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Abstract When conditions (1) and (2) are true we shall say that
arrivals arendependentand when condition (3) is true we
It is well known that head-of-line (HOL) blocking limits  shall say that arrivals ateniform.
the throughput of an input-queued switch with FIFO The throughput is limited because a cell can be held up
gueues. Under certain conditions, the throughput can be by another cell ahead of it in line that is destined for a dif-
shown to be limited to approximately 58%. It is also ferent output. This phenomenon is known as HOL block-
known that if non-FIFO queueing policies are used, the ing.
throughput can be increased. However, it has not been It is well documented that this result applies only to in-
previously shown that if a suitable queueing policy and put-queued switchasith FIFO queuesAnd so many tech-
scheduling algorithm are used then it is possible to niques have been suggested for reducing HOL blocking
achieve 100% throughput for all independent arrival pro- using non-FIFO queues, for example by examining the first
cesses. In this paper we prove this to be the case using aK cells in a FIFO queue, where K>1 [5][8][10]. In fact,
simple linear programming argument and quadratic HOL blocking can be eliminated entirely by using a simple
Lyapunov function. In particular, we assume that each buffering strategy at each input port. Rather than maintain
input maintains a separate FIFO queue for each output a single FIFO queue for all cells, each input maintains a
and that the switch is scheduled using a maximum weight separate queue for each output [1][9][15][16][17][18], as
bipartite matching algorithm. shown in Figure 1. HOL blocking is eliminated because a
cell cannot be held up by a cell queued ahead of it that is
destined for a different output. This implementation is
1 Introduction slightly more complex, requiring N FIFOs to be maintained
by each input buffer. But no additional speedup is required:

Since Karol et al.’s paper was published in 1986, [11], . . .
, , at most one cell can arrive and depart from each input in a
ithas become well known that &< N portinput-queued qoi time During each slot time a scheduling algorithm de-

switch with FIFO queues can have a throughput limited o c¢iges the configuration of the switch by finding a matching
just (2—-./2) =58.6%. The conditions for this to be true  on a bipartite graph (described below). A number of differ-
are that: ent techniques have been used for finding such a matching,
. . . . . for example using neural networks [2][4][20], or iterative
L Qgtlr\l/g:i:; za}c;)mput are independent and identically algorithms [1][13][14]. These algorithms were designed to
B give high throughput while remaining simple to implement
2. Arrival processes at each input are independent of in hardware. When traffic is uniform, these algorithms per-
arrivals at other inputs. form well (>90% throughput). ThdSLIP algorithm
3. All arrival processes have the same arrival rate and ~ [13][14], for example, has been demonstrated using simu-
destinations are uniformly distributed over all outputs. lation to achieve 100% throughput when the traffic is inde-
pendent and uniform. However, all of these algorithms
perform less well and are unable to sustain a throughput of
100% when traffic is non-uniform.

4. Arriving packets are of fixed and equal length, called
cells.

5. Nis large.



It is worth asking the question:

What is the highest throughput that can be
achieved by an input-queued switch which uses
the queueing discipline shown in Figure 1?

In this paper we prove that for independent arrivals
(uniform or non-uniform), a maximum throughput of 100%
is achievable using a maximum weight matching algo-
rithm.

In Section 2 we describe our model for an input-
queued switch that uses the queueing discipline illustrated
in Figure 1. We then consider two graph algorithms that

can be used to schedule the transfer of cells through the

switch. In Section 3 we describe the maximum size sched-
uling algorithm. Although this algorithm achieves 100%
throughput for uniform traffic, we show that it can become

unstable, even starve input queues, when arrivals are non-

uniform. Section 4 describes the maximum weight sched-
uling algorithm. In conjunction with the appendix, we

prove that the maximum weight scheduling algorithm is
stable for all uniform and non-uniform independent arrival
processes up to a maximum throughput of 100%. It is im-
portant to note that this is a theoretical result — the maxi-
mum weight matching algorithm that we propose is not

readily implemented in hardware. However, our result in- .

dicates that a more practical technique that approximates
this algorithm can be expected to perform well.

2 Our Model

Consider the “input-queued cell switch” in Figure 1
connectingM inputs toN outputs. The stationary and er-
godic arrival process;(n) at inputi, 1<i<M, is a discrete-
time process of fixed sized packets, or cells. At the begin-
ning of each time slot, either zero or one cell arrive at each
input. Each cell contains an identifier that indicates which
outputj, I<j<N, it is destined for. When a cell destined for
outputj arrives at inputi it is placed in the FIFO queue
Q(i,j) which has occupancl; j(n). Define the following
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Figure 1. Components of an Input-Queued Cell-
Switch.

puts and outputs, defined as a collection of edges from the
set of non-empty input queues to the set of outputs such that
each non-empty input is connected to at most one output
and each non-empty output is connected to at most one in-
put. At the end of the time slot, if inpuis connected to
outputj, one cell is removed froQ(i,j) and sent to output
j- Clearly, the departure process from oufpx(t), ratey;
Is also a discrete-time process with either zero or one cell
departing from each output at the end of each time slot. We
shall define the departure procdag(t), rate ;;, as the
process of departures from outpthat were received from
inputi. Note that the departure rate may not be defined if
the departure process is not stationary and ergodic.

To find a matchingy, the scheduling algorithm solves
a bipartite graph matching problem. An example of a bipar-
tite graph is shown in Figure 2.

If the queueQ(i,j) is non-emptyl;;(n) > 0 and there is
an edge in the graph G between inpand outpuj. We as-
sociate a Weighwi’j (n) to each such edge. The meaning

of the weights depend on the algorithm, and we consider

vector which represents the occupancy of all queues at time™W0 algorithms here:

n:
L) = (Ly (), s Ly (), ooy Ly (M) T Q)

We shall define the arrival proce&g(n) to be the pro-
cess of arrivals at inputffor outputj at rateA; ;, and the set

of all arrival processeA(n) = {A;(n); 1<i<sM}. A(n) is con-
sideredadmissibléf no input or output is oversubscribed,
i.e. ZA”— <1, zxij <1, otherwise it isnadmissible

[ J

The FIFO queues are served as follows. A scheduling
algorithm selects match or matching M between the in-

1. Maximum Size Matching Algorithms: Algorithms
that find the match containing the maximum number
of edges.

Maximum Weight Matching Algorithms: Algo-
rithms that find the maximum weight matching
where, in this paper, we only consider algorithms for

which the weighty, ; (n) is integer-valued, equalling

the occupancy; ;(n) of Q(i,j).

Clearly, a maximum size match is a special case of the
maximum weight matching with Weigmi,j (n) =1

2.
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Figure 2: Define G = [V,E] as an undirected graph
connecting the set of vertices V with the set of edges
E. The edge connecting vertices j, 1<<Mand j, 1<j<N
has an associated weight denoted w; ;. Graph G is bi-
partite if the set of inputs | = {i: 1<i<M} and outputs J
= {i: 1</<N} partition V such that every edge has one
end in I and one end in J. Matching M on G is any sub-
set of E such that no two edges in M have a common
vertex. A maximum matching algorithm is one that
finds the matching M, with the maximum total size
or total weight.

3 Maximum Size Matchings

The maximum size matching for a bipartite graph can
be found by solving an equivalent network flow problem
[19]. There exist many algorithms for solving these prob-
lems, the most efficient algorithm currently known con-
verges inO(N®/2) time and is described in {7].

It can be demonstrated using simulation that the max-
imum size matching algorithm is stable for i.i.d. arrivals up
to an offered load of 100%hen the traffic is uniforrfil4].

It is important to note that a maximum size matching is not
necessarily desirable. First, un@g@missibletraffic it can
lead to instability and unfairness, particularly for non-uni-
form traffic patterns. To demonstrate this behavior,
Figure 3 shows an example of a potentially unstable 3x3

switch with just four active flowdand scheduled using the
maximum size matching algorithm. It is assumed that ties
are broken by selecting among alternatives

with equal probability. Arrivals to the switch are i.i.d. Ber-

1.This algorithm is equivalent to Dinic’s algorithm [6].
2.lt can also be shown that a 2x2 switch with non-uniform traffic

Figure 3: Example of instability under admissible
traffic using a maximum size matching algorithm for a
3x3 switch with non-uniform traffic.

noulli arrivals and each flow has arrivals at rate
(1/2) —d,whered >0 . Even though the traffic is admis-
sible, it is straightforward to show that the switch can be
unstable for sufficiently sma . Consider the event that at
time n, bothA, 1(n) andAg »(n) have arrivals (with proba-
bility ((1/2) -8)2) and L, ,(n)>0, L, ,(n)>0, in

which case input 1 receives service with probability 2/3.
Therefore the total rate at which input 1 receives service is
at most:

201 F, 0, 1 <[FO
3500 -5 -2%00
_ .. 100 L[
=1-3%-%0
But the arrival rate to input 1 5— 20 , so if
1m 7
26<3D§ o ,

(which holds ford <0.0358 ), then the switch is unstable
and the traffic cannot be sustained by the maximum size
matching algorithm.

Second, undeénadmissibleraffic, the maximum size
matching algorithm can lead starvation An example of
this behavior is shown in Figure 4 for a 2x2 switch. It is
clear that because all three queues are permanently occu-
pied, the algorithm will always select the “cross” traffic: in-
put 1 to output 2 and input 2 to output 1.1t is worth noting
that the most practical among the scheduling algorithms
described earlier attempt to approximate a maximum size
matching [1][2][4][13][20]. It is therefore not surprising
that these algorithms perform well when the traffic is uni-

can be unstable when scheduled using a maximum size matchingform, but perform less well when the traffic is non-uni-

algorithm. However, our proof is more complex and is omitted
here.

form.



V(n) = LT(n)L(n) is a 2nd order Lyapunov function
and, using the result of Kumar and Meyn [12] we show that

the system is stable. The terme|L(n)]| indicates that
whenever the occupancy of the input queues is large
enough, the expected drift is negative; shojllén)| be-
come very large, the downward drift also becomes large.
Ay =1 Hpq =1 5 Conclusion
We have shown that if an input-queued switch main-
Figure 4. Under an inadmissible workload, the tains a separate FIFO queue for each output at each input,
maximum size match will always serve just two then the maximum throughput is 100% for independent ar-
queues, starving the flow from input 1 to output 1. rivals. If a maximum sized matching algorithm is used to

schedule cells, then we demonstrate that a throughput of
100% is possible only when arrivals are uniform. However,
if a maximum weight matching algorithm is used, we have
4 Maximum Weight Matchings proved that a throughput of 100% is achievable for both
uniform and non-uniform arrivals.

The maximum weight matchinyl for a bipartite

graph is one that maximizes w;;  and can be found 6 References
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Appendix A.1: Proof of Theorem

A.1.1 Definitions
In this appendix we use the following definitions for
anM x N switch:

1. The rate matrix of the stationary arrival processes:
M
A= [N ], where: % A ;<
i=1
and associated rate vector:

A= Ay

N
L 3 A SLA; 20
j=1

A o A o A T )

2. The arrival matrix, representing the sequence of arriv-
als into each queue:
A(n) = [A ()]
where:
1 if arrival occurs aQ(i, j) at timen
A () = { ,
0 else
and associated arrival vector:
AN = (Ay (), s Ag (), s Ay (M) T
3. The service matrix, indicating which queues are

served at time:

S(n) = [§’j(n)] , Where:

1 if Q(i, j) is served at timen

(n) = ,
SN {O else
andS(n) O S, the set of service matrices.
M N

Note that: Z S, = z S;(n =1, and hence if
i=1 j=1
M =N, SnOS is a permutation matrix If

M#N ,we say thaB(n) 0 S is quasi-permutation
matrix. We define the associated service vector:

S(9= (S, 1) -r Sy (M. - Sy ) T
hence|(n|2 = /NM .
Theapproximatenext-state vector:

L(n +1)=L(n)—S N +A(n), which approximates
the exact next-state of each queue

L (n+1) = [L,(0)-S,;m] +A 0. (3)

A.1.2 Proof of Theorem.

Before proving the theorem, we first state the follow-
ing fact and prove the subsequent lemmas.

Fact 1: (Birkhoff's Theorem) The doubly sub-stochastic
N x Nsquare matrices form a convex s€t, , with the set

of extreme points equal to permutation matrices,

This is proved in [3].

Lemma 1: The doubly sub-stochastid x N non-square

matrices form a convex seéf, , with the set of extreme

points equal to quasi-permutation matricés,

Proof: Observe that we can addl- M rows to any non-
square sub-stochastic matrix and introduce new entries so
that the row sums of the new rows equal one and further
that the column sums are also each 1. We can use
Birkhoff's Theorem to write the augmented matrix as a

convex combination oN x N permutation matrices. The

first M rows of the permutation matrix is & x N matrix

which forms a permutation matrix with soriveof theN
columnsm

Lemma2:LT(n) (A-S'(n)) <0, 0O(L(n),A) , where

S'(n) = arg rg(?;(l:T(n)S( ), the service matrix selected



by the maximum weight matching algorithm to maximize  Proof:

LTmS(n) . L(n) (A - S'(m)
Proof: Consider the linear programming problem: <LT(n) {A,,—S (M} —LT(n) (BA,)
nmxﬁ}mA) N < 0-BL(m) O, cos?
st i;)\i’j <L j;)\i'i <120 where® is the angle betwedun)  ahg
which has a solution equal to an extreme point of the con- We now show thatosB >6 forsome>0 whenever
vex set,C . Hence, L(n) # 0. First, we show thatosd > 0 . We do this by con-
max(LT(n)A) < maxLT(M(n), tradiction: suppose thatsd = 0 ,ik(n) ahg areor-

T _ T
and soL{(nA —max(L (M) <0 = thogonal. This can only occur if(n) = 0 , or if for some

Lemma 3: i,j, both )\i'j =0 andLiyj(n) >0 , which is not possible:
E[ET(n + 1)L(n +1) —LT(n)L(n)| L(n)] <2./NM, OA for arrivals to have occurred at queQ€, j) A, ; must be

Broof greater than zero. ThereforepsB > 0  unlégg) = 0
roof: -
Now we show thattosd is bounded away from zero, i.e.

LT(n+ DL+ ) - L)L) that cosd > & for some3>0 . Becausg ;>0  wherever
i (Lin) - SO TAM L) =0 ¢ é(n)) “LOLm '-i,j(n) >0, and becausf)\||2 < JNM |
= 2L7(n) (A(n) —S(N) + (N —-A(n) " (XN —A(n)

= 2LT(n) (A(N) —S(n) +Kk, _ _LT(mA LmaxMAmin 4
€00 = TN = ()] (NM) 4 @

where0O< k< 2N .k=0 becaus§n—-A(n) isarealvec-

tor, andk< 2./NM _becausts(n) —A(r)|2< 2/NM . where A, = m|n()\i'j,-15| SM,-ISJ <N) , and
Taking the expected value: Lnan) = maxL;;(n),1<i<M,1<j<N).
E[LT(n+1)L(n+ 1) —LT(n)L(n)| L(n)] Also, [L(n)] = [NML2 ()] 2 = /NML,,.(n) , and so
<E[2L7(n) (A(N —S(1)] cosBis bounded by
= 2L7(n) (A =S'(n)) + 2./NM. o > —min (5)

(NM) 3/4
From Lemma 2 we know tha2LT(n) (A-S'(n)) <0

proving the lemmam Therefore

E[L"(n+ D)L+ 1) -LT)L(M)]| L(M)]

Lemma 4:Forany €>0 B)\mmH ol
<———|L(n)|| + 2V/NM
N

E[LT(n+2)L(n+ 1) = LT(MLM)| L(m)]
<—¢|L)] + 2/NM.

, Lemma 5:Forall €>0,
OAN< (1-PB)A,,0<B<1, whereA  is any rate vector

E[LT(n+1)L(n+ 1) -LY(n)L(n)| L(n)]

such thaq\Z\mHZ = J/NM .
<—¢g|L(n)| + NM + 2./NM

0 A< (1-B)A(n), 0<p<L.



L (n+1) = Li;(n+1)
1 ifL,(m=0S;Mn =1,

0 else
therefore

LT(n+L(n+ 1) -LT(n+L(n+1)<NM,  (6)
and so

E[LT(n+1)L(n + 1) —LT(n)L(n) |L(")]
<E[LT(n+1)L(n + 1) —LT(n)L(n)|L(N)] +NM

Using Lemma this concludes the praof.

Lemma 6: There exists &(L(n)) s.t.
E[V(L(n+ 1)) =V(L(M) |L(N)] <-¢|L(n)] +k, where
k,e>0.

Proof: V(L(n) = LT(n)L(n) andk = NM+2,/NM in
Lemma Sa

We are now ready to prove the main theor¥(i(n))
in the main Theorem is a quadratic Lyapunov function and,
according to the argument of Kumar and Meyn [12], it fol-
lows that the switch is stable.



