
CS/ECE 752 (Wood): Multithreading 1

U. Wisconsin CS/ECE 752
Advanced Computer Architecture I

Prof. David A. Wood

Unit 11: Multithreading

Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

Slides enhanced by Milo Martin, Mark Hill, and David Wood
with sources that included Profs. Asanovic, Falsafi, Hoe,
Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood

CS/ECE 752 (Wood): Multithreading 2

This Unit: Multithreading (MT)

•  Why multithreading (MT)?
•  Utilization vs. performance

•  Three implementations
•  Coarse-grained MT
•  Fine-grained MT
•  Simultaneous MT (SMT)

•  MT for reliability
•  Redundant multithreading

•  Multithreading for performance
•  Speculative multithreading

Application

OS

Firmware Compiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

CS/ECE 752 (Wood): Multithreading 3

Performance And Utilization

•  Performance (IPC) important
•  Utilization (actual IPC / peak IPC) important too

•  Even moderate superscalars (e.g., 4-way) not fully utilized
•  Average sustained IPC: 1.5–2 → <50% utilization

•  Mis-predicted branches
•  Cache misses, especially L2
•  Data dependences

•  Multi-threading (MT)
•  Improve utilization by multiplexing multiple threads on single CPU
•  One thread cannot fully utilize CPU? Maybe 2, 4 (or 100) can

CS/ECE 752 (Wood): Multithreading 4

Latency vs Throughput
•  MT trades (single-thread) latency for throughput

–  Sharing processor degrades latency of individual threads
+  But improves aggregate latency of both threads
+  Improves utilization

•  Example
•  Thread A: individual latency=10s, latency with thread B=15s
•  Thread B: individual latency=20s, latency with thread A=25s
•  Sequential latency (first A then B or vice versa): 30s
•  Parallel latency (A and B simultaneously): 25s
–  MT slows each thread by 5s
+  But improves total latency by 5s

•  Different workloads have different parallelism
•  SpecFP has lots of ILP (can use an 8-wide machine)
•  Server workloads have TLP (can use multiple threads)

CS/ECE 752 (Wood): Vectors 5

Thread Level Parallelism (TLP)

•  Can exploit thread-level parallelism (TLP)
•  Collection of asynchronous tasks: not started and stopped together
•  Data shared loosely, dynamically
•  Dynamically allocate tasks to processors

•  Example: database server (each query is a thread)
•  accts is shared, can’t register allocate even if it were scalar
•  id and amt are private variables, register allocated to r1, r2

•  Confusion: outer-loop DLP sometimes also called TLP

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id,amt;
if (accts[id].bal >= amt)
{
 accts[id].bal -= amt;
 dispense_cash();
}

0: addi r1,&accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call dispense_cash

CS/ECE 752 (Wood): Multithreading 6

MT Implementations: Similarities
•  How do multiple threads share a single processor?

•  Different sharing mechanisms for different kinds of structures
•  Depend on what kind of state structure stores

•  No state: ALUs
•  Dynamically shared

•  Persistent hard state (aka “context”): PC, registers
•  Replicated

•  Persistent soft state: caches, bpred
•  Dynamically partitioned (like on a multi-programmed uni-processor)

•  TLBs need ASIDs, caches/bpred tables don’t
•  Exception: ordered “soft” state (BHR, RAS) is replicated

•  Transient state: pipeline latches, ROB, RS
•  Partitioned … somehow

CS/ECE 752 (Wood): Multithreading 7

MT Implementations: Differences

•  Main question: thread scheduling policy
•  When to switch from one thread to another?

•  Related question: pipeline partitioning
•  How exactly do threads share the pipeline itself?

•  Choice depends on
•  What kind of latencies (specifically, length) you want to tolerate
•  How much single thread performance you are willing to sacrifice

•  Three designs
•  Coarse-grain multithreading (CGMT)
•  Fine-grain multithreading (FGMT)
•  Simultaneous multithreading (SMT)

CS/ECE 752 (Wood): Multithreading 8

The Standard Multithreading Picture

•  Time evolution of issue slots
•  Color = thread (white is idle)

CGMT FGMT SMT

CS/ECE 752 (Wood): Multithreading 9

Coarse-Grain Multithreading (CGMT)
•  Coarse-Grain Multi-Threading (CGMT)

+  Sacrifices very little single thread performance (of one thread)
–  Tolerates only long latencies (e.g., L2 misses)
•  Thread scheduling policy

•  Designate a “preferred” thread (e.g., thread A)
•  Switch to thread B on thread A L2 miss
•  Switch back to A when A L2 miss returns

•  Pipeline partitioning
•  None, flush on switch
–  Can’t tolerate latencies shorter than twice pipeline depth
•  Need short in-order pipeline for good performance

•  Example: IBM Northstar/Pulsar
•  Switches on L1 cache miss

CS/ECE 752 (Wood): Multithreading 10

CGMT

•  CGMT
•  Does this picture look familiar?

regfile

D$
I$
B
P

regfile

regfile

thread scheduler

L2 miss?

I$
B
P

D$

CS/ECE 752 (Wood): Multithreading 11

Fine-Grain Multithreading (FGMT)
•  Fine-Grain Multithreading (FGMT)

–  Sacrifices significant single thread performance
+  Tolerates all latencies (e.g., L2 misses, mispredicted branches, etc.)
•  Thread scheduling policy

•  Switch threads every cycle (round-robin), L2 miss or no
•  Pipeline partitioning

•  Dynamic, no flushing
•  Length of pipeline doesn’t matter

–  Need a lot of threads
•  Extreme example: Denelcor HEP

•  So many threads (100+), it didn’t even need caches
•  Failed commercially

•  Current example: Sun Niagara (aka Ultrasparc T1)
•  Four threads x Register windows → lots of registers
•  Talk about next lecture

CS/ECE 752 (Wood): Multithreading 12

Fine-Grain Multithreading

•  FGMT
•  (Many) more threads
•  Multiple threads in pipeline at once
•  Much competition for shared resources (e.g., D$)

regfile

regfile

regfile

regfile
thread scheduler

D$
I$
B
P

CS/ECE 752 (Wood): Multithreading 13

Simultaneous Multithreading (SMT)

•  Can we multithread an out-of-order machine?
•  Don’t want to give up performance benefits
•  Don’t want to give up natural tolerance of D$ (L1) miss latency

•  Simultaneous multithreading (SMT)
+  Tolerates all latencies (e.g., L2 misses, mispredicted branches)
±  Sacrifices some single thread performance
•  Thread scheduling policy

•  Round-robin (just like FGMT)
•  Pipeline partitioning

•  Dynamic, hmmm…
•  Example: Pentium4 (hyper-threading): 5-way issue, 2 threads
•  Another example: Alpha 21464: 8-way issue, 4 threads (canceled)

CS/ECE 752 (Wood): Multithreading 14

Simultaneous Multithreading (SMT)

•  SMT
•  Replicate map table, share physical register file. ROB?, LSQ?

regfile

D$
I$
B
P

map table

map tables

I$
B
P

D$

thread scheduler

regfile

CS/ECE 752 (Wood): Multithreading 15

Issues for SMT
•  Cache interference

•  General concern for all MT variants
•  Can the working sets of multiple threads fit in the caches?

•  Shared memory SPMD threads help here
+ Same insns → share I$
+ Shared data → less D$ contention

•  Does working set of one thread fit in the caches?
•  If not, cache interference doesn’t hurt much
•  MT increases memory-level parallelism (MLP)

•  Helps most for big “server” workloads

•  Large map table and physical register file
•  #mt-entries = (#threads * #arch-regs)
•  #phys-regs = (#threads * #arch-regs) + #in-flight insns

CS/ECE 752 (Wood): Multithreading 16

SMT Resource Partitioning

•  How are ROB/LSQ, RS partitioned in SMT?
•  Depends on what you want to achieve

•  Static partitioning
•  Divide ROB/LSQ, RS into T static equal-sized partitions
+  Ensures that low-IPC threads don’t starve high-IPC ones

•  Low-IPC threads stall and occupy ROB/LSQ, RS slots
–  Low utilization

•  Dynamic partitioning
•  Divide ROB/LSQ, RS into dynamically resizing partitions
•  Let threads fight amongst themselves
+  High utilization
–  Possible starvation
•  ICOUNT: fetch policy prefers thread with fewest in-flight insns

CS/ECE 752 (Wood): Multithreading 17

Power Implications of MT

•  Is MT (of any kind) power efficient?
•  Static power? Yes

•  Dissipated regardless of utilization
•  Dynamic power? Less clear, but probably yes

•  Highly utilization dependent
•  Major factor is additional cache activity
•  Some debate here

•  Overall? Yes
•  Static power relatively increasing

CS/ECE 752 (Wood): Multithreading 18

MT for Reliability

•  Can multithreading help with reliability?
•  Design bugs/manufacturing defects? No
•  Gradual defects, e.g., thermal wear? No
•  Transient errors? Yes

•  Background: lock-step execution
•  Two processors run same program and same time
•  Compare cycle-by-cycle; flush both and restart on mismatch

•  Staggered redundant multithreading (SRT)
•  Run two copies of program at a slight stagger
•  Compare results, difference? Flush both copies and restart
–  Significant performance overhead
•  Other ways of doing this (e.g.,DIVA)

CS/ECE 752 (Wood): Multithreading 19

SMT vs. CMP

•  If you wanted to run multiple threads would you build a…
•  Chip multiprocessor (CMP): multiple separate pipelines?
•  A multithreaded processor (SMT): a single larger pipeline?

•  Both will get you throughput on multiple threads
•  CMP will be simpler, possibly faster clock
•  SMT will get you better performance (IPC) on a single thread

•  SMT is basically an ILP engine that converts TLP to ILP
•  CMP is mainly a TLP engine

•  Again, do both
•  Sun’s Niagara (UltraSPARC T1)
•  8 processors, each with 4-threads (fine-grained threading)
•  1Ghz clock, in-order, short pipeline (6 stages)
•  Designed for power-efficient “throughput computing”

CS/ECE 752 (Wood): Multithreading 20

Research: Speculative Multithreading

•  Speculative multithreading
•  Use multiple threads/processors for ILP
•  Speculatively parallelize sequential loops

•  CMP processing elements (called PE) arranged in logical ring
•  Compiler or hardware assigns iterations to consecutive PEs
•  Hardware tracks logical order to detect mis-parallelization

•  Techniques for doing this on non-loop code too

•  Effectively chains ROBs of different processors into one big ROB
•  Global commit “head” travels from one PE to the next
•  Mis-speculation flushes entire PEs

•  Also known as split-window or “Multiscalar”
•  Not commercially available yet, but maybe not far off

CS/ECE 752 (Wood): Multithreading 21

Multithreading Summary

•  Latency vs. throughput
•  Partitioning different processor resources
•  Three multithreading variants

•  Coarse-grain: no single-thread degradation, but long latencies only
•  Fine-grain: other end of the trade-off
•  Simultaneous: fine-grain with out-of-order

•  Multithreading vs. chip multiprocessing

Backup slides

CS/ECE 752 (Wood): Multithreading 22

CS/ECE 752 (Wood): Multithreading 23

Course Redux

•  Remember this from lecture 1?
•  Intel Pentium4

•  At a high level
•  You know how this works now!

CS/ECE 752 (Wood): Multithreading 24

Course Redux
•  Pentium 4 specifications: what do each of these mean?

•  Technology
•  55M transistors, 0.90 µm CMOS, 101 mm2, 3.4 GHz, 1.2 V

•  Performance
•  1705 SPECint, 2200 SPECfp

•  ISA
•  X86+MMX/SSE/SSE2/SSE3 (X86 translated to RISC uops inside)

•  Memory hierarchy
•  64KB 2-way insn trace cache, 16KB D$, 512KB–2MB L2
•  MESI-protocol coherence controller, processor consistency

•  Pipeline
•  22-stages, dynamic scheduling/load speculation, MIPS renaming
•  1K-entry BTB, 8Kb hybrid direction predictor, 16-entry RAS
•  2-way hyper-threading

