
A buffer-management system to simplify the design of streaming

applications

Philip Garcia
University of Wisconsin-Madison

pcgarcia@wisc.edu

Johannes Helander
Microsoft Research

johannes.helander@microsoft.com

December 20, 2007

Abstract

In recent years there has been increased interest in
the design of parallel systems. Multicore proces-
sors have become commonplace in general purpose
computing, and have become increasingly impor-
tant in the design of new embedded devices. These
systems require a new approach to programming,
as standard programming models are based upon a
single thread of execution that cannot fully utilize
the processing resources of the processor.

In this work we propose a method for paral-
lelizing applications through the usage of stream
buffers. While stream processing has been around
for many years, our system is designed to fully de-
couple application control flow from the program-
ming model, and creates a simple environment
through which programmers can combine various
components to create a full application.

1 Introduction

Parallel programming is a difficult task that is not
adequately solved by current tools. Designing such
applications requires the developer to explicitly or-
der the execution of threads, and ensure correct-
ness for the near infinite overlays of the multiple
threads [8]. Such applications are difficult because
contemporary programming models are designed
to work with sequential Von Neuman computers
that assume serial execution of a program. When
programming Von Neuman systems, the control
and data flow are explicitly given in the program-
ming language.

When attempting to design parallel systems
within the constraints of contemporary program-
ming languages (C, C++, Java, etc.), this explicit
description of control and dataflow is no longer

inherent. While the application can easily show
the progression of control and data within a sin-
gle thread of execution, they cannot adequately
express the interactions of the various threads
within the application. Without constraints gov-
erning their execution. it is almost impossible
to design an application that behaves predictably
and correctly[3, 8]. While structures such as
semaphores, barriers etc. have eased the design
of parallel programs, their usage is generally left
to experts who have studied parallel algorithms in
great depths [8]. Additionally using these struc-
tures is error prone, and hard to visualize, as the
control flow of the application is no longer con-
tiguous. By this I mean that the control flow can
only be observed by examining multiple parts of an
application that specify the application’s behavior
under exceptional conditions.

Much research has been done on parallel pro-
gram, however until recently much of this work
was limited to the high performance computing
(HPC) community, where a relatively few number
of experts developed scientific applications. Many
techniques developed by the HPC community have
concentrated on the parallel execution of loops,
using the single program multiple data (SPMD)
paradigm[4, 7]. This work can greatly accelerate
many scientific codes, however, but itself it can-
not accelerate many current applictions. More re-
cently, this paradigm has been used by compilers
to automatically extract parallelism from loops or
small subgraphs of computation[10, 2]. However
extracting parallelism from a large application is
made much more difficult by the interdependencies
between these subgraphs.

1

Read File
Reorder

into
chunks

Color
space

conversion

Forward
DCT Quantize Zig-Zag

reorder

Huffman
Encode Write File

Figure 1: An example pipeline expressing the flow
of data in a JPEG encoder.

2 Execution Environment

In order to simplify the design of parallel programs,
we believe that an application should be designed
with concurrency in mind. This helps to separate
the application flow from the control and data flow
that exist within a single component. In order to
accomplish this goal, we propose breaking down
an application using a form of the pipe and fil-
ter design pattern[9]. By doing this we split the
application into a data flow graph that expresses
the program as a series of filters or “components”
that the data flows between. Figure 1 shows an
example of this paradigm when applied to a JPEG
encoder. Under the pipe and filter paradigm, data
is passed between the components, and all of the
components in the system are capable of running
in parallel (assuming all of them have input data
available to them, and a buffer in which they can
write output data)

It is important to differentiate our components
from more general functions and subcomponents
used in programming. In our design, a component
can consist of many different functions or subcom-
ponents, and the execution within a single compo-
nent is purely serial. A component may not call
another component (although it’s output can be
passed to another one using a buffer), and must
accept one or more buffers of data as input and/or
generate one or more buffers of data as output.

We propose doing this by using a standardized
buffer structure combined with the pipe and filter
design paradigm to create applications. Applica-
tions for our system are expressed using a simple
XML syntax that should facilitate the design of a

graphical tool for expressing parallelism. This ap-
proach allows for hierarchical formations and pat-
terns to be used to help simplify the system’s de-
scriptions. The methods of extracting/specifying
parallelism are described in detail in Section 4

Our system is designed to support applications
that run on anything from small embedded systems
to large distributed multiprocessor systems. This
means that our applications can be “compiled” for
parallel or serial execution. Invoking the applica-
tion to run as a “single-threaded” process can be
useful for development purposes. It is much sim-
pler to ensure that the functionality of the program
is correct and debug the application when it is ex-
ecuting serially. Once proper serial execution is
ensured, the developer can then start adding par-
allelism to the picture. As all, or most of the lock-
ing code is handled by the system, there should be
few concurrency bugs, however such bugs can still
occur depending on the component. It is our belief
that developers who follow our design methodol-
ogy will find it much simpler to develop “bug free”
multithreaded applications.

Our current implementation reads in an XML
description of the application at execution time,
and dynamically creates and initializes the buffers
and windows that will be used to push data
through the system. All filter chains should in-
clude a “data pump” as well as a “drain” to fill the
pipeline with data or to finish executing data. A
pump or drain could consist of a component that
simply reads or writes data to/from a file or sa net-
work. The overhead of dynamically creating these
filter chains should not be much more significant
then calling a function linked from a library. This
flexibility allows an application to dynamically load
filter chains during execution, or even create a new
filter chain from a current chain.

While there has been much work in using
streams to express parallelism[1, 11], many of them
have not allowed the application designer to ade-
quately express their applications, or required the
application designer to express the details of the
buffers used to pass data between pipeline stages.
We will therefore focus our design on the buffer sys-
tem used to pass data between the various stages
in the pipeline, as well as the window interface that
is exposed to the programmer.

2

3 Buffer Structure

The buffers, and their accessors are designed to be
both efficient and easy to use. This task is diffi-
cult as not all applications can specify the size of
data that is held within their buffers. The various
constraints placed on the buffer means that no sin-
gle buffer structure is sufficient for all situations.
Because of these constraints, we have created a
layered approach to the buffers. Figure 2 shows
a mapping of how the buffers are layered on top of
the system’s virtual memory.

When using our tool, a buffer pool is created,
based on the applications needs, and information
specified within it. While the pool should be rela-
tively static in size, it is designed to be flexible to
adapt to changing application conditions. At the
physical layer there are two pools that we choose
buffers from: the buffer header pool, as well as the
buffer pool itself. The headers can easily be ex-
pressed as an array, or chain of arrays, while the
actual buffers are expressed as a list of buffers of
varying sizes.

The physical buffers are contained within a log-
ical buffer chain. A logical buffer chain consists
of one or more buffers “chained” together by the
header structures. Each link in the buffer is re-
sponsible for keeping track of its ownership, size,
sequence number, length, and whether it is the last
buffer in a stream.

The size of the logical/physical buffers is obvi-
ously dependent on the application. A component
that passes lists of integer numbers will obviously
have different constraints placed on the buffer size
than a component that is passing multiple KB data
structures (although for this case it might make
more sense to pass pointers to structures contained
on the heap). The buffer structure should there-
fore conform so it can not only allow multiple data
sizes, but also allow for multiple data elements to
be passed at a time. In Section 6 we will exam-
ine the impact of varying the size and number of
buffers on our test application.

3.1 Virtual Buffers

Many applications that use our buffers need to be
very efficient in their handling of the buffer data.
Additionally, some applications (such as the BSD
TCP stack) regularly rearrange buffers. These op-
erations are not well supported with most buffer
structures, as operations such as insertion or dele-
tion often require copying the data before the in-

sertion point to a new buffer, inserting the new
data, and then copying the data after the insertion
point into the new buffer. These operations can
be highly expensive, and are not optimal for many
applications.

To support this rearranging of data, we intro-
duce the concept of virtual buffers. In Figure 2
we see an example of virtual buffers mapped onto
physical buffers. In this example portions of the
logical buffers have been “carved” out of the vir-
tual buffers to produce a virtual mapping of the
data in the buffers.

To support these virtual buffers, we have cre-
ated functions that can insert one or more data ob-
jects into a virtual buffer (or more general within a
window inside the buffer). Additionally, functions
exist to delete one or more objects in the virtual
buffer, or to copy data between buffers.

FFT Component()
1 while (InWin.Advance(1))
2 do
3 OutWin.Advance(1)
4 InBuff ← InWin.Get(In)
5 OutBuff ← OutWin.Get(Out)
6 in← in + 1
7 out← out + 1
8 DoFFT(InBuff, OutBuff)

Figure 3: An example of how a window buffer
might be used to perform a DCT upon the input
buffer, and write the results to an output buffer.

3.2 Buffer Windows

To better manage the buffers, we have created a
system of “windows” that look into a buffer. All
actions that a component performs on a buffer oc-
cur through this buffer window. A buffer window
allows array like access to a buffer, but still limits
the component’s access to the buffer. Limiting ac-
cess to the buffer allows the system to share buffers
between components, increasing concurrency. Fig-
ure 3 shows an example of how a buffer might be
used in a program.

By using windows to look into the buffer, we
solve the issues that may occur in components
where item i-n may be needed concurrently with
item i. This removes the need to have to either

3

Physical

Buffers

Virtual

Memory
M
a
p
p
e
d

Buffer

Headers

Logical

Buffers

Virtual

Buffers

Figure 2: Depiction of how the different layers of our buffer manager interact, showing the mapping of
virtual buffers down to the virtual memory subsystem.

0 1 2 3 4 5 ...

Window

Figure 4: Depiction of how the data window moves
along data contained within a virtual buffer.

“rewind” a buffer to access “older” data items or
first copy the data items into local memory. By
using a window we can can explicitly define which
items in the buffer are currently in use, and can re-
quest to access more or less data based on outside
conditions. Figure 4 shows how a window moves
along its input (or output) data buffer.

A window will generally be set to operate in ei-
ther input or output mode. In input mode, the
buffer is used to read data into a component, and
in output mode the component writes data to the
buffer. However these two modes of operation can
not efficiently work with all types of data. For in-

stance if a component within the application in-
puts a list of integers and outputs a list of the
same integers plus one, it would be more efficient to
overwrite the input data with the generated output
data. This can reduce memory requirements, and
reduce cache contention. We solve this problem by
creating special “In-Out” buffers.

Another aspect that the buffer manager must
be aware of is whether the data being passed con-
tain pointers. When multiple components can ac-
cess data not directly contained within the buffer
structures, it is left up to the application devel-
oper to ensure the correctness of the application.
This is best done by either locking these external
data structures, or preferably by not letting a com-
ponent access the data pointed to by the pointer
once the pointer is no longer in the buffer’s window.
In this situation, when component Ri advances its
window so that it can no longer see a pointer it
read/wrote, Ri should remove any local references
to the pointer that it might have. Additionally the
system must be aware if pointers are passed, as
any component Ri+j (j > 0) that uses Ri’s out-
put buffer must run on a processing element that
shares the same address space as component Ri.

4

Window 2 Window 1

Virtual

Buffers

Window
ReservesReserves

Figure 5: Depiction of how a window operates on a virtual buffer.

3.3 Window modes

Because different applications have different ways
of accessing data, and different performance re-
quirements, no single window interface is accept-
able. We have therefore decided on three modes
of operation that should make programming with
these buffers simpler. Under the first two modes of
operation, we assume that the data stored in the
buffer is of a fixed size, while under the third mode,
the data can be of any variable size.

Under the first mode, we allow the component
to access any member of the window individually.
For instance, if the window size was large enough
to hold 5 objects of object size, the programmer
could specify to access items W0,W1,W2,W3, or
W4. However, because the window can cross mul-
tiple virtual buffers, the programmer can not di-
rectly perform address calculations. I.e. the ad-
dress of W1 is not W0 + object size. Because of
this, this buffer mode is not recommended for com-
ponents where the amount of work performed on
each data item is small. For example, text process-
ing would be extremely inefficient, as the address
of every character would have to be looked up.

Under the second mode of operation, the win-
dow manager ensures that every window presented
to the component is contiguous in memory. This is
done by examining the window boundaries when-
ever the window is moved, and, in the event that
the window crosses a physical buffer chain bound-
ary (it can cross a logical one provided that the
physical buffers are contiguous in memory), use a
temporary buffer that has a copy of the appropriate
data located within it. This method is appropri-
ate for many text processing algorithms, but it is
important that the window is relatively small com-
pared with the size of the buffer to minimize the
chance that a window straddles a buffer boundary,
as well as the minimize the amount of data that

must be copied to temporary buffers.
The third method of dealing with windows is to

directly expose the programmer to the underlying
buffer structures. While this model is not an ideal
way of working with data, such a model is required
for components where the data sizes are unknown.
This is a requirement for applications performing
bit-level data manipulation such as Huffman en-
coding. This is because the size of each element
can not be known in advance, and it is entirely
possible that independent data elements will strad-
dle buffer boundaries. While this method makes
dealing with the stream data more difficult, most
components that manipulate data in this way re-
quire careful coding to begin with, and a couple ad-
ditional constraints should not greatly complicate
these algorithm. This method can also be used for
text processing algorithms where the performance
hit of the second method is too great.

To help facilitate the usage of these different win-
dow accessors, we plan on creating a set of compo-
nents that can perform common operations. These
methods will be accessible under all of the window
modes, and will support copies, insertion, deletion
etc. Additionally these components will be capable
of performing complex virtual buffer manipulations
that can greatly increase the efficiency of such op-
erations.

We currently have implemented the first (sin-
gle access) window mode, however we have left the
development of the other access modes for future
work.

4 Extracting Parallelism

Extracting parallelism from an application requires
the designer to fully specify the flow of data
amongst the various components in the program.
To express this parallelism we created a tool that

5

<AppStream xmlns="http://tempuri.org/X-Buffer/0.01">

<Stream>

<Component type="COB\CFromPPM.cob"

name="Source" init="true"/>

<Component type="COB\CColorConv.cob"

name="Conv" init="false"/>

<Component type="COB\CFDCT.cob"

name="DCT" init="false"/>

<Component type="COB\CQuant.cob"

name="Quant" init="false"/>

<Component type="COB\CHuff.cob"

name="drain" init="false"/>

</Stream>

<Chain>

<link><name>Source</name><Win>0</Win></link>

<link><name>Conv</name><Win>1</Win></link>

</Chain>

<Chain>

<link><name>Conv</name><Win>0</Win></link>

<link><name>DCT</name><Win>1</Win></link>

</Chain>

<Chain>

<link><name>DCT</name><Win>0</Win></link>

<link><name>Quant</name><Win>1</Win></link>

</Chain>

<Chain>

<link><name>Quant</name><Win>0</Win></link>

<link><name>drain</name><Win>0</Win></link>

</Chain>

<Initializer>SestupJPEG</Initializer>

</AppStream>

Figure 6: An example XML file used to describe a
JPEG encoder

reads in an XML description of the program’s
components, and automatically creates the buffer
structures and control code necessary to run the
program on the target platform. It is believed that
the layout of the XML could be done within a mod-
ule designed for Visio. This will allow a graphical
layout that generates the application description.
The design of this module is left for future work,
and this work will concentrate on the tools neces-
sary to generate the applications.

In order to take advantage of streaming paral-
lelism we must know some information about the
flow of data in the system. For instance, many ap-
plications first initialize many data structures be-
fore other components can execute. These com-
ponents must run to completion, and may pro-
vide global data that the other stages read from
(if the other components modify these structures,
care must be given to ensure correctness of the pro-
gram).

Each component in a filter chain can optionally
have an initializer function. The initializer func-
tion is passed a parameter containing data it needs

to operate. To coordinate the multiple initializer
function, the XML file describing the program con-
tains an initializer field. This allows the developer
to specify a single function that initializes all of the
components within it. This makes it clear where
initialization should occur resulting in more read-
able and maintainable code. Synchronization of all
the components is handled internally, so that any
component that requires initialization can not exe-
cute until all threads have finished their execution.
This simplifies the model, and helps to avoid race
conditions.

To simplify the descriptions of the program, sub-
sections of the program should be expressed as
modules that can contain multiple components.
This allows the system designer to express hier-
archy in the design, and makes it easier to express
multiple paths that can exist within an application.
The expression of multiple execution paths will be
discussed in more detail in Section 4.1.

Figure 6 shows an example XML stream that we
used for our JPEG encoder. In this example we
first define each component, and then describe the
chains that bind the various components together.

4.1 Multiple data paths

As our tools are designed for both contemporary
and future computer architectures, and target mul-
tiple platforms, it is important that we allow the
application designer to allow for multiple imple-
mentations of a module. This can be useful for
applications that can be accelerated through ISA
extensions (MMX, SSE2, etc) or special purpose
hardware. While this work concentrates on designs
for software, or designs that can be implemented
in reconfigurable hardware, this approach applies
equally well to systems with special-purpose copro-
cessors such as graphics cards.

When a developer wishes to choose between mul-
tiple implementations they can include a base mod-
ule of the implementation. They will then define
submodules that can be used to implement the base
module’s functionality. This is similar to using vir-
tual functions in C++ classes, and defining sub-
classes that implement these functions differently
(such as having a regular and vector-optimized im-
plementation). The submodules can be defined as a
single component, or as another module consisting
of multiple components. Allowing multiple com-
ponents to replace a single one can be useful in
instances where a software component must first

6

rearrange the data so it can be more efficiently
processed by a hardware module. Additionally for
architectures where the hardware can not access
memory, it may be necessary for additional pipeline
stages to be added that store and load data from
the actual hardware.

Splitting the implementation from the descrip-
tion of the program is important when consider-
ing the applications future maintainability. This
provides a straightforward approach to refactor-
ing an application to take advantage of new
special purpose hardware or software compo-
nents. Additionally, on a reconfigurable sys-
tem, it allows the system designer to easily
specify multiple hardware kernels with varying
area/power/performance/accuracy trade offs.

4.2 Scheduling

Scheduling the various threads contained within
an application is a non-trivial task. For a small
embedded system it might be beneficial to de-
fine a static schedule that specifies where and how
threads execute. However more complex systems
will demand dynamic scheduling. For instance, a
system containing components that can be imple-
mented in either software or reconfigurable hard-
ware should take into account, the size of the hard-
ware kernel, the speed of the software version, the
speed of the hardware version, how often the hard-
ware is used, amongst other criteria [5]. As this
work is focusing on the design of the system as
a whole, we are leaving the individual scheduling
components for future work.

5 Example Application:
JPEG

To test our platform we developed a JPEG bench-
marked based of the reference IJG code. We used
the basic design show in Figure 1, and used the
XML description shown in Figure 6 to implement
our benchmark.

This benchmark combines some of the stages
shown in 1, and instead has a component that
reads in the PPM source image, one that converts
the image from RGB to YCbCr (and downsam-
ples the Cr and Cv components), an FDCT com-
ponent, a quantizer, as well as a component that
performs zigzag reordering and Huffman encoding.
Each stage in this pipeline was capable of running

independently.
We used the Microsoft Invisible Computing plat-

form (also known as MMLite) to implement our
benchmark [6]. The invisible computing platform
is designed to facilitate embedded systems pro-
gramming, and allows compilation to a number
of different operating environments, including win-
dows.

We chose to examine JPEG encoding because it
is a common operation (particularly in embedded
devices), and is an example of an application made
up of many different components that each require
extensive execution time. In Table 1 we see the
results of profiling the reference JPEG code un-
der linux. While our implementation was done in
Windows, we hose to profile it under Linux as we
lacked the tools to perform such an analysis under
windows.

Operation Percent of Execution
Colorspace Conversion 30%

Huffman Encoding 26%
Forward DCT 15%
Quantization 25 %

Downsampling 3%

Table 1: Profile of the reference IJG JPEG encoder
when running on a 2.4GHz Core 2 processor.

This table shows that the JPEG pipeline is fairly
well balanced between the different stages. Be-
cause of this, a streaming implementation of JPEG
should be able to take full advantage of the inherent
parallelism found between the independent stages.

6 Results

We tested our stream-buffere implementation on
a quad-core 2.4GHz Core 2. When running the
JPEG reference code we saw that it took approxi-
mately 4 seconds to encode a 256MB image under
linux (using gcc and -O3), and approximately 7
seconds to run when compiled using Visual Studio
under windows.

In Figure 7 we compare the performance of our
streaming JPEG encoder with the IJG reference
implementation. This graph shows that for our
test, the reference code significantly outperformed
our implementation. However it is believed that
with future modifications we can tweak our encoder
to beat out the reference implementation. We will

7

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

2K  4K  8K  16K  32K  64K 

Sp
ee
du

p 

Buffer Size 

"Speedup" over Baseilne 

4 CPUs 

2 CPUs 

1 CPU 

Figure 7: The “speedup” we obtained when running our JPEG encoder when compared to the reference
baseline.

examine ideas for improving performance in Sec-
tion 6.1.

While our baseline performance was not as good
as anticipated, our results follow the expected
trend. As Figure 8 shows, as we increased the
number of CPUs, our speedup increased, obtain-
ing a speedup of 40% with two threads (speedup
here is measured over our multithreaded baseline
when constrained to run on a single CPU), and a
speedup of about 80% when we use 4 cores. While
this speedup is not as good as the profiling results
suggested we could get, we do not have an accurate
profile of JPEG’s execution when running under
Windows, and are unsure how expensive some of
the synchronization primitive we are using are.

It is also interesting to note in Figure 9 that the
absolute performance of the system increased as we
increased the size of our buffers. While this was ex-
pected for small buffer sizes (where having larger
buffers can significantly decrease synchronization
overheads), it was unexpected when we used larger
buffer sizes. While not shown, when we increased
the buffer size to 512KB, we noticed little change
over the 64KB values. This suggests that the com-
munication overhead was overshadowed by the syn-
chronization overhead. This might be due to the
fact that even when the buffers could not fit within

the processor’s L2 cache, the streaming bandwidth
needed was less than that of main memory, and on
chip prefetchers were able to adequately preload
the data for us.

6.1 Future Work

As our performance was so poor, we plan on mod-
ifying our source to try and minimize the overhead
of our buffer management system. While we are
currently unsure of the exact reasons why our code
performed worse than the baseline singlethreaded
code, we have some ideas as to why it performed
so poorly.

The development environment used was target-
ing embedded applications, and was not designed
around running windows threads. The windows
implementation was designed to work, and be
useful for debugging your embedded applications,
however performance was not its primary concern.
This constraint is likely helping to limit our per-
formance.

Additionally, the synchronization methods used
were not optimized to run the fastest. We believe
that by using better profiling tools we can mea-
sure what is causing our slowdown, and attack the
problem at the source. This should result in code

8

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

2K  4K  8K  16K  32K  64K 

Pe
rc
en

t 
Sp
ee
du

p 

Buffer size 

Performance Improvement over single CPU execu<on 

2  CPUs 

4 CPUs 

Figure 8: The “speedup” we obtained when running our JPEG encoder when compared to the reference
baseline.

0 

2 

4 

6 

8 

10 

12 

14 

16 

2K  4K  8K  16K  32K  64K 

Ru
n$

m
e 
(s
ec
on

ds
) 

Buffer Size 

4 CPUs 

2 CPUs 

1 CPU 

Figure 9: The absolute runtime (in seconds) of our JPEG encoder as we varied the size of our stream
buffers.

9

that not only performs better but likely code that
scales better as we increase the number of threads
(with a likely maximum of 4).

We are also thinking of implementing other
versions of JPEG that implement some form of
SPMD parallelism, and that exploit processor fea-
tures such as SSE2 to better optimize algorithms
within the JPEG runtime. Both of these methods
should increase overall performance, although us-
ing a more optimized algorithm should not effect
the multiprocessor scaling of the algorithm.

References

[1] Paulo Barthelmess and Clarence A. Ellis. The
threadmill architecture for stream-oriented
human communication analysis applications.
In ICMI ’04: Proceedings of the 6th inter-
national conference on Multimodal interfaces,
pages 61–68, New York, NY, USA, 2004. ACM
Press.

[2] Matthew J. Bridges, Neil Vachharajani, Yun
Zhang, Thomas Jablin, and David I. August.
Revisiting the sequential programming model
for multi-core. In Proceedings of the 40th
IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO).

[3] Joseph Buck, Soonhoi Ha, Edward A. Lee, and
David G. Messerschmitt. Ptolemy: a frame-
work for simulating and prototyping heteroge-
neous systems. pages 527–543, 2002.

[4] Leonardo Dagum. Openmp: A proposed in-
dustry standard api for shared memory pro-
gramming. October 1997.

[5] Wenyin Fu and Katherine Compton. An ex-
ecution environment for reconfigurable com-
puting. In FCCM ’05: Proceedings of
the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines
(FCCM’05), pages 149–158, Washington, DC,
USA, 2005. IEEE Computer Society.

[6] Johannes Helander and Alessandro Forin.
Mmlite: a highly componentized system ar-
chitecture. In EW 8: Proceedings of the 8th
ACM SIGOPS European workshop on Support
for composing distributed applications, pages
96–103, New York, NY, USA, 1998. ACM.

[7] Intel. Intel thread building blocks. 2007.

[8] Edward A. Lee. The problem with threads.
IEEE Computer, 39(5):33–42, May 2006.

[9] Dennis M. Ritchie. The evolution of the unix
time-sharing system. In Language Design and
Programming Methodology, 1979.

[10] Shane Ryoo, Sain-Zee Ueng, Christopher I.
Rodrigues, Robert E. Kidd, Matthew I. Frank,
and Wen mei W. Hwu. Automatic discovery
of coarse-grained parallelism in media appli-
cations. In Transactions on HiPEAC, pages
194–213. Springer-Verlag Berlin Heidelberg,
2007.

[11] William Thies, Michal Karczmarek, and
Saman P. Amarasinghe. Streamit: A lan-
guage for streaming applications. In CC ’02:
Proceedings of the 11th International Confer-
ence on Compiler Construction, pages 179–
196, London, UK, 2002. Springer-Verlag.

10

