleaved Main Memory 

Bank 0 Bank n Bank 2 Bank 1 

Doubleword in bank Bank Word in doubleword 

Copyright © 2002 Falsafi, from Hill, 
Smith, Sohi, Vijaykumar, and Wood 

word 0 
word n 
word 2n 

word 1 
word n+1 
word 2n+1 

word 2 
word n+2 
word 2n+2 

word n-1 
word 2n-1 
word 3n-1 

PA 
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Block interleaved memory systems 

CPU 
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•  Cache blocks map to separate memory controllers 
•  Interleave across DRAMs w/i a MC 
•  Interleave across intra-DRAM banks w/i a DRAM 
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row buffer 

Research: Processing in Memory 

•  Processing in memory 
•  Embed some ALUs in DRAM 

•  Picture is logical, not physical 
•  Do computation in DRAM rather than… 

•  Move data to from DRAM to CPU 
•  Compute on CPU 
•  Move data from CPU to DRAM 

•  Will come back to this in “vectors” unit 

•  Old: IRAM: intelligent RAM 
•  Berkeley research project  
•  [Patterson+,ISCA’97] 

•  New: 3D or 2.5D die stacking 

DRAM 
bit array 

row buffer 

data 

address 
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Memory Hierarchy Review 
•  Storage: registers, memory, disk 

•  Memory is the fundamental element 

•  Memory component performance 
•  tavg = thit + %miss * tmiss 
•  Can’t get both low thit and %miss in a single structure 

•  Memory hierarchy 
•  Upper components: small, fast, expensive 
•  Lower components: big, slow, cheap 
•  tavg of hierarchy is close to thit of upper (fastest) component 

•  10/90 rule: 90% of stuff found in fastest component 
•  Temporal/spatial locality: automatic up-down data movement 
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Concrete Memory Hierarchy 
•  1st/2nd levels: caches (I$, D$, L2) 

•  Made of SRAM 
•  Last unit 

•  3rd level: main memory 
•  Made of DRAM 
•  Managed in software  
•  This unit 

•  4th level: disk (swap space) 
•  Made of magnetic iron oxide discs 
•  Manage in software 
•  Next unit 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

Disk 
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Memory Organization 

•  Paged “virtual” memory 
•  Programs want a conceptual view of a memory of unlimited size 
•  Use disk as a backing store when physical memory is exhausted 
•  Memory acts like a cache, managed (mostly) by software 

•  How is the “memory as a cache” organized? 
•  Block size?   Pages that are typically 4KB or larger 
•  Associativity?  Fully associative 
•  Replacement policy?   In software 
•  Write-back vs. write-through?   Write-back 
•  Write-allocate vs. write-non-allocate?  Write allocate 
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Low %miss At All Costs 
•  For a memory component: thit vs. %miss tradeoff 

•  Upper components (I$, D$) emphasize low thit 
•  Frequent access → minimal thit important 
•  tmiss is not bad → minimal %miss less important 
•  Low capacity/associativity/block-size, write-back or write-thru 

•  Moving down (L2) emphasis turns to %miss 
•  Infrequent access → minimal thit less important 
•  tmiss is bad → minimal %miss important 
•  High capacity/associativity/block size, write-back 

•  For memory, emphasis entirely on %miss 
•  tmiss is disk access time (measured in ms, not ns) 
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Memory Organization Parameters 

Parameter I$/D$ L2 Main Memory 

thit 1-2ns 5-15ns 100ns 

tmiss 5-15ns 100ns 10ms (10M ns) 

Capacity 8–64KB 256KB–8MB 256MB–1TB 

Block size 16–32B 32–256B 8–64KB pages 

Associativity 1–4 4–16 Full 

Replacement Policy LRU/NMRU LRU/NMRU working set 
Write-through? Either No No 

Write-allocate? Either Yes Yes 

Write buffer? Yes Yes No 

Victim buffer? Yes Maybe No 

Prefetching? Either Yes Software 
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Software Managed Memory 

•  Isn’t full associativity difficult to implement? 
•  Yes … in hardware 
•  Implement fully associative memory in software 

•  Let’s take a step back… 
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Virtual Memory 
•  Idea of treating memory like a cache… 

•  Contents are a dynamic subset of  program’s address space 
•  Dynamic content management transparent to program 

•  Original motivation: capacity 
•  Atlas (1962): Fully-associative cache of pages, called one-level store 
•  16K words of core memory;  96K words of drum storage 

•  Successful motivation: compatibility 
•  IBM System 370: a family of computers with one software suite 
+  Same program could run on machines with different memory sizes 

•  Caching mechanism made it appear as if memory was 2N bytes 
•  Regardless of how much there actually was 

–  Prior, programmers explicitly accounted for memory size 

•  Virtual memory 
•  Virtual: “in effect, but not in actuality” (i.e., appears to be, but isn’t) 
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Virtual Memory 
•  Programs use virtual addresses (VA) 

•  0…2N–1 
•  VA size also referred to as machine size 
•  E.g., Pentium4 is 32-bit, SPARC is 64-bit 

•  Memory uses physical addresses (PA) 
•  0…2M–1 (typically M<N, especially if N=64) 
•  2M is most physical memory machine supports 

•  VA→PA at page granularity (VP→PP) 
•  By “system” 
•  Mapping need not preserve contiguity 
•  VP need not be mapped to any PP 
•  Unmapped VPs live on disk (swap) 

… 

… 

Disk 

Program 

Main Memory 

code heap stack 
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Uses of Virtual Memory 

•  Virtual memory is quite a useful feature 
•  Automatic, transparent memory management just one use 
•  “Functionality problems are solved by adding levels of indirection” 

•  Example: program isolation and multiprogramming 
•  Each process thinks it has 2N bytes of address space 
•  Each thinks its stack starts at address 0xFFFFFFFF 
•  System maps VPs from different processes to different PPs 

+ Prevents processes from reading/writing each other’s memory 

… 

… 

Program1 … Program2 
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More Uses of Virtual Memory 

•  Isolation and Protection 
•  Piggy-back mechanism to implement page-level protection 
•  Map virtual page to physical page 

 … and to Read/Write/Execute protection bits in page table 
•  In multi-user systems  

•  Prevent user from accessing another’s memory 
•  Only the operating system can see all system memory 

•  Attempt to illegal access, to execute data, to write read-only data? 
•  Exception → OS terminates program 

•  Inter-process communication 
•  Map virtual pages in different processes to same physical page 
•  Share files via the UNIX mmap() call 
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Address Translation 

•  VA→PA mapping called address translation 
•  Split VA into virtual page number (VPN) and page offset (POFS) 
•  Translate VPN into physical page number (PPN) 
•  POFS is not translated 
•  VA→PA = [VPN, POFS] → [PPN, POFS] 

•  Example above 
•  64KB pages → 16-bit POFS 
•  32-bit machine → 32-bit VA → 16-bit VPN  
•  Maximum 256MB memory → 28-bit PA → 12-bit PPN 

POFS[15:0] virtual address[31:0] VPN[31:16] 

POFS[15:0] physical address[25:0] PPN[27:16] 
translate don’t touch 
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Mechanics of Address Translation 

•  How are addresses translated? 
•  In software (now) but with hardware acceleration (a little later) 

•  Each process allocated a page table (PT) 
•  Managed by the operating system 
•  Maps VPs to PPs or to disk (swap) addresses 

•  VP entries empty if page never referenced 
•  Translation is table lookup 

struct { 
   union { int ppn, disk_block; }  
   int is_valid, is_dirty; 
} PTE; 
struct PTE pt[NUM_VIRTUAL_PAGES]; 
 
int translate(int vpn) { 
  if (pt[vpn].is_valid) 
     return pt[vpn].ppn;  
} 

PT 

vp
n 

Disk(swap) 
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Page Table Size 
•  How big is a page table on the following machine? 

•  4B page table entries (PTEs) 
•  32-bit machine 
•  4KB pages 

•  32-bit machine → 32-bit VA → 4GB virtual memory 
•  4GB virtual memory / 4KB page size → 1M VPs 
•  1M VPs * 4B PTE → 4MB 

•  How big would the page table be with 64KB pages? 
•  How big would it be for a 64-bit machine? 

•  Page tables can get big 
•  There are ways of making them smaller 
•  PA = f(VA) è many different data structures possible 
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Multi-Level Page Table 
•  One way: multi-level page tables 

•  Tree of page tables 
•  Lowest-level tables hold PTEs 
•  Upper-level tables hold pointers to lower-level tables 
•  Different parts of VPN used to index different levels 

•  Example: two-level page table for machine on last slide 
•  Compute number of pages needed for lowest-level (PTEs) 

•  4KB pages / 4B PTEs → 1K PTEs/page 
•  1M PTEs / (1K PTEs/page) → 1K pages 

•  Compute number of pages needed for upper-level (pointers) 
•  1K lowest-level pages → 1K pointers 
•  1K pointers * 32-bit VA → 4KB → 1 upper level page 
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Multi-Level Page Table 

•  20-bit VPN 
•  Upper 10 bits index 1st-level table 
•  Lower 10 bits index 2nd-level table 

1st-level 
“pointers” 

2nd-level 
PTEs 

VPN[9:0] VPN[19:10] 

struct { 
   union { int ppn, disk_block; }  
   int is_valid, is_dirty; 
} PTE; 
struct { 
   struct PTE ptes[1024]; 
} L2PT; 
struct L2PT *pt[1024]; 
 
int translate(int vpn) { 
  struct L2PT *l2pt = pt[vpn>>10]; 
  if (l2pt && l2pt->ptes[vpn&1023].is_valid) 
     return l2pt->ptes[vpn&1023].ppn;  
} 

pt “root” 
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Multi-Level Page Table (PT) 

•  Have we saved any space? 
•  Isn’t total size of 2nd level tables same as single-level 

table (i.e., 4MB)? 
•  Yes, but… 

•  Large virtual address regions unused 
•  Corresponding 2nd-level tables need not exist 
•  Corresponding 1st-level pointers are null 

•  Example: 2MB code, 64KB stack, 16MB heap 
•  Each 2nd-level table maps 4MB of virtual addresses 
•  1 for code, 1 for stack, 4 for heap, (+1 1st-level) 
•  7 total pages = 28KB (much less than 4MB) 
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Alternative: Inverted/Hashed Page Tables    

hash PID 
 

Table 
Offset 

Base of Table 

VPN 
+ PA of IPTE 

Physical 
Memory 

VPN PID PTE 

Inverted 
Page Table 

Size of Inverted Page table only needs to be 
proportional to the size of the physical memory 
 
Each VPN can only be mapped to a small set 
of entries according to a hash function 
 
To translate a VPN, check all allowed table 
entries for matching VPN and PID 
 
 

How many memory lookups per translation? 
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Address Translation Mechanics 
•  The six questions 

•  What? address translation 
•  Why? compatibility, multi-programming, protection 
•  How? page table 
•  Who performs it? 
•  When do you translate? 
•  Where does page table reside? 

•  Conceptual view:  
•  Translate virtual address before every cache access 
•  Walk the page table for every load/store/instruction-fetch 
•  Disallow program from modifying its own page table entries 

•  Actual approach: 
•  Cache translations in a “translation cache” to avoid repeated lookup 
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Translation Lookaside Buffer 

•  Functionality problem? add indirection 
•  Performance problem? add cache 
•  Address translation too slow? 

•  Cache translations in translation lookaside 
buffer (TLB) 

•  Small cache: 16–512 entries 
•  Small TLBs often fully associative (<64) 

+  Exploits temporal locality in page table (PT) 
•  What if an entry isn’t found in the TLB? 

•  Invoke TLB miss handler 

VPN PPN 
VPN PPN 
VPN PPN 

“tag” “data” 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

TLB 

PA 

PA 

VA VA 

PA PA 
TLB 
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TLB Misses and Miss Handling 

•  TLB miss: requested PTE not in TLB, search page table 
•  Software routine, e.g., Alpha, SPARC, MIPS 

•  Special instructions for accessing TLB directly 
•  Latency: one or two memory accesses + trap 

•  Hardware finite state machine (FSM), e.g., x86 
•  Store page table root in hardware register 
•  Page table root and table pointers are physical addresses 
+ Latency: saves cost of OS call 

•  In both cases, reads use the the standard cache hierarchy 
+ Allows caches to help speed up search of the page table 

•  Nested TLB miss: miss handler itself misses in the TLB 
•  Solution #1: Allow recursive TLB misses (very tricky) 
•  Solution #2: Lock TLB entries for page table into TLB 
•  Solution #3: Avoid problem using physical address in page table 



TLB Performance 

•  TLB Reach = # TLB entries * Page size 
                    = 64 * 4KB = 256KB << L2 cache size 
Solution #1: Big pages (e.g., 2MB or 1GB) 

 TLB Reach = >=128MB, but internal fragmentation 
 How to support both big and small pages? 

Solution #2: Two-level TLB 
  L1: 64 entries, L2: 512-2048 entries 

Solution #3: Software TLB (aka TSB) 
  in memory TLB: 32K entries (or more) 
    low-associativity (e.g., 2-way), longer hit time  
  Much faster than page table access 
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Page Faults 

•  Page fault: PTE not in page table 
•  Page is simply not in memory 
•  Starts out as a TLB miss, detected by OS handler/hardware FSM 

•  OS routine 
•  Choose a physical page to replace (use free list to hide latency) 

•  “Working set”: more refined software version of LRU 
•  Tries to see which pages are actively being used 
•  Balances needs of all current running applications 

•  If dirty, write to disk 
•  Most are “fast”, e.g., zero-fill-on-demand (ZFOD) 
•  Or, read missing page from disk 

•  Takes so long (~10ms), OS schedules another task 
•  Treat like a normal TLB miss from here 
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Physical (Address) Caches 
•  Memory hierarchy so far: physical caches 

•  Indexed and tagged by Pas 
•  Physically Indexed (PI) 
•  Physically Tagged (PT) 

•  Translate to PA to VA at the outset 
+  Cached inter-process communication works 

•  Single copy indexed by PA 
–  Slow: adds at least one cycle to thit 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

TLB 

PA 

VA VA 

PA PA 
TLB 

PA 
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Virtual Address Caches (VI/VT) 
•  Alternative: virtual caches 

•  Indexed and tagged by VAs (VI and VT) 
•  Translate to PAs only to access L2 
+  Fast: avoids translation latency in common case 
–  Problem: VAs from different processes are 

distinct physical locations (with different values) 
(call homonyms) 

•  What to do on process switches? 
•  Flush caches? Slow 
•  Add process IDs to cache tags 

•  Does inter-process communication work? 
•  Synonyms: multiple VAs map to same PA 

•  Can’t allow same PA in the cache twice 
•  Also a problem for DMA I/O 

•  Can be handled, but very complicated 

CPU 
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L2 

Main 
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TLB 

PA 
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VA 

VA VA 
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Parallel TLB/Cache Access (VI/PT) 

•  Compromise: access TLB in parallel 
•  In small caches, index of VA and PA the same 

•  VI == PI 
•  Use the VA to index the cache 
•  Tagged by PAs 
•  Cache access and address translation in parallel 
+  No context-switching/aliasing problems  
+  Fast: no additional thit cycles 

•  Common organization in processors today 
 

CPU 

D$ 
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Main 
Memory 

I$ TLB 

PA 

PA 
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TLB 



Itanium Prevalidated tags 

•  I$ tag is bit vector, not address tag 
•   match TLB location for hit 

•  TLB miss è I$ miss 
•  TLB size è tag size (32 entries/32 bits in Itanium 2) 
•  Requires TLB inclusion 
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I$ TLB 

VA 
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Parallel Cache/TLB Access 

•  Two ways to look at VA 
•  Cache: tag+index+offset 
•  TLB: VPN+page offset 

•  Parallel cache/TLB… 
•  If address translation 

doesn’t change index 
•  VPN/index don’t overlap 

[4:0]                 virtual tag [31:12] 

data 

index [11:5] 

address 

== 

TLB hit/miss 

== 

== 
== 

VPN [31:16] page offset [15:0] 

cache 

TLB 

cache hit/miss 

Fully associative TLB 



CS/ECE 752 (Wood): Main Memory 54 

Cache Size And Page Size 

•  Relationship between page size and L1 cache size 
•  Forced by non-overlap between VPN and IDX portions of VA 

•  Which is required for TLB access 
•  Rule: (cache size) / (associativity) ≤ page size 
•  Result: associativity increases allowable cache sizes  
•  Systems are moving towards bigger (64KB) pages 

•  To use parallel translation with bigger caches 
•  To amortize disk latency 

•  Example: Pentium 4, 4KB pages, 8KB, 2-way SA L1 data cache 

•  If cache is too big, same issues as virtually-indexed caches 
•  Other tricks can help (e.g., set-associative main memory) 

[4:0]  [31:12] index [11:5] 
VPN [31:16] page offset [15:0] 

? 
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TLB Organization 

•  Like caches: TLBs also have ABCs 
•  Capacity 
•  Associativity (At least 4-way associative, fully-associative common) 
•  What does it mean for a TLB to have a block size of two? 

•  Two consecutive VPs share a single tag 

•  Like caches: there can be L2 TLBs 
•  Why? Think about this… 

•  Rule of thumb: TLB should “cover” L2 contents 
•  In other words: (#PTEs in TLB) * page size ≥ L2 size 
•  Why? Think about relative miss latency in each… 
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Virtual Memory 
•  Virtual memory ubiquitous today 

•  Certainly in general-purpose (in a computer) processors 
•  But even many embedded (in non-computer) processors support it 

•  Several forms of virtual memory 
•  Paging (aka flat memory): equal sized translation blocks 

•  Most systems do this 
•  Segmentation: variable sized (overlapping?) translation blocks 

•  x86 used this rather than 32-bits to break 16-bit (64KB) limit 
•  Renewed interest to support long-running programs 

•  Paged segments: don’t ask 

•  How does virtual memory work when system starts up? 
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Memory Protection and Isolation 

•  Most important role of virtual memory today 

•  Virtual memory protects applications from one another 
•  OS uses indirection to isolate applications 
•  One buggy program should not corrupt the OS or other programs 
+  Comes “for free” with translation 
–  However, the protection is limited 

–  What about protection from… 
•  Viruses and worms? 

•  Stack smashing  
•  Malicious/buggy services? 

•  Other applications with which you want to communicate 
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Stack Smashing via Buffer Overflow 

•  Stack smashing via buffer overflow 
•  Oldest trick in the virus book 
•  Exploits stack frame layout and… 
•  Sloppy code: length-unchecked copy to stack buffer 
•  “Attack string”: code (128B) + &buf[0] (4B) 
•  Caller return address replaced with pointer to attack code 

•  Caller return… 
•  …executes attack code at caller’s privilege level 

•  Vulnerable programs: gzip-1.2.4, sendmail-8.7.5 

int i = 0; 
char buf[128]; 
while ((buf[i++] = getc()) != ’\n’) ; 
return; 

buf[128] 

ra 

ra 

attack 
code 

ra 

&buf[0] 
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Page-Level Protection 

•  Page-level protection 
•  Piggy-backs on translation infrastructure 
•  Each PTE associated with permission bits: Read, Write, eXecute 

•  Read/execute (RX): for code 
•  Read (R): read-only data 
•  Read/write (RW): read-write data 

•  TLB access traps on illegal operations (e.g., write to RX page)  
•  To defeat stack-smashing? Set stack permissions to RW 

•  Will trap if you try to execute &buf[0] 
+  X bits recently added to x86 for this specific purpose 
–  Unfortunately, hackers have many other tricks 

struct { 
   union { int ppn, disk_block; }  
   int is_valid, is_dirty, permissions; 
} PTE; 
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Safe and Efficient Services 

•  Scenario: module (application) A wants service B provides 
•  A doesn’t “trust” B and vice versa (e.g., B is kernel) 
•  How is service provided? 

•  Option I: conventional call in same address space 
+  Can easily pass data back and forth (pass pointers) 
–  Untrusted module can corrupt your data 

•  Option II: trap or cross address space call 
–  Copy data across address spaces: slow, hard if data uses pointers 
+  Data is not vulnerable 

•  Page-level protection helps somewhat, but… 
•  Page-level protection can be too coarse grained 
•  If modules share address space, both can change protections 



CS/ECE 752 (Wood): Main Memory 61 

Alternative to VM: base/bound registers 
•  Each process is given a non-overlapping, contiguous 

physical memory region 
•  When a process is swapped in, OS sets base to the start of 

the process’s memory region and bound to the end of the 
region 

•   On memory references, HW translation & protection check 
•    PA = EA + base 
•  provided (PA < bound), 
•  else violations 

 
 
 
 
 
 
 
 

physical mem. 

active process’s 
region 

another process’s 
region 

Base 

Bound 

privileged control 
registers 
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Also Segmented Address Space 
•  segment == a base and bound pair 
•  segmented addressing gives each process multiple segments 

•   initially, separate code and data segments 
  - 2 sets of base-and-bound reg’s for inst and data fetch 
  - allowed sharing code segments 

•   became more and more elaborate: code, data, stack, etc. 
•   also (ab)used as a way for an ISA with a small EA space to address 

a larger physical memory space 

SEG # EA 

segment 
table 

+,< base  
& 

bound 

PA 
& 

okay? 

segment tables 
must be 1.  

privileged data 
structures and 2. 
private/unique to 

each process 
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Backups 
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RAM 

•  RAM: large storage arrays 
•  Basic structure 

•  MxN array of bits (M N-bit words) 
•  This one is 4x2 

•  Bits in word connected by wordline 
•  Bits in position connected by bitline 

•  Operation 
•  Address decodes into M wordlines 
•  High wordline → word on bitlines 
•  Bit/bitline connection → read/write 

•  Access latency 
•  #ports * √#bits 

ad
dr

es
s 

wordline0 
bi

tli
ne

1 

bi
tli

ne
0 

? ? 

wordline1 
? ? 

wordline2 
? ? 

wordline3 
? ? 

0/1 

0/1 

0/1 

0/1 0/1 

0/1 

0/1 

0/1 

data 
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SRAM 

•  SRAM: static RAM 
•  Bits as cross-coupled inverters (CCI) 
–  Four transistors per bit 
–  More transistors for ports 

•  “Static” means 
•  Inverters connected to pwr/gnd 
+  Bits naturally/continuously “refreshed” 

•  Designed for speed 

ad
dr

es
s 

? ? 

? ? 

? ? 

? ? 

data 
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DRAM 

•  DRAM: dynamic RAM 
•  Bits as capacitors 
+  Single transistors as ports 
+  One transistor per bit/port 

•  “Dynamic” means 
•  Capacitors not connected to pwr/gnd 
–  Stored charge decays over time 
–  Must be explicitly refreshed 

•  Designed for density 
•  Moore’s Law 

ad
dr

es
s 

data 
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Moore’s Law 

•  Commodity DRAM parameters 
•  16X every 8 years is 2X every 2 years 

•  Not quite 2X every 18 months but still close 

Year Capacity $/MB Access time 
1980 64Kb $1500 250ns 
1988 4Mb $50 120ns 
1996 64Mb $10 60ns 
2004 1Gb $0.5 35ns 
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DRAM Operation I 

•  Read: similar to cache read 
•  Phase I: pre-charge bitlines to 0.5V 
•  Phase II: decode address, enable wordline 

•  Capacitor swings bitline voltage up(down) 
•  Sense-amplifier interprets swing as 1(0) 

–  Destructive read: word bits now discharged 

•  Write: similar to cache write 
•  Phase I: decode address, enable wordline 
•  Phase II: enable bitlines 

•  High bitlines charge corresponding capacitors 

–  What about leakage over time? 

ad
dr

es
s 

data 

sa sa 
write 
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DRAM Operation II 

•  Solution: add set of D-latches (row buffer) 

•  Read: two steps 
•  Step I: read selected word into row buffer 
•  Step IIA: read row buffer out to pins 
•  Step IIB: write row buffer back to selected word 
+  Solves “destructive read” problem 

•  Write: two  steps 
•  Step IA: read selected word into row buffer 
•  Step IB: write data into row buffer 
•  Step II: write row buffer back to selected word 

+  Also solves leakage problem 

ad
dr

es
s 

data 

sa sa 

DL DL 

r-I 

r/w-I 
r/w-II 

r 
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DRAM Refresh 

•  DRAM periodically refreshes all contents 
•  Loops through all words 

•  Reads word into row buffer 
•  Writes row buffer back into DRAM array 

•  1–2% of DRAM time occupied by refresh 

ad
dr

es
s 

data 

sa sa 

DL DL 
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DRAM Parameters 

•  DRAM parameters 
•  Large capacity: e.g., 64–256Mb 

•  Arranged as square 
+ Minimizes wire length 
+ Maximizes refresh efficiency 

•  Narrow data interface: 1–16 bit 
•  Cheap packages → few bus pins 

•  Narrow address interface: N/2 bits 
•  16Mb DRAM has a 12-bit address bus 
•  How does that work? 

DRAM 
bit array 

row buffer 

data 

address 
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Two-Level Addressing 
•  Two-level addressing 

•  Row decoder/column muxes share 
address lines 

•  Two strobes (RAS, CAS) signal which 
part of address currently on bus 

•  Asynchronous access 
•  Level 1: RAS high 

•  Upper address bits on address bus 
•  Read row into row buffer 

•  Level 2: CAS high 
•  Lower address bits on address bus 
•  Mux row buffer onto data bus 

4K x 4K 
bits 

row buffer 

[23:12] [11:2] 

data 

address 

4 1Kto1  muxes 

12
to

4K
  d

ec
od

er
 

CAS 

RAS 
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Access Latency and Cycle Time 

•  DRAM access much slower than SRAM 
•  More bits → longer wires 
•  Buffered access with two-level addressing 
•  SRAM access latency: 2–3ns 
•  DRAM access latency: 30–50ns 

•  DRAM cycle time also longer than access time 
•  Cycle time: time between start of consecutive accesses 
•  SRAM: cycle time = access time 

•  Begin second access as soon as first access finishes 
•  DRAM: cycle time = 2 * access time 

•  Why? Can’t begin new access while DRAM is refreshing row 



CS/ECE 752 (Wood): Main Memory 74 

DRAM Latency and Power Derivations 

•  Same basic form as SRAM 
•  Most of the equations are geometrically derived 
•  Same structure for decoders, wordlines, muxes 

•  Some differences 
•  Somewhat different pre-charge/sensing scheme 
•  Array access represents smaller part of total access 
•  Arrays not multi-ported 
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Building a Memory System 

•  How to build an efficient main memory 
out of standard DRAM chips? 

•  How many DRAM chips? 
•  What width/speed (data) bus to use? 

•  Assume separate address bus 

•  Main memory interface: L2 miss blocks 
•  What do you want tmiss-L2 to be? 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

Disk(swap) 
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An Example Memory System 

•  Parameters 
•  32-bit machine 
•  L2 with 32B blocks 
•  4Mx16b DRAMs, 20ns access time, 40ns cycle time 
•  100MHz (10ns period) data bus 
•  100MHz, 32-bit address bus 

•  How many DRAM chips? 
•  How wide to make the data bus? 
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First Memory System Design 

•  1 DRAM + 16b bus 
•  Access time: 630ns  

•  Not including address 
•  Cycle time: 640ns 

•  DRAM ready to handle another miss 

4M 
x 

2B 

T (ns) DRAM Data Bus 

10 [31:30] 

20 [31:30] 

30 refresh [31:30] 

40 refresh 

50 [29:28] 

60 [29:28] 

70 refresh [29:28] 

80 refresh 

… … … 

600 refresh 

610 [1:0] 

620 [1:0] 

630 refresh [1:0] 

640 refresh 

2B 
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Second Memory System Design 

•  1 DRAM + 4b bus 
•  One DRAM chip, don’t need 16b bus 
•  Balanced system → match bandwidths 
•  DRAM: 2B / 40ns → 4b / 10ns 

•  Access time: 660ns (30ns longer, 4%) 
•  Cycle time: 640ns (same) 
+  Much cheaper 

4M 
x 

2B 

T (ns) DRAM Bus 

10 [31:30] 

20 [31:30] 

30 refresh [31H] 

40 refresh [31L] 

50 [29:28] [30H] 

60 [29:28] [30L] 

70 refresh [29H] 

80 refresh [29L] 

… … … 

600 [1:0] [2H] 

610 [1:0] [2L] 

620 refresh [1H] 

640 refresh [1L] 

650 [0H] 

660 [0L] 

4b 
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Third Memory System Design 

•  How fast can we go? 
•  16 DRAM chips + 32B bus 

•  Stripe data across chips 
•  Byte M in chip (M/2)%16 
•  Access time: 30ns 
•  Cycle time: 40ns 
–  32B bus is very expensive 
–  128MB of memory isn’t, but you may not want that much 

4M 
x 

2B 

T (ns) DRAM0 DRAM1 DRAM15 Bus 

10 [31:30] [29:28] [1:0] 

20 [31:30] [29:28] [1:0] 

30 refresh refresh refresh [31:0] 

40 refresh refresh refresh 

32B 

4M 
x 

2B 

4M 
x 

2B 
… 

4M 
x 

2B 
0 1 2 15 
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Latency and Bandwidth 

•  In general, given bus parameters… 
•  Find smallest number of chips that minimizes cycle time 
•  Approach: match bandwidths 
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Fourth Memory System Design 

•  2B bus 
•  Bus b/w: 2B/10ns 
•  DRAM b/w: 2B/40ns 
•  4 DRAM chips 
•  Access time: 180ns 
•  Cycle time: 160ns 

4M 
x 

2B 

T (ns) DRAM0 DRAM1 DRAM2 DRAM3 Bus 

10 [31:30] [29:28] [27:26] [25:24] 

20 [31:30] [29:28] [27:26] [25:24] 

30 refresh refresh refresh refresh [31:30] 

40 refresh refresh refresh refresh [29:28] 

50 [23:22] [21:20] [19:18] [17:16] [27:26] 

60 [23:22] [21:20] [19:18] [17:16] [25:24] 

… … … … … … 

110 refresh refresh refresh refresh [15:14] 

120 refresh refresh refresh refresh [13:12] 

130 [7:6] [5:4] [3:2] [1:0] [11:10] 

140 [7:6] [5:4] [3:2] [1:0] [9:8] 

150 refresh refresh refresh refresh [7:6] 

160 refresh refresh refresh refresh [5:4] 

170 [3:2] 

180 [1:0] 
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4M 
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More Bandwidth From One DRAM 
•  EDO: extended data out 

•  Multiple row buffer reads/writes  
•  Send only column addresses 

•  SDRAM: synchronous DRAM 
•  Read/write row buffer chunks on clock edge 

•  No need to send column addresses at all 
•  DDR SDRAM: double-data rate SDRAM 

•  Read/write on both clock edges 
•  Popular these days 

•  RDRAM: aka RAMBUS 
•  Multiple row buffers, “split” transactions, other complex behaviors 
•  Very expensive, high end systems only 
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Memory Access and Clock Frequency 

•  Nominal clock frequency applies to CPU and caches 
•  Memory bus has its own clock, typically much slower 
•  DRAM has no clock (SDRAM operates on bus clock) 

•  Careful when doing calculations 
•  Clock frequency increases don’t reduce memory or bus latency 
•  May make misses come out faster 

•  At some point memory bandwidth may become a bottleneck 
•  Further increases in clock speed won’t help at all 
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Memory/Clock Frequency Example 

•  Parameters 
•  1GHz CPU, base CPI = 1 
•  I$: 1% miss rate, 32B blocks (ignore D$, L2) 
•  Data bus: 100MHz, 8B (ignore address bus) 
•  DRAM: 10ns access, 20ns cycle, #chips to match bus bandwidth 

•  What are CPI and MIPS including memory latency? 
•  Bus: frequency = 100MHz → latency = 10ns (for 8B) 
•  Memory system cycle time = bus latency to transfer 32B = 40ns 
•  Memory system access time = 50ns (10ns DRAM access + bus) 
•  1GHz clock → 50ns = 50 cycles 
•  CPI+memory = 1 + (0.01*50) = 1 + 0.5 = 1.5 
•  MIPS+memory = 1GHz / 1.5 CPI = 1000MHz / 1.5 CPI = 667 
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Memory/Clock Frequency Example 
•  What are CPI and MIPS if clock speed is doubled? 

•  Memory parameters same:  50ns access, 40ns cycle 
•  2GHz clock → 50ns = 100 cycles 
•  CPI+memory = 1 + (0.01*100) = 1 + 1 = 2 
•  MIPS+memory = 2GHz / 2 CPI = 2000MHz / 2 CPI = 1000 

•  What is the peak MIPS if we can only change clock? 
•  Available bandwidth: 32B/40ns = 0.8B/ns 
•  Needed bandwidth: 0.01*32B/cycle = 0.32B/cycle * X cycle/ns 
•  Memory is a bottleneck at 0.8/0.32 cycle/ns = 2.5GHz 

•  No sustained speedup possible after that point 
•  2.5GHz clock → 50ns = 125 cycles 
•  CPI+memory = 1 + (0.01*125) = 1 + 1.25 = 2.25 
•  MIPS+memory = 2.5GHz / 2.25 CPI = 2500MHz / 2.5 CPI = 1111 
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Digital Rights Management 

•  Digital rights management 
•  Question: how to enforce digital copyright? 

•  Electronically, not legally 
•  “Trying to make bits un-copiable is like trying to make water un-wet” 

•  Suppose you have some piece of copyrighted material ©… 
–  You can easily make a copy of © 

•  But, what if © is encrypted? 
•  In order to use ©, you must also have the decryptor 
–  Can hack decryptor to spit out unencrypted © 
–  Or hack OS to look at decryptor’s physical memory 
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Aside: Public-Key Cryptography 
•  Public-key cryptography 

•  Asymmetric: pair of keys 
•  Kpub: used for encryption, published 
•  Kpriv: used for decryption, secret 
•  acrypt(acrypt(M, Kpub), Kpriv) = acrypt(acrypt(M, Kpriv), Kpub) = M 
•  Well-known example: RSA 

•  Two uses 
•  Encryption 

•  Someone sends you encrypted message M: C = acrypt(M, Kpub) 
•  You are the only one that can decrypt it 

•  Authentication/Digital Signature 
•  You send someone a chosen plaintext M 
•  They “sign” it by sending back DS = acrypt(M, Kpriv) 
•  If acrypt(DS, Kpub) = M, then they are who Kpub says they are 
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Research: XOM 

•  eXecute Only Memory (XOM) 
•  Stanford research project [Lie+, ASPLOS’00] 
•  Two registers: Kpriv, Kpub different for every chip (Flash program) 

•  Software can get at Kpub, but Kpriv is hardware’s secret 
•  Hardware encryption/decryption engine on L2 fill/spill path 
•  Vendor sells you acrypt(©, Kpub) 

+ Even if someone copies it, they won’t have Kpriv to decrypt it 
•  Plaintext © only exists on-chip 
+ Even OS can never see plaintext © 

CPU L2 © 
Kpub encrypt 

Kpub 

Kpriv 
decrypt ©  © 

Kpub encrypt 

$ 

you vendor 
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XOM: Not Quite 

•  Performance consideration 
•  Asymmetric en-/de-cryption is slow, symmetric (one key) faster 

•  E.g., DES, AES (Rijndael) 
–  Problem: can’t publish encryption key without also... 

•  XOM Take II 
•  Vendor chooses random symmetric key Ksym 
•  Sells you scrypt(©, Ksym) + acrypt(Ksym, Kpub) 
•  Two-stage decryption 

•  Decrypt Ksym using Kpriv: slow (but for one piece of data) 
•  Decrypt © using Ksym: fast 

•  Note: SSL does the same thing 
•  Uses asymmetric cryptography to choose symmetric session key 
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Error Detection: Parity 

•  Parity: simplest scheme  
•  f(dataN–1…0) = XOR(dataN–1, …, data1, data0) 
+  Single-error detect: detects a single bit flip (common case) 

•  Will miss two simultaneous bit flips… 
•  But what are the odds of that happening? 

–  Zero-error correct: no way to tell which bit flipped 
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Error Correction: Hamming Codes 

•  Hamming Code 
•  H(A,B) = number of 1’s in A^B (number of bits that differ) 

•  Called “Hamming distance” 
•  Use D data bits + C check bits construct a set of “codewords”  

•  Check bits are parities on different subsets of data bits 
•  ∀codewords A,B H(A,B) ≥ α 

•  No combination of α–1 transforms one codeword into another 
•  For simple parity: α = 2 

•  Errors of δ bits (or fewer) can be detected if α = δ + 1 
•  Errors of β bits or fewer can be corrected if α = 2β + 1 
•  Errors of δ bits can be detected and errors of β bits can be 

corrected if α = β + δ + 1 
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SEC Hamming Code 
•  SEC: single-error correct  

•  C = log2D + 1 
+  Relative overhead decreases as D grows 

•  Example: D = 4 → C = 3 
•  d1 d2 d3 d4 c1 c2 c3 → c1 c2 d1 c3 d2 d3 d4  
•  c1 = d1 ^ d2 ^ d4 , c2 = d1 ^ d3 ^ d4 , c3 = d2 ^ d3 ^ d4 
•  Syndrome: ci ^ c’i = 0 ? no error : points to flipped-bit 

•  Working example  
•  Original data = 0110 → c1 = 1, c2 = 1, c3 = 0  
•  Flip d2 = 0010 → c’1 = 0, c’2 = 1, c’3 = 1 

•  Syndrome = 101 (binary 5) → 5th bit? D2 

•  Flip c2 → c’1 = 1, c’2 = 0, c’3 = 0 
•  Syndrome = 010 (binary 2) → 2nd bit? c2 
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SECDED Hamming Code 
•  SECDED: single error correct, double error detect 

•  C = log2D + 2 
•  Additional parity bit to detect additional error 

•  Example: D = 4 → C = 4 
•  d1 d2 d3 d4 c1 c2 c3 → c1 c2 d1 c3 d2 d3 d4 c4  
•  c4 = c1 ^ c2 ^ d1 ^ c3 ^ d2 ^ d3 ^ d4 

•  Syndrome == 0 and c’4 == c4 → no error 
•  Syndrome != 0 and c’4 != c4 → 1-bit error 
•  Syndrome != 0 and c’4 == c4 → 2-bit error 
•  Syndrome == 0 and c’4 != c4 → c4 error 

•  Many machines today use 64-bit SECDED code 
•  C = 8 (one additional byte, 12% overhead) 
•  ChipKill - correct any aligned 4-bit error 

•  If an entire DRAM chips dies, the system still works! 


