
11/2/2001 MPI

Message Passing Programming (MPI)

Slides adopted from class notes by
Kathy Yelick

www.cs.berkeley.edu/~yellick/cs276f01/lectures/Lect07.html
(Which she adopted from Bill Saphir, Bill Gropp, Rusty Lusk,

Jim Demmel, David Culler, David Bailey, and Bob Lucas.)

11/2/2001 MPI

What is MPI?

• A message-passing library specification
• extended message-passing model
• not a language or compiler specification
• not a specific implementation or product

• For parallel computers, clusters, and heterogeneous
networks

• Designed to provide access to advanced parallel
hardware for
• end users
• library writers
• tool developers

• Not designed for fault tolerance

11/2/2001 MPI

History of MPI
MPI Forum: government, industry and academia.
• Formal process began November 1992
• Draft presented at Supercomputing 1993
• Final standard (1.0) published May 1994
• Clarifications (1.1) published June1995
• MPI-2 process began April, 1995
• MPI-1.2 finalized July 1997
• MPI-2 finalized July 1997

Current status of MPI-1
• Public domain versions from ANL/MSU (MPICH), OSC (LAM)
• Proprietary versions available from all vendors

• Portability is the key reason why MPI is important.

11/2/2001 MPI

MPI Programming Overview

1. Creating parallelism
• SPMD Model

2. Communication between processors
• Basic
• Collective
• Non-blocking

3. Synchronization
• Point-to-point synchronization is done by message passing
• Global synchronization done by collective communication

11/2/2001 MPI

SPMD Model
• Single Program Multiple Data model of programming:

• Each processor has a copy of the same program
• All run them at their own rate
• May take different paths through the code

• Process-specific control through variables like:
• My process number
• Total number of processors

• Processors may synchronize, but none is implicit

11/2/2001 MPI

Hello World (Trivial)

• A simple, but not very interesting, SPMD Program.

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

printf("Hello, world!\n");

MPI_Finalize();

return 0;

}

11/2/2001 MPI

Hello World (Independent Processes)
• MPI calls to allow processes to differentiate themselves

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{

int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am process %d of %d.\n", rank, size);
MPI_Finalize();
return 0;

}

• This program may print in any order
(possibly even intermixing outputs from different processors!)

11/2/2001 MPI

MPI Basic Send/Receive
• “Two sided” – both sender and receiver must take action.

• Things that need specifying:
• How will processes be identified?
• How will “data” be described?
• How will the receiver recognize/screen messages?
• What will it mean for these operations to complete?

Process 0 Process 1

Send(data)

Receive(data)

11/2/2001 MPI

Identifying Processes: MPI Communicators
• Processes can be subdivided into groups:

• A process can be in many groups
• Groups can overlap

• Supported using a “communicator:” a message context
and a group of processes

• More on this later…

• In a simple MPI program all processes do the same thing:
• The set of all processes make up the “world”:

• MPI_COMM_WORLD
• Name processes by number (called “rank”)

11/2/2001 MPI

Point-to-Point Communication Example
Process 0 sends 10-element array “A” to process 1
Process 1 receives it as “B”
1:
#define TAG 123

double A[10];

MPI_Send(A, 10, MPI_DOUBLE, 1,

TAG, MPI_COMM_WORLD)

2:

#define TAG 123

double B[10];

MPI_Recv(B, 10, MPI_DOUBLE, 0,

TAG, MPI_COMM_WORLD, &status)

or

MPI_Recv(B, 10, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status)

Process ID’s

11/2/2001 MPI

Describing Data: MPI Datatypes
• The data in a message to be sent or received is

described by a triple (address, count, datatype), where
• An MPI datatype is recursively defined as:

• predefined, corresponding to a data type from the language
(e.g., MPI_INT, MPI_DOUBLE_PRECISION)

• a contiguous array of MPI datatypes
• a strided block of datatypes
• an indexed array of blocks of datatypes
• an arbitrary structure of datatypes

• There are MPI functions to construct custom datatypes,
such an array of (int, float) pairs, or a row of a matrix
stored columnwise.

11/2/2001 MPI

MPI Predefined Datatypes
C:
• MPI_INT
• MPI_FLOAT
• MPI_DOUBLE
• MPI_CHAR
• MPI_LONG
• MPI_UNSIGNED
Language-independent
• MPI_BYTE

Fortran:
• MPI_INTEGER
• MPI_REAL
• MPI_DOUBLE_PRECISION
• MPI_CHARACTER
• MPI_COMPLEX
• MPI_LOGICAL

11/2/2001 MPI

Why Make Datatypes Explicit?
• Can’t the implementation just “send the bits?”
• To support heterogeneous machines:

• All data is labeled with a type
• MPI implementation can support communication on

heterogeneous machines without compiler support
• I.e., between machines with very different memory

representations (big/little endian, IEEE fp or others, etc.)

• Simplifies programming for application-oriented layout:
• Matrices in row/column

• May improve performance:
• reduces memory-to-memory copies in the implementation
• allows the use of special hardware (scatter/gather) when

available

11/2/2001 MPI

Using General Datatypes
• Can specify a strided or indexed datatype

• Aggregate types
• Vector

• Strided arrays, stride specified in elements
• Struct

• Arbitrary data at arbitrary displacements
• Indexed

• Like vector but displacements, blocks may be different lengths
• Like struct, but single type and displacements in elements

• Performance may vary!

layout in memory

11/2/2001 MPI

Recognizing & Screening Messages: MPI Tags
• Messages are sent with a user-defined integer tag:

• Allows receiving process in identifying the message.
• Receiver may also screen messages by specifying a tag.
• Use MPI_ANY_TAG to avoid screening.

• Tags are called “message types” in some non-MPI
message passing systems.

11/2/2001 MPI

Message Status

• Status is a data structure allocated in the user’s program.
• Especially useful with wild-cards to find out what matched:

int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ...,
&status)

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &recvd_count);

11/2/2001 MPI

MPI Basic (Blocking) Send

MPI_SEND (start, count, datatype, dest, tag, comm)

• start: a pointer to the start of the data
• count: the number of elements to be sent
• datatype: the type of the data
• dest: the rank of the destination process
• tag: the tag on the message for matching
• comm: the communicator to be used.

• Completion: When this function returns, the data has
been delivered to the “system” and the data structure
(start…start+count) can be reused. The message may
not have been received by the target process.

11/2/2001 MPI

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag, comm, status)

• start: a pointer to the start of the place to put data
• count: the number of elements to be received
• datatype: the type of the data
• source: the rank of the sending process
• tag: the tag on the message for matching
• comm: the communicator to be used
• status: place to put status information

• Waits until a matching (on source and tag) message is received from
the system, and the buffer can be used.

• Receiving fewer than count occurrences of datatype is OK, but
receiving more is an error.

11/2/2001 MPI

Summary of Basic Point-to-Point MPI
• Many parallel programs can be written using just these

six functions, only two of which are non-trivial:
•MPI_INIT

•MPI_FINALIZE

•MPI_COMM_SIZE

•MPI_COMM_RANK

•MPI_SEND

•MPI_RECV

• Point-to-point (send/recv) isn’t the only way...

11/2/2001 MPI

Collective Communication in MPI
• Collective operations are called by all processes in a

communicator.
• MPI_BCAST distributes data from one process (the root) to all

others in a communicator.
MPI_Bcast(start, count, datatype,

source, comm);

• MPI_REDUCE combines data from all processes in
communicator and returns it to one process.
MPI_Reduce(in, out, count, datatype,

operation, dest, comm);

• In many algorithms, SEND/RECEIVE can be replaced
by BCAST/REDUCE, improving both simplicity and
efficiency.

11/2/2001 MPI

Example: Calculating PI
#include "mpi.h"
#include <math.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done) {
if (myid == 0) {
printf("Enter the number of intervals: (0 quits) ");
scanf("%d",&n);

}
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
if (n == 0) break;

11/2/2001 MPI

Example: Calculating PI (continued)
h = 1.0 / (double) n;
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs) {
x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);

}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);
if (myid == 0)
printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));
}
MPI_Finalize();

return 0;

}
Aside: this is a lousy
way to compute pi!

11/2/2001 MPI

Non-Blocking Communication
• So far we have seen:

• Point-to-point (blocking send/receive)
• Collective communication

• Why do we call it blocking?
• The following is called an “unsafe” MPI program

Process 0

Send(1)
Recv(1)

Process 1

Send(0)
Recv(0)

• It may run or not, depending on the availability of
system buffers to store the messages

11/2/2001 MPI

Non-blocking Operations
Split communication operations into two parts.

• First part initiates the operation. It does not block.
• Second part waits for the operation to complete.
MPI_Request request;
MPI_Recv(buf, count, type, dest, tag, comm, status)

=
MPI_Irecv(buf, count, type, dest, tag, comm, &request)

+
MPI_Wait(&request, &status)

MPI_Send(buf, count, type, dest, tag, comm)
=

MPI_Isend(buf, count, type, dest, tag, comm, &request)
+

MPI_Wait(&request, &status)

11/2/2001 MPI

Using Non-blocking Receive
• Two advantages:

• No deadlock (correctness)
• Data may be transferred concurrently (performance)

#define MYTAG 123

#define WORLD MPI_COMM_WORLD

MPI_Request request;

MPI_Status status;

Process 0:

MPI_Irecv(B, 100, MPI_DOUBLE, 1, MYTAG, WORLD, &request)

MPI_Send(A, 100, MPI_DOUBLE, 1, MYTAG, WORLD)

MPI_Wait(&request, &status)

Process 1:

MPI_Irecv(B, 100, MPI_DOUBLE, 0, MYTAG, WORLD, &request)

MPI_Send(A, 100, MPI_DOUBLE, 0, MYTAG, WORLD)

MPI_Wait(&request, &status)

11/2/2001 MPI

Using Non-Blocking Send
Also possible to use non-blocking send:

• “status” argument to MPI_Wait doesn’t return useful info here.
• But better to use Irecv instead of Isend if only using one.

#define MYTAG 123
#define WORLD MPI_COMM_WORLD
MPI_Request request;
MPI_Status status;
p=1-me; /* calculates partner in exchange */

Process 0 and 1:
MPI_Isend(A, 100, MPI_DOUBLE, p, MYTAG, WORLD,

&request)
MPI_Recv(B, 100, MPI_DOUBLE, p, MYTAG, WORLD,

&status)
MPI_Wait(&request, &status)

11/2/2001 MPI

Operations on MPI_Request
• MPI_Wait(INOUT request, OUT status)

•Waits for operation to complete and returns info in status
•Frees request object (and sets to MPI_REQUEST_NULL)

• MPI_Test(INOUT request, OUT flag, OUT status)
•Tests to see if operation is complete and returns info in status
•Frees request object if complete

• MPI_Request_free(INOUT request)
•Frees request object but does not wait for operation to complete

• Wildcards:
•MPI_Waitall(..., INOUT array_of_requests, ...)
•MPI_Testall(..., INOUT array_of_requests, ...)
•MPI_Waitany/MPI_Testany/MPI_Waitsome/MPI_Testsome

11/2/2001 MPI

Non-Blocking Communication Gotchas
• Obvious caveats:

• 1. You may not modify the buffer between Isend() and the
corresponding Wait(). Results are undefined.

• 2. You may not look at or modify the buffer between Irecv() and
the corresponding Wait(). Results are undefined.

• 3. You may not have two pending Irecv()s for the same buffer.

• Less obvious:
• 4. You may not look at the buffer between Isend() and the

corresponding Wait().
• 5. You may not have two pending Isend()s for the same buffer.

• Why the isend() restrictions?
• Restrictions give implementations more freedom, e.g.,

• Heterogeneous computer with differing byte orders
• Implementation swap bytes in the original buffer

11/2/2001 MPI

More Send Modes
• Standard

• Send may not complete until matching receive is posted
• MPI_Send, MPI_Isend

• Synchronous
• Send does not complete until matching receive is posted
• MPI_Ssend, MPI_Issend

• Ready
• Matching receive must already have been posted
• MPI_Rsend, MPI_Irsend

• Buffered
• Buffers data in user-supplied buffer
• MPI_Bsend, MPI_Ibsend

11/2/2001 MPI

Two Message Passing Implementations
• Eager: send data immediately; use pre-allocated or

dynamically allocated remote buffer space.
• One-way communication (fast)
• Requires buffer management
• Requires buffer copy
• Does not synchronize processes (good)

• Rendezvous: send request to send; wait for ready
message to send

• Three-way communication (slow)
• No buffer management
• No buffer copy
• Synchronizes processes (bad)

11/2/2001 MPI

Point-to-Point Performance (Review)
• How do you model and measure point-to-point

communication performance?
• linear is often a good approximation
• piecewise linear is sometimes better
• the latency/bandwidth model helps understand performance

• A simple linear model:
data transfer time = latency + message size / bandwidth

• latency is startup time, independent of message size
• bandwidth is number of bytes per second (β is inverse)

• Model:

αααα ββββ

11/2/2001 MPI

Latency and Bandwidth
• for short messages, latency dominates transfer time
• for long messages, the bandwidth term dominates

transfer time
• What are short and long?

latency term = bandwidth term
when

latency = message_size/bandwidth
• Critical message size = latency * bandwidth
• Example: 50 us * 50 MB/s = 2500 bytes

• messages longer than 2500 bytes are bandwidth dominated
• messages shorter than 2500 bytes are latency dominated

11/2/2001 MPI

Effect of Buffering on Performance
• Copying to/from a buffer is like sending a message

copy time = copy latency + message_size / copy bandwidth

• For a single-buffered message:
total time = buffer copy time + network transfer time

= copy latency + network latency
+ message_size *
(1/copy bandwidth + 1/network bandwidth)

• Copy latency is sometimes trivial compared to effective network
latency

1/effective bandwidth = 1/copy_bandwidth + 1/network_bandwidth
• Lesson: Buffering hurts bandwidth

11/2/2001 MPI

Communicators

• What is MPI_COMM_WORLD?
• A communicator consists of:

• A group of processes
• Numbered 0 ... N-1
• Never changes membership

• A set of private communication channels between them
• Message sent with one communicator cannot be received by

another.
• Implemented using hidden message tags

• Why?
• Enables development of safe libraries
• Restricting communication to subgroups is useful

11/2/2001 MPI

Safe Libraries
• User code may interact unintentionally with library code.

• User code may send message received by library
• Library may send message received by user code

start_communication();

library_call(); /* library communicates internally */

wait();

• Solution: library uses private communication domain
• A communicator is private virtual communication domain:

• All communication performed w.r.t a communicator
• Source/destination ranks with respect to communicator
• Message sent on one cannot be received on another.

11/2/2001 MPI

Notes on C and Fortran

• MPI is language independent, and has “language
bindings” for C and Fortran, and many other languages

• C and Fortran bindings correspond closely

• In C:
• mpi.h must be #included
• MPI functions return error codes or MPI_SUCCESS

• In Fortran:
• mpif.h must be included, or use MPI module (MPI-2)
• All MPI calls are to subroutines, with a place for the return code

in the last argument.

• C++ bindings, and Fortran-90 issues, are part of MPI-2.

11/2/2001 MPI

Free MPI Implementations (I)
• MPICH from Argonne National Lab and Mississippi State Univ.

• http://www.mcs.anl.gov/mpi/mpich
• Runs on

• Networks of workstations (IBM, DEC, HP, IRIX, Solaris, SunOS,
Linux, Win 95/NT)

• MPPs (Paragon, CM-5, Meiko, T3D) using native M.P.
• SMPs using shared memory

• Strengths
• Free, with source
• Easy to port to new machines and get good performance (ADI)
• Easy to configure, build

• Weaknesses
• Large
• No virtual machine model for networks of workstations

11/2/2001 MPI

Free MPI Implementations (II)
• LAM (Local Area Multicomputer)
• Developed at the Ohio Supercomputer Center

• http://www.mpi.nd.edu/lam
• Runs on

• SGI, IBM, DEC, HP, SUN, LINUX
• Strengths

• Free, with source
• Virtual machine model for networks of workstations
• Lots of debugging tools and features
• Has early implementation of MPI-2 dynamic process

management
• Weaknesses

• Does not run on MPPs

11/2/2001 MPI

MPI Sources
• The Standard itself is at: http://www.mpi-forum.org

• All MPI official releases, in both postscript and HTML
• Books:

• Using MPI: Portable Parallel Programming with the Message-Passing
Interface, by Gropp, Lusk, and Skjellum, MIT Press, 1994.

• MPI: The Complete Reference, by Snir, Otto, Huss-Lederman,
Walker, and Dongarra, MIT Press, 1996.

• Designing and Building Parallel Programs, by Ian Foster, Addison-
Wesley, 1995.

• Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997.

• MPI: The Complete Reference Vol 1 and 2,MIT Press, 1998(Fall).

• Other information on Web:
• http://www.mcs.anl.gov/mpi

11/2/2001 MPI

MPI-2 Features
• Dynamic process management

• Spawn new processes
• Client/server
• Peer-to-peer

• One-sided communication
• Remote Get/Put/Accumulate
• Locking and synchronization mechanisms

• I/O
• Allows MPI processes to write cooperatively to a single file
• Makes extensive use of MPI datatypes to express distribution of

file data among processes
• Allow optimizations such as collective buffering

• I/O has been implemented; 1-sided becoming available.

