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This Unit: Multithreading (MT) 

•  Why multithreading (MT)? 
•  Utilization vs. performance 

•  Three implementations 
•  Coarse-grained MT 
•  Fine-grained MT 
•  Simultaneous MT (SMT) 

•  MT for reliability 
•  Redundant multithreading 

•  Multithreading for performance 
•  Speculative multithreading 

Application 
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CPU 
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Performance And Utilization 

•  Performance (IPC) important 
•  Utilization (actual IPC / peak IPC) important too 

•  Even moderate superscalars (e.g., 4-way) not fully utilized 
•  Average sustained IPC: 1.5–2 → <50% utilization 

•  Mis-predicted branches 
•  Cache misses, especially L2 
•  Data dependences 

•  Multi-threading (MT) 
•  Improve utilization by multiplexing multiple threads on single CPU 
•  One thread cannot fully utilize CPU? Maybe 2, 4 (or 100) can 
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Latency vs Throughput 
•  MT trades (single-thread) latency for throughput 

–  Sharing processor degrades latency of individual threads 
+  But improves aggregate latency of both threads 
+  Improves utilization 

•  Example 
•  Thread A: individual latency=10s, latency with thread B=15s 
•  Thread B: individual latency=20s, latency with thread A=25s 
•  Sequential latency (first A then B or vice versa): 30s 
•  Parallel latency (A and B simultaneously): 25s 
–  MT slows each thread by 5s 
+  But improves total latency by 5s 

•  Different workloads have different parallelism 
•  SpecFP has lots of ILP (can use an 8-wide machine) 
•  Server workloads have TLP (can use multiple threads) 
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Thread Level Parallelism (TLP) 

•  Can exploit thread-level parallelism (TLP) 
•  Collection of asynchronous tasks: not started and stopped together 
•  Data shared loosely, dynamically 
•  Dynamically allocate tasks to processors 

•  Example: database server (each query is a thread) 
•   accts is shared, can’t register allocate even if it were scalar 
•   id and amt are private variables, register allocated to r1, r2 

•  Confusion: outer-loop DLP sometimes also called TLP 

struct acct_t { int bal; }; 
shared struct acct_t  accts[MAX_ACCT]; 
int id,amt; 
if (accts[id].bal >= amt) 
{ 
   accts[id].bal -= amt; 
   dispense_cash(); 
} 

 
 
0: addi r1,&accts,r3 
1: ld 0(r3),r4 
2: blt r4,r2,6 
3: sub r4,r2,r4 
4: st r4,0(r3) 
5: call dispense_cash 
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MT Implementations: Similarities 
•  How do multiple threads share a single processor? 

•  Different sharing mechanisms for different kinds of structures 
•  Depend on what kind of state structure stores 

•  No state: ALUs 
•  Dynamically shared 

•  Persistent hard state (aka “context”): PC, registers 
•  Replicated 

•  Persistent soft state: caches, bpred 
•  Dynamically partitioned (like on a multi-programmed uni-processor) 

•  TLBs need ASIDs, caches/bpred tables don’t 
•  Exception: ordered “soft” state (BHR, RAS) is replicated 

•  Transient state: pipeline latches, ROB, RS 
•  Partitioned … somehow 
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MT Implementations: Differences 

•  Main question: thread scheduling policy 
•  When to switch from one thread to another? 

•  Related question: pipeline partitioning 
•  How exactly do threads share the pipeline itself? 

•  Choice depends on 
•  What kind of latencies (specifically, length) you want to tolerate 
•  How much single thread performance you are willing to sacrifice 

•  Three designs 
•  Coarse-grain multithreading (CGMT) 
•  Fine-grain multithreading (FGMT) 
•  Simultaneous multithreading (SMT) 
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The Standard Multithreading Picture 

•  Time evolution of issue slots 
•  Color = thread (white is idle) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CGMT FGMT SMT 
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Coarse-Grain Multithreading (CGMT) 
•  Coarse-Grain Multi-Threading (CGMT) 

+  Sacrifices very little single thread performance (of one thread) 
–  Tolerates only long latencies (e.g., L2 misses) 
•  Thread scheduling policy 

•  Designate a “preferred” thread (e.g., thread A) 
•  Switch to thread B on thread A L2 miss 
•  Switch back to A when A L2 miss returns 

•  Pipeline partitioning 
•  None, flush on switch 
–  Can’t tolerate latencies shorter than twice pipeline depth 
•  Need short in-order pipeline for good performance 

•  Example: IBM Northstar/Pulsar 
•  Switches on L1 cache miss 
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CGMT 

•  CGMT 
•  Does this picture look familiar? 

regfile 

D$ 
I$ 
B 
P 

regfile 
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thread scheduler 
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Fine-Grain Multithreading (FGMT) 
•  Fine-Grain Multithreading (FGMT) 

–  Sacrifices significant single thread performance 
+  Tolerates all latencies (e.g., L2 misses, mispredicted branches, etc.) 
•  Thread scheduling policy 

•  Switch threads every cycle (round-robin), L2 miss or no 
•  Pipeline partitioning 

•  Dynamic, no flushing 
•  Length of pipeline doesn’t matter 

–  Need a lot of threads 
•  Extreme example: Denelcor HEP 

•  So many threads (100+), it didn’t even need caches 
•  Failed commercially 

•  Current example: Sun Niagara (aka Ultrasparc T1) 
•  Four threads x Register windows → lots of registers 
•  Talk about next lecture 
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Fine-Grain Multithreading 

•  FGMT 
•  (Many) more threads 
•  Multiple threads in pipeline at once 
•  Much competition for shared resources (e.g., D$) 
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regfile 
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Simultaneous Multithreading (SMT) 

•  Can we multithread an out-of-order machine? 
•  Don’t want to give up performance benefits 
•  Don’t want to give up natural tolerance of D$ (L1) miss latency 

•  Simultaneous multithreading (SMT) 
+  Tolerates all latencies (e.g., L2 misses, mispredicted branches) 
±  Sacrifices some single thread performance 
•  Thread scheduling policy 

•  Round-robin (just like FGMT) 
•  Pipeline partitioning 

•  Dynamic, hmmm… 
•  Example: Pentium4 (hyper-threading): 5-way issue, 2 threads 
•  Another example: Alpha 21464: 8-way issue, 4 threads (canceled) 
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Simultaneous Multithreading (SMT) 

•  SMT 
•  Replicate map table, share physical register file. ROB?, LSQ? 

regfile 
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Issues for SMT 
•  Cache interference 

•  General concern for all MT variants 
•  Can the working sets of multiple threads fit in the caches? 

•  Shared memory SPMD threads help here 
+ Same insns → share I$ 
+ Shared data → less D$ contention 

•  Does working set of one thread fit in the caches? 
•  If not, cache interference doesn’t hurt much 
•  MT increases memory-level parallelism (MLP) 

•  Helps most for big “server” workloads 
 

•  Large map table and physical register file 
•  #mt-entries = (#threads * #arch-regs) 
•  #phys-regs = (#threads * #arch-regs) + #in-flight insns 
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SMT Resource Partitioning 

•  How are ROB/LSQ, RS partitioned in SMT? 
•  Depends on what you want to achieve 

•  Static partitioning 
•  Divide ROB/LSQ, RS into T static equal-sized partitions 
+  Ensures that low-IPC threads don’t starve high-IPC ones 

•  Low-IPC threads stall and occupy ROB/LSQ, RS slots 
–  Low utilization 

•  Dynamic partitioning 
•  Divide ROB/LSQ, RS into dynamically resizing partitions 
•  Let threads fight amongst themselves 
+  High utilization 
–  Possible starvation 
•  ICOUNT: fetch policy prefers thread with fewest in-flight insns 
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Power Implications of MT 

•  Is MT (of any kind) power efficient? 
•  Static power? Yes 

•  Dissipated regardless of utilization 
•  Dynamic power? Less clear, but probably yes 

•  Highly utilization dependent 
•  Major factor is additional cache activity 
•  Some debate here 

•  Overall?  Yes 
•  Static power relatively increasing 
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MT for Reliability 

•  Can multithreading help with reliability? 
•  Design bugs/manufacturing defects? No 
•  Gradual defects, e.g., thermal wear? No 
•  Transient errors? Yes 

•  Background: lock-step execution 
•  Two processors run same program and same time 
•  Compare cycle-by-cycle; flush both and restart on mismatch 

•  Staggered redundant multithreading (SRT) 
•  Run two copies of program at a slight stagger 
•  Compare results, difference? Flush both copies and restart 
–  Significant performance overhead 
•  Other ways of doing this (e.g.,DIVA) 
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SMT vs. CMP 

•  If you wanted to run multiple threads would you build a… 
•  Chip multiprocessor (CMP): multiple separate pipelines? 
•  A multithreaded processor (SMT): a single larger pipeline? 

•  Both will get you throughput on multiple threads 
•  CMP will be simpler, possibly faster clock 
•  SMT will get you better performance (IPC) on a single thread 

•  SMT is basically an ILP engine that converts TLP to ILP 
•  CMP is mainly a TLP engine 

•  Again, do both 
•  Sun’s Niagara (UltraSPARC T1) 
•  8 processors, each with 4-threads (fine-grained threading) 
•  1Ghz clock, in-order, short pipeline (6 stages) 
•  Designed for power-efficient “throughput computing” 
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Research: Speculative Multithreading 

•  Speculative multithreading 
•  Use multiple threads/processors for ILP 
•  Speculatively parallelize sequential loops 

•  CMP processing elements (called PE) arranged in logical ring 
•  Compiler or hardware assigns iterations to consecutive PEs 
•  Hardware tracks logical order to detect mis-parallelization 

•  Techniques for doing this on non-loop code too 

•  Effectively chains ROBs of different processors into one big ROB 
•  Global commit “head” travels from one PE to the next 
•  Mis-speculation flushes entire PEs 

•  Also known as split-window or “Multiscalar” 
•  Not commercially available yet, but maybe not far off 
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Multithreading Summary 

•  Latency vs. throughput 
•  Partitioning different processor resources 
•  Three multithreading variants 

•  Coarse-grain: no single-thread degradation, but long latencies only 
•  Fine-grain: other end of the trade-off 
•  Simultaneous: fine-grain with out-of-order 

•  Multithreading vs. chip multiprocessing 
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Course Redux 

•  Remember this from lecture 1? 
•  Intel Pentium4 

•  At a high level 
•  You know how this works now! 



CS/ECE 752 (Wood): Multithreading 24 

Course Redux 
•  Pentium 4 specifications: what do each of these mean? 

•  Technology 
•  55M transistors, 0.90 µm CMOS, 101 mm2, 3.4 GHz, 1.2 V 

•  Performance 
•  1705 SPECint, 2200 SPECfp 

•  ISA 
•  X86+MMX/SSE/SSE2/SSE3 (X86 translated to RISC uops inside) 

•  Memory hierarchy 
•  64KB 2-way insn trace cache, 16KB D$, 512KB–2MB L2 
•  MESI-protocol coherence controller, processor consistency 

•  Pipeline 
•  22-stages, dynamic scheduling/load speculation, MIPS renaming 
•  1K-entry BTB, 8Kb hybrid direction predictor, 16-entry RAS 
•  2-way hyper-threading 


