GPU Architectures A CPU Perspective

Derek Hower AMD Research

5/21/2013

With updates by David Wood

Goals

Data Parallelism: What is it, and how to exploit it?

Workload characteristics

Execution Models / GPU Architectures

MIMD (SPMD), SIMD, SIMT

GPU Programming Models

- \circ Terminology translations: CPU \longleftrightarrow AMD GPU \longleftrightarrow Nvidia GPU
- Intro to OpenCL

Modern GPU Microarchitectures

• i.e., programmable GPU pipelines, not their fixed-function predecessors

Advanced Topics: (Time permitting)

- The Limits of GPUs: What they can and cannot do
- **The Future of GPUs:** Where do we go from here?

Data Parallel Execution on GPUs

Data Parallelism, Programming Models, SIMT

Streaming computation

Streaming computation **on pixels**

Identical, Streaming computation *on pixels*

Identical, Independent, Streaming computation on pixels

Architecture Spelling Bee

Generalize: Data Parallel Workloads

Identical, Independent computation on multiple data inputs

Naïve Approach

Split independent work over multiple processors

Data Parallelism: A MIMD Approach

<u>M</u>ultiple <u>Instruction</u> <u>M</u>ultiple <u>D</u>ata

Split independent work over multiple processors

Data Parallelism: A MIMD Approach

<u>M</u>ultiple <u>Instruction</u> <u>M</u>ultiple <u>D</u>ata

Split **independent** work over **multiple** processors

Data Parallelism: An SPMD Approach

Single Program Multiple Data

Split identical, independent work over multiple processors

Data Parallelism: A SIMD Approach

Single Instruction Multiple Data

Split identical, independent work over multiple execution units (lanes)

More efficient: Eliminate redundant fetch/decode

SIMD: A Closer Look

One Thread + Data Parallel Ops → Single PC, single register file

Data Parallelism: A SIMT Approach

Single Instruction Multiple Thread

Split identical, independent work over multiple lockstep threads

Multiple Threads + Scalar Ops \rightarrow One PC, Multiple register files

Terminology Headache #1

It's common to interchange 'SIMD' and 'SIMT'

Data Parallel Execution Models

MIMD/SPMD

SIMD/Vector

SIMT

Multiple **independent** threads

One thread with wide execution datapath

Multiple **lockstep** threads

Execution Model Comparison

GPUs and Memory

Recall: GPUs perform *Streaming* computation →

Streaming memory access

DRAM latency: 100s of GPU cycles

How do we keep the GPU busy (hide memory latency)?

Hiding Memory Latency

Options from the CPU world:

Need spatial/temporal locality

OoO/Dynamic Scheduling 🗶

Need ILP

Multicore/Multithreading/SMT

Need independent threads

21

Multicore Multithreaded SIMT

Many SIMT "threads" grouped together into GPU "Core"

SIMT threads in a group ≈ SMT threads in a CPU core

Unlike CPU, groups are exposed to programmers

Multiple GPU "Cores"

Multicore Multithreaded SIMT

Many SIMT "threads" grouped together into GPU "Core"

SIMT threads in a group ≈ SMT threads in a CPU core

Unlike CPU, groups are exposed to programmers

Multiple GPU "Cores"

This is a GPU Architecture (Whew!)

GPU Component Names

AMD/OpenCL

Derek's CPU Analogy

Processing Element

Lane

SIMD Unit

Pipeline

Compute Unit

Core

GPU Device

Device

GPU Programming Models

OpenCL

GPU Programming Models

CUDA – **C**ompute **U**nified **D**evice **A**rchitecture

- Developed by Nvidia -- proprietary
- First serious GPGPU language/environment

OpenCL – Open Computing Language

- From makers of OpenGL
- Wide industry support: AMD, Apple, Qualcomm, Nvidia (begrudgingly), etc.

C++ AMP – C++ Accelerated Massive Parallelism

- Microsoft
- Much higher abstraction that CUDA/OpenCL

OpenACC – Open Accelerator

- Like OpenMP for GPUs (semi-auto-parallelize serial code)
- Much higher abstraction than CUDA/OpenCL

GPU Programming Models

CUDA – **C**ompute **U**nified **D**evice **A**rchitecture

- Developed by Nvidia -- proprietary
- First serious GPGPU language/environment

OpenCL – Open Computing Language

- From makers of OpenGL
- Wide industry support: AMD, Apple, Qualcomm, Nvidia (begrudgingly), etc.

C++ AMP – C++ Accelerated Massive Parallelism

- Microsoft
- Much higher abstraction that CUDA/OpenCL

OpenACC – Open Accelerator

- Like OpenMP for GPUs (semi-auto-parallelize serial code)
- Much higher abstraction than CUDA/OpenCL

OpenCL

Early CPU languages were light abstractions of physical hardware • E.g., C

Early GPU languages are light abstractions of physical hardware

OpenCL + CUDA

OpenCL

Early CPU languages were light abstractions of physical hardware • E.g., C

Early GPU languages are light abstractions of physical hardware

• OpenCL + CUDA

GPU Architecture

OpenCL

Early CPU languages were light abstractions of physical hardware • E.g., C

Early GPU languages are light abstractions of physical hardware

• OpenCL + CUDA

GPU "Core" Workgroup Workgroup Work-item Wavefront

NDRange

N-Dimensional (N = 1, 2, or 3) index space

Partitioned into workgroups, wavefronts, and work-items

Kernel

Run an NDRange on a kernel (i.e., a function)

Same kernel executes for each work-item

Smells like MIMD/SPMD

Kernel

Run an NDRange on a kernel (i.e., a function)

Same kernel executes for each work-item

Smells like MIMD/SPMD...but beware, it's not!

OpenCL Code

GPU Microarchitecture

AMD Graphics Core Next

GPU Hardware Overview

Compute Unit – A GPU Core

Compute Unit (CU) – Runs *Workgroups*

- Contains 4 SIMT Units
- Picks <u>one</u> SIMT Unit per cycle for scheduling

SIMT Unit – Runs *Wavefronts*

- Each SIMT Unit has 10 wavefront instruction buffer
- Takes 4 cycles to execute one wavefront

10 Wavefront x 4 SIMT Units = 40 Active Wavefronts / CU

64 work-items / wavefront x 40 active wavefronts = **2560 Active Work-items / CU**

Compute Unit Timing Diagram

On average: fetch & commit one wavefront / cycle

SIMT Unit – A GPU Pipeline

Like a wide CPU pipeline – except one fetch for entire width

16-wide physical ALU

Executes 64-wavefront over 4 cycles. Why??

64KB register state / SIMT Unit

Compare to x86 (Bulldozer): ~1KB of physical register file state (~1/64 size)

Address Coalescing Unit

A key to good memory performance

Address Coalescing Unit

Address Coalescing

Wavefront: Issue 64 memory requests

Address Coalescing

Wavefront: Issue 64 memory requests

Common case:

work-items in same wavefront touch same cache block

Coalescing:

Merge many work-items requests into single cache block request

Important for performance:

Reduces bandwidth to DRAM

GPU Memory

GPUs have caches.

Not Your CPU's Cache

By the numbers: Bulldozer – FX-8170 vs. GCN – Radeon HD 7970

	CPU (Bulldozer)	GPU (GCN)
L1 data cache capacity	16KB	16 KB
Active threads (work-items) sharing L1 D Cache	1	2560
L1 dcache capacity / thread	16KB	6.4 bytes
Last level cache (LLC) capacity	8MB	768KB
Active threads (work-items) sharing LLC	8	81,920
LLC capacity / thread	1MB	9.6 bytes

GPU Caches

Maximize throughput, not hide latency

Not there for either spatial or temporal locality

L1 Cache: Coalesce requests to same cache block by different work-items

- i.e., streaming thread locality?
- Keep block around just long enough for each work-item to hit once
- Ultimate goal: Reduce bandwidth to DRAM

L2 Cache: DRAM staging buffer + some instruction reuse

Ultimate goal: Tolerate spikes in DRAM bandwidth

If there is any spatial/temporal locality:

Use local memory (scratchpad)

Scratchpad Memory

GPUs have scratchpads (Local Memory)

- Separate address space
- Managed by software:
 - Rename address
 - Manage capacity manual fill/eviction

Allocated to a workgroup

• i.e., shared by wavefronts in workgroup

Example System: Radeon HD 7970

High-end part

32 Compute Units:

- 81,920 Active work-items
- 32 CUs * 4 SIMT Units * 16 ALUs = 2048 Max FP ops/cycle
- 264 GB/s Max memory bandwidth

925 MHz engine clock

3.79 TFLOPS single precision (accounting trickery: FMA)

210W Max Power (Chip)

- >350W Max Power (card)
- 100W idle power (card)

Radeon HD 7990 - Cooking

Two 7970s on one card: 375W (AMD Official) – 450W (OEM)

A Rose by Any Other Name...

Terminology Headaches #2-5

Nvidia/CUDA AMD/OpenCL **Derek's CPU Analogy CUDA Processor Processing Element** Lane Pipeline **CUDA Core** SIMD Unit GPU "Core" Streaming **Compute Unit** Core Multiprocessor GPU Group Group **GPU** Device **GPU** Device **Device**

Terminology Headaches #6-9

OpenCL/AMD **CUDA/Nvidia**

Thread

Block

Warp

Grid

Work-item

Wavefront

Workgroup

NDRange

Henn&Patt

Sequence of SIMD Lane Operations

Thread of **SIMD** Instructions

Body of vectorized loop

Vectorized loop

Terminology Headache #10

GPUs have scratchpads (Local Memory)

- Separate address space
- Managed by software:
 - Rename address.
 - Manage capacity manual fill/eviction

Allocated to a workgroup

i.e., shared by wavefronts in workgroup

Nvidia calls 'Local Memory'
'Shared Memory'.

AMD sometimes calls it 'Group Memory'.

Recap

Data Parallelism: Identical, Independent work over multiple data inputs

GPU version: Add streaming access pattern

Data Parallel Execution Models: MIMD, SIMD, SIMT

GPU Execution Model: Multicore Multithreaded SIMT

OpenCL Programming Model

NDRange over workgroup/wavefront

Modern GPU Microarchitecture: AMD Graphics Core Next (GCN)

- Compute Unit ("GPU Core"): 4 SIMT Units
- SIMT Unit ("GPU Pipeline"): 16-wide ALU pipe (16x4 execution)
- Memory: designed to stream

GPUs: Great for data parallelism. Bad for everything else.

Advanced Topics

GPU Limitations, Future of GPGPU

Choose Your Own Adventure!

SIMT Control Flow & Branch Divergence

Memory Divergence

When GPUs talk

- Wavefront communication
- GPU "coherence"
- GPU consistency

Future of GPUs: What's next?

SIMT Control Flow

Consider SIMT conditional branch:

- One PC
- Multiple data (i.e., multiple conditions)

SIMT Control Flow

Work-items in wavefront run in lockstep

Don't all have to commit

Branching through **predication**

SIMT Control Flow

Work-items in wavefront run in lockstep

Don't all have to commit

Branching through predication

Active lane: commit result

) Inactive lane: throw away result

Branch divergence

if
$$(x <= 0)$$

y = 0;

else
$$y = x$$
;

Branch → set execution mask: 1000

Else → invert execution mask: 0111

Converge → Reset execution mask: 1111

Branch Divergence

When control flow diverges, all lanes take all paths

Divergence Kills Performance

Beware!

Divergence isn't just a performance problem:

```
__global int lock = 0;

void mutex_lock(...)
{
...
    // acquire lock
    while (test&set(lock, 1) == false) {
         // spin
    }
    return;
}
```

Beware!

Divergence isn't just a performance problem:

```
__global int lock = 0;
void mutex_lock(...)
```

Deadlock: work-items can't enter mutex together!

```
// acquire lock
while (test&set(lock, 1) == false) {
     // spin
}
return;
}
```

Memory Bandwidth

Memory Bandwidth

Sequential Access

Memory Bandwidth

Sequential Access

Memory Divergence

One work-item stalls → entire wavefront must stall

Cause: Bank conflicts, cache misses

Data layout & partitioning is important

Memory Divergence

One work-item stalls \rightarrow entire wavefront must stall

Cause: Bank conflicts, cache misses

Data layout & partitioning is important

Divergence Kills Performance

Communication and Synchronization

Work-items can communicate with:

- Work-items in same wavefront
 - No special sync needed...they are lockstep!
- Work-items in different wavefront, same workgroup (local)
 - Local barrier
- Work-items in different wavefront, different workgroup (global)
 - OpenCL 1.x: Nope
 - OpenCL 2.x: Yes, but...
 - CUDA 4.x: Yes, but complicated

GPU Consistency Models

Very weak guarantee:

- Program order respected within single work-item
- All other bets are off

Safety net:

- Fence "make sure all previous accesses are visible before proceeding"
- Built-in barriers are also fences.

A wrench:

- GPU fences are scoped only apply to subset of work-items in system
 - E.g., local barrier

Take-away: Area of active research

See Hower, et al. Heterogeneous-race-free Memory Models, ASPLOS 2014

GPU Coherence?

Notice: GPU consistency model does not require coherence

• i.e., Single Writer, Multiple Reader

Marketing claims they are coherent...

GPU "Coherence":

Nvidia: disable private caches

AMD: flush/invalidate entire cache at fences

GPU Architecture Research

Blending with CPU architecture:

- Dynamic scheduling / dynamic wavefront re-org
- Work-items have more locality than we think

Tighter integration with CPU on SOC:

- Fast kernel launch
 - Exploit fine-grained parallel region: Remember Amdahl's law
- Common shared memory

Reliability:

- Historically: Who notices a bad pixel?
- Future: GPU compute demands correctness

Power:

Mobile, mobile mobile!!!

Computer Economics 101

GPU Compute is cool + gaining steam, but...

Is a 0 billion dollar industry (to quote Mark Hill)

GPU design priorities:

- **1.** Graphics
- 2. Graphics

...

N-1. Graphics

N. GPU Compute

Moral of the story:

GPU won't become a CPU (nor should it)