
Abstract

It is well known that head-of-line (HOL) blocking limits
the throughput of an input-queued switch with FIFO
queues. Under certain conditions, the throughput can be
shown to be limited to approximately 58%. It is also
known that if  non-FIFO queueing policies are used, the
throughput can be increased. However, it has not been
previously shown that if a suitable queueing policy and
scheduling algorithm are used then it is possible to
achieve 100% throughput for all independent arrival pro-
cesses. In this paper we prove this to be the case using a
simple linear programming argument and quadratic
Lyapunov function. In particular, we assume that each
input maintains a separate FIFO queue for each output
and that the switch is scheduled using a maximum weight
bipartite matching algorithm.

1 Introduction

Since Karol et al.’s paper was published in 1986, [11],
it has become well known that an  port input-queued
switch with FIFO queues can have a throughput limited to

just . The conditions for this to be true
are that:

  1. Arrivals at each input are independent and identically
distributed (i.i.d.).

  2. Arrival processes at each input are independent of
arrivals at other inputs.

  3. All arrival processes have the same arrival rate and
destinations are uniformly distributed over all outputs.

  4. Arriving packets are of fixed and equal length, called
cells.

  5. N is large.

N N×

2 2–( ) 58.6%≈

When conditions (1) and (2) are true we shall say that
arrivals areindependent,and when condition (3) is true we
shall say that arrivals are uniform.

The throughput is limited because a cell can be held up
by another cell ahead of it in line that is destined for a dif-
ferent output. This phenomenon is known as HOL block-
ing.

It is well documented that this result applies only to in-
put-queued switcheswith FIFO queues. And so many tech-
niques have been suggested for reducing HOL blocking
using non-FIFO queues, for example by examining the first
K cells in a FIFO queue, where K>1 [5][8][10]. In fact,
HOL blocking can be eliminated entirely by using a simple
buffering strategy at each input port. Rather than maintain
a single FIFO queue for all cells, each input maintains a
separate queue for each output [1][9][15][16][17][18], as
shown in Figure 1. HOL blocking is eliminated because a
cell cannot be held up by a cell queued ahead of it that is
destined for a different output. This implementation is
slightly more complex, requiring N FIFOs to be maintained
by each input buffer. But no additional speedup is required:
at most one cell can arrive and depart from each input in a
cell time. During each slot time a scheduling algorithm de-
cides the configuration of the switch by finding a matching
on a bipartite graph (described below). A number of differ-
ent techniques have been used for finding such a matching,
for example using neural networks [2][4][20], or iterative
algorithms [1][13][14]. These algorithms were designed to
give high throughput while remaining simple to implement
in hardware. When traffic is uniform, these algorithms per-
form well (>90% throughput). TheiSLIP algorithm
[13][14], for example, has been demonstrated using simu-
lation to achieve 100% throughput when the traffic is inde-
pendent and uniform. However, all of these algorithms
perform less well and are unable to sustain a throughput of
100% when traffic is non-uniform.
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It is worth asking the question:

What is the highest throughput that can be
achieved by an input-queued switch which uses
the queueing discipline shown in Figure 1?

In this paper we prove that for independent arrivals
(uniform or non-uniform), a maximum throughput of 100%
is achievable using a maximum weight matching algo-
rithm.

In Section 2 we describe our model for an input-
queued switch that uses the queueing discipline illustrated
in Figure 1. We then consider two graph algorithms that
can be used to schedule the transfer of cells through the
switch. In Section 3  we describe the maximum size sched-
uling algorithm. Although this algorithm achieves 100%
throughput for uniform traffic, we show that it can become
unstable, even starve input queues, when arrivals are non-
uniform. Section 4 describes the maximum weight sched-
uling algorithm. In conjunction with the appendix, we
prove that the maximum weight scheduling algorithm is
stable for all uniform and non-uniform independent arrival
processes up to a maximum throughput of 100%. It is im-
portant to note that this is a theoretical result — the maxi-
mum weight matching algorithm that we propose is not
readily implemented in hardware. However, our result in-
dicates that a more practical technique that approximates
this algorithm can be expected to perform well.

2 Our Model

Consider the “input-queued cell switch” in Figure 1
connectingM inputs to N outputs. The stationary and er-
godic arrival processAi(n) at inputi, 1≤i≤M, is a discrete-
time process of fixed sized packets, or cells. At the begin-
ning of each time slot, either zero or one cell arrive at each
input. Each cell contains an identifier that indicates which
outputj, 1≤j≤N, it is destined for. When a cell destined for
output j arrives at input i it is placed in the FIFO queue
Q(i,j) which has occupancy Li,j(n). Define the following
vector which represents the occupancy of all queues at time
n:

.  (1)

We shall define the arrival processAi,j(n) to be the pro-
cess of arrivals at inputi for outputj at rateλi,j, and the set

of all arrival processes A(n) = {Ai(n); 1≤i≤M}.  is con-
sideredadmissibleif no input or output is oversubscribed,

i.e. , otherwise it isinadmissible.

The FIFO queues are served as follows. A scheduling
algorithm selects amatch, or matching, M between the in-

L n( ) L1 1, n( ) … L1 N, n( ) … LM N, n( ), , , ,( ) T≡

A n( )

λi j 1<
i

∑ λi j 1<
j

∑,

puts and outputs, defined as a collection of edges from the
set of non-empty input queues to the set of outputs such that
each non-empty input is connected to at most one output
and each non-empty output is connected to at most one in-
put. At the end of the time slot, if inputi is connected to
outputj, one cell is removed fromQ(i,j) and sent to output
j. Clearly, the departure process from outputj, Dj(t), rateµj

is also a discrete-time process with either zero or one cell
departing from each output at the end of each time slot. We
shall define the departure processDi,j(t), rate µi,j, as the

process of departures from outputj that were received from
input i. Note that the departure rate may not be defined if
the departure process is not stationary and ergodic.

To find a matchingM, the scheduling algorithm solves
a bipartite graph matching problem. An example of a bipar-
tite graph is shown in Figure 2.

If the queueQ(i,j) is non-empty,Li,j(n) > 0 and there is
an edge in the graph G between inputi and outputj. We as-
sociate a weight  to each such edge. The meaning

of the weights depend on the algorithm, and we consider
two algorithms here:

  1. Maximum Size Matching Algorithms: Algorithms
that find the match containing the maximum number
of edges.

  2. Maximum Weight Matching Algorithms:  Algo-
rithms that find the maximum weight matching
where, in this paper, we only consider algorithms for
which the weight is integer-valued, equalling

the occupancyLi,j(n) of Q(i,j).

Clearly, a maximum size match is a special case of the
maximum weight matching with weight .
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Figure 1: Components of an Input-Queued Cell-
Switch.
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3 Maximum Size Matchings

The maximum size matching for a bipartite graph can
be found by solving an equivalent network flow problem
[19]. There exist many algorithms for solving these prob-
lems, the most efficient algorithm currently known con-

verges in  time and is described in [7].1

It can be demonstrated using simulation that the max-
imum size matching algorithm is stable for i.i.d. arrivals up
to an offered load of 100%when the traffic is uniform[14].
It is important to note that a maximum size matching is not
necessarily desirable. First, underadmissible traffic it can
lead to instability and unfairness, particularly for non-uni-
form traffic patterns. To demonstrate this behavior,
Figure 3 shows an example of a potentially unstable 3x3

switch with just four active flows,2 and scheduled using the
maximum size matching algorithm. It is assumed that ties
are broken by selecting among alternatives
with equal probability.  Arrivals to the switch are i.i.d. Ber-

1.This algorithm is equivalent to Dinic’s algorithm [6].

2.It can also be shown that a 2x2 switch with non-uniform traffic
can be unstable when scheduled using a maximum size matching
algorithm. However, our proof is more complex and is omitted
here.
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Figure 2: Define G = [V,E] as an undirected graph
connecting the set of vertices V with the set of edges
E. The edge connecting vertices i, 1≤i≤M and j, 1≤j≤N
has an associated weight denoted wi,j. Graph G is bi-
partite if the set of inputs I = {i: 1≤i≤M} and outputs J
= {i: 1≤j≤N} partition V such that every edge has one
end in I and one end in J. Matching M on G is any sub-
set of E such that no two edges in M have a common
vertex. A maximum matching algorithm is one that

finds the matching Mmax with the maximum total size
or total weight.

w1,1

a) Example of G for I =
M and J = N.

b) Example of matching
M on G.
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noulli arrivals and each flow has arrivals at rate
, where . Even though the traffic is admis-

sible, it is straightforward to show that the switch can be
unstable for sufficiently small . Consider the event that at
time n, bothA2,1(n) andA3,2(n) have arrivals (with proba-

bility ) and , , in

which case input 1 receives service with probability 2/3.
Therefore the total rate at which input 1 receives service is
at most:

But the arrival rate to input 1 is , so if

,

(which holds for ), then the switch is unstable
and the traffic cannot be sustained by the maximum size
matching algorithm.

Second, underinadmissible traffic, the maximum size
matching algorithm can lead tostarvation. An example of
this behavior is shown in Figure 4 for a 2x2 switch. It is
clear that because all three queues are permanently occu-
pied, the algorithm will always select the “cross” traffic: in-
put 1 to output 2 and input 2 to output 1.It is worth noting
that the most practical among the scheduling algorithms
described earlier attempt to approximate a maximum size
matching [1][2][4][13][20]. It is therefore not surprising
that these algorithms perform well when the traffic is uni-
form, but perform less well when the traffic is non-uni-
form.

Figure 3: Example of instability  under admissible
traffic using a maximum size matching algorithm for a
3x3 switch with non-uniform traffic.
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4 Maximum Weight Matchings

The maximum weight matchingM for a bipartite

graph is one that maximizes  and can be found

by solving an equivalent network flow problem. The most
efficient known algorithm for solving this problem con-

verges in running time [19].
The maximumsize matching algorithm described

above knows only whether an input queue is empty
or non-empty. Therefore, if the traffic is non-uniform and
the occupancy of some queues begins to increase, this algo-
rithm does not know to favor those queues and reduce their
backlog.

On the other hand, the maximumweight matching al-
gorithm knows the occupancy of each queue, , and

can thus give preference to queues with greater occupancy.
In fact, as the following theorem shows, a maximum
throughput 100% is possible for independent and either
uniform or non-uniform arrivals.

4.1 Main Result

Theorem: The maximum weight matching algorithm is
stable for all admissible i.i.d. arrival processes.

Proof: The proof is given in the Appendix. In summary,
we show that for an  switch scheduled using the
maximum weight matching algorithm, there is a negative
expected single-step drift in the sum of the squares of the
occupancy. In other words,

where, .

Figure 4:  Under an inadmissible workload, the
maximum size match will always serve just two
queues, starving the flow from input 1 to output 1.
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 is a 2nd order Lyapunov function
and, using the result of Kumar and Meyn [12] we show that

the system is stable. The term indicates that

whenever the occupancy of the input queues is large

enough, the expected drift is negative; should  be-

come very large, the downward drift also becomes large.

5 Conclusion

We have shown that if an input-queued switch main-
tains a separate FIFO queue for each output at each input,
then the maximum throughput is 100% for independent ar-
rivals. If a maximum sized matching algorithm is used to
schedule cells, then we demonstrate that a throughput of
100% is possible only when arrivals are uniform. However,
if a maximum weight matching algorithm is used, we have
proved that a throughput of 100% is achievable for both
uniform and non-uniform arrivals.
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Appendix A.1:  Proof of Theorem

A.1.1  Definitions
In this appendix we use the following definitions for

an  switch:

  1. The rate matrix of the stationary arrival processes:

and associated rate vector:

.  (2)

  2. The arrival matrix, representing the sequence of arriv-
als into each queue:

where:

,

and associated arrival vector:

.

  3. The service matrix, indicating which queues are
served at timen:

M N×

Λ λi j,[ ] where: λi j,
i 1=

M

∑ 1 λi j,
j 1=

N

∑ 1 λi j, 0≥,≤,≤,≡

λ λ1 1, … λ1 N, … λ, M 1, … λM N,, , , , ,( ) T≡

A n( ) Ai j, n( )[ ]≡

Ai j, n( )
1 if arrival occurs atQ i j,( ) at timen

0 else
{≡

A n( ) A1 1, n( ) … A1 N, n( ) … AM N, n( ), , , ,( ) T≡

, where:

,

and , the set of service matrices.

Note that: , and hence if

,  is a permutation matrix. If

, we say that  is aquasi-permutation
matrix. We define the associated service vector:

,

hence .

  4. Theapproximate next-state vector:

, which approximates
the exact next-state of each queue

.  (3)

A.1.2  Proof of Theorem.
Before proving the theorem, we first state the follow-

ing fact and prove the subsequent lemmas.

Fact 1: (Birkhoff ’s Theorem) The doubly sub-stochastic

square matrices form a convex set, , with the set

of extreme points equal to permutation matrices, .

This is proved in [3].

Lemma 1: The doubly sub-stochastic  non-square

matrices form a convex set, , with the set of extreme

points equal to quasi-permutation matrices,

Proof: Observe that we can addN - M rows to any non-
square sub-stochastic matrix and introduce new entries so
that the row sums of the new rows equal one and further
that the column sums are also each 1. We can use
Birkhoff’s Theorem to write the augmented matrix as a
convex combination of  permutation matrices. The

first M rows of the permutation matrix is an  matrix
which forms a permutation matrix with someM of theN
columns.■

Lemma 2: , where

, the service matrix selected

S n( ) Si j, n( )[ ]≡

Si j, n( )
1 if Q i j,( ) is served at timen

0 else
{=

S n( ) S∈

Si j, n( )
i 1=

M

∑ Si j, n( )
j 1=

N

∑ 1= =

M N= S n( ) S∈
M N≠ S n( ) S∈

S n( ) S1 1, n( ) … S1 N, n( ) … SM N, n( ), , , ,( ) T≡

S n( ) 2 NM=

L̃ n 1+( ) L n( ) S n( )– A n( )+≡

Li j, n 1+( ) Li j, n( ) Si j, n( )–[ ] +
Ai j, n( )+=

N N× C

S

M N×

C

S

N N×
M N×

LT n( ) λ S* n( )–( ) 0 L n( ) λ,( )∀,≤

S* n( ) arg max
S n( )

LT n( )S n( )( )=



by the maximum weight matching algorithm to maximize

.

Proof: Consider the linear programming problem:

which has a solution equal to an extreme point of the con-
vex set, . Hence,

,

and so .■

Lemma 3:

Proof:

where .  because  is a real vec-

tor, and  because .
Taking the expected value:

From Lemma 2 we know that ,
proving the lemma.■

Lemma 4: For any :

, where  is any rate vector

such that .

LT n( )S n( )

max LT n( )λ( )

s.t. λi j,
i 1=

M

∑ 1 λi j,
j 1=

N

∑ 1 λi j, 0≥,≤,≤

C

max LT n( )λ( ) max LT n( )S n( )( )≤

LT n( )λ max LT n( )S n( )( )– 0≤

E L̃T n 1+( )L̃ n 1+( ) LT n( )L n( ) L n( )–[ ] 2 NM λ∀,≤

L̃T n 1+( )L̃ n 1+( ) LT n( )L n( )–

L n( ) S n( )– A n( )+( ) T L n( ) S n( )– A n( )+( ) LT n( )L n( )–=

2LT n( ) A n( ) S n( )–( ) S n( ) A n( )–( ) T S n( ) A n( )–( )+=

2LT n( ) A n( ) S n( )–( ) k,+=

0 k 2N≤ ≤ k 0≥ S n( ) A n( )–

k 2 NM≤ S n( ) A n( )– 2 2 NM≤

E L̃T n 1+( )L̃ n 1+( ) LT n( )L n( )– L n( )[ ]

E 2LT n( ) A n( ) S n( )–( )[ ]≤

2LT n( ) λ S* n( )–( ) 2 NM.+=

2LT n( ) λ S* n( )–( ) 0≤

ε 0>

E L̃T n 1+( )L̃ n 1+( ) LT n( )L n( )– L n( )[ ]

ε L n( )– 2 NM.+≤

λ 1 β–( ) λm≤ 0 β 1< <,∀ λm

λm
2 NM=

Proof:

where is the angle between and .

We now show that  for some whenever

. First, we show that . We do this by con-

tradiction: suppose that , i.e. and are or-

thogonal. This can only occur if , or if for some

, both  and , which is not possible:

for arrivals to have occurred at queue , must be

greater than zero. Therefore,  unless .

Now we show that is bounded away from zero, i.e.

that  for some . Because  wherever

, and because ,

,  (4)

where , and

.

Also, , and so

is bounded by

 (5)

Therefore

■

Lemma 5: For all ,

.

LT n( ) λ S* n( )–( )

LT n( ) λm S* n( )–{ } LT n( ) βλm( )–≤

0 β L n( ) λm θcos⋅–≤

θ L n( ) λm

θcos δ> δ 0>
L n( ) 0≠ θcos 0>

θcos 0= L n( ) λm

L n( ) 0=

i j, λi j, 0= Li j, n( ) 0>

Q i j,( ) λi j,

θcos 0> L n( ) 0=

θcos

θcos δ> δ 0> λi j, 0>

Li j, n( ) 0> λ 2 NM≤

θcos
LT n( )λ
L n( ) λ

-----------------------=
Lmax n( )λmin

L n( ) NM( ) 1 4/
--------------------------------------≥

λmin min λi j, 1 i M 1 j N≤ ≤,≤ ≤,( )=

Lmax n( ) max Li j, n( ) 1 i M≤ 1 j N≤ ≤,≤,( )=

L n( ) NMLmax
2 n( )[ ] 1 2/≤ NMLmax n( )=

θcos

θcos
λmin

NM( ) 3 4/
----------------------≥

E L̃T n 1+( )L̃ n 1+( ) LT n( )L n( )– L n( )[ ]

βλmin

N
-------------- L n( )– 2 NM+≤

ε 0>

E LT n 1+( )L n 1+( ) LT n( )L n( )– L n( )[ ]

ε L n( )– NM 2 NM+ +≤

λ 1 β–( ) λm n( )≤ 0 β 1< <,∀



,

therefore

,  (6)

and so

Using Lemma  this concludes the proof.■

Li j, n 1+( ) L̃i j, n 1+( )=

1 if Li j, n( ) 0 Si j, n( ), 1= =

0 else
{+

LT n 1+( )L n 1+( ) L̃T n 1+( )L̃ n 1+( )– NM≤

E LT n 1+( )L n 1+( ) LT n( )L n( )– L n( )[ ]
E L̃T n 1+( )L̃ n 1+( ) LT n( )L n( ) L n( )–[ ] NM+≤

Lemma 6: There exists a  s.t.

, where

.

Proof:  and  in
Lemma 5.■

We are now ready to prove the main theorem.
in the main Theorem is a quadratic Lyapunov function and,
according to the argument of Kumar and Meyn [12], it fol-
lows that the switch is stable.

V L n( )( )

E V L n 1+( )( ) V L n( )( ) L n( )–[ ] ε L n( )– k+≤

k ε, 0>

V L n( )( ) LT n( )L n( )= k NM 2 NM+=

V L n( )( )


