
Task Parallelism TaskMan Results Conclusion

TaskMan:
Simple Task-Parallel Programming in C++

“Let me tell you how it will be...”

Derek Hower & Steve Jackson

University of Wisconsin – Madison

19 December 2007

Task Parallelism TaskMan Results Conclusion

Executive Summary

Task-Parallel Programming is gaining steam.

Existing support in C++ sacrifices programmability for
performance
TaskMan - A task programming interface & runtime

Simple interface
Feels like serial code

Results
Comparable to existing systems with large tasks
Slower with small tasks

...but we haven’t yet applied optimizations!

Task Parallelism TaskMan Results Conclusion

Task Parallel Programming

Task
An independent unit of work
Typically smaller than a thread
Many more tasks than cores

Tasks executed by runtime
Schedules and synchronizes tasks
Load balancing

Examples
Loops with no loop-carried dependence
Tree traversal algorithms
Recursion

Task Parallelism TaskMan Results Conclusion

Runtime Characteristics

Tasks Tuple: < func , arg1, arg2, ... >
Stored on a task queue

Always-present helper threads
Task Queues

Logically global, practically local
One per helper thread (i.e. per core)
A thread that runs out of local work steals from another queue

Task Parallelism TaskMan Results Conclusion

Existing Systems

Threading Building Blocks (TBB)
C++ Library from Intel
Object-Oriented approach to task programming
Task syntax clunky (in our opinion)

Cilk
C compiler & runtime from MIT
Task spawns look like function calls

Programmer-specified sync points

C only, heavyweight

Thread Parallel Library (TPL, aka ParallelFX)
C# library from Microsoft
Task syntax similar to TaskMan
Proprietary
First preview release came out on December 5

No, we haven’t tried it

Task Parallelism TaskMan Results Conclusion

Existing Systems

Threading Building Blocks (TBB)
C++ Library from Intel
Object-Oriented approach to task programming
Task syntax clunky (in our opinion)

Cilk
C compiler & runtime from MIT
Task spawns look like function calls

Programmer-specified sync points

C only, heavyweight

Thread Parallel Library (TPL, aka ParallelFX)
C# library from Microsoft
Task syntax similar to TaskMan
Proprietary
First preview release came out on December 5

No, we haven’t tried it

Task Parallelism TaskMan Results Conclusion

Existing Systems

Threading Building Blocks (TBB)
C++ Library from Intel
Object-Oriented approach to task programming
Task syntax clunky (in our opinion)

Cilk
C compiler & runtime from MIT
Task spawns look like function calls

Programmer-specified sync points

C only, heavyweight

Thread Parallel Library (TPL, aka ParallelFX)
C# library from Microsoft
Task syntax similar to TaskMan
Proprietary
First preview release came out on December 5

No, we haven’t tried it

Task Parallelism TaskMan Results Conclusion

TaskMan Example

int fib(int n)

{

if (n < 2)

return (n);

else {

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

}

int fib(int n)

{

if (n < 2)

return (n);

else {

result<int> x, y;

x = task(fib, n-1);

y = task(fib, n-2);

return (*x + *y);

}

}

Task Parallelism TaskMan Results Conclusion

TaskMan Example

int fib(int n)

{

if (n < 2)

return (n);

else {

int x, y;

x = fib(n-1);

y = fib(n-2);

return (x + y);

}

}

int fib(int n)

{

if (n < 2)

return (n);

else {

result<int> x, y;

x = task(fib, n-1);

y = task(fib, n-2);

return (*x + *y);

}

}

Task Parallelism TaskMan Results Conclusion

TaskMan Implementation

task(...)

Push the task on top of thread’s work queue, then
continue executing
Extensive use of templates

+ task() can accept any combination of arguments
+ Type safety
− Explosively verbose error messages

Task Parallelism TaskMan Results Conclusion

TaskMan Implementation

result<...>

Represents a future
operator* forces the future

Pending tasks are evaluated until result is ready
Once launched, a task never leaves its thread

+ Simple approach, no need for continuation passing

− Potentially deep recursions

Task Parallelism TaskMan Results Conclusion

Results

microbenchmark: stat

Converted Cilk benchmarks: heat, plu, matmul

Othello AI

Unless otherwise noted, performance numbers are for an 8
core Intel system.

Task Parallelism TaskMan Results Conclusion

Microbenchmark: Statistically Distributed Task Sizes

Create and run no-op tasks that take time t to complete, where t
is produced via a statistical distribution.

bicycle

Task Parallelism TaskMan Results Conclusion

Converted Cilk Benchmark: plu

Task Parallelism TaskMan Results Conclusion

Converted Cilk Benchmark: heat

Task Parallelism TaskMan Results Conclusion

Converted Cilk Benchmark: Matrix Multiply

Task Parallelism TaskMan Results Conclusion

Othello Benchmark

A recursive minimax AI for
the game Othello (Reversi)

Two different board
evaluators:

Simple: evaluation function is
a count of pieces on the board
→ shorter tasks
Strategic: evaluation function
considers board position
(corners, edges, etc.)
→ longer tasks

Task Parallelism TaskMan Results Conclusion

Othello vs. TBB

Task Parallelism TaskMan Results Conclusion

Othello on Niagara: 8 cores x 4 threads = 32 threads

Task Parallelism TaskMan Results Conclusion

Future Directions

Optimize TaskMan for performance
Side-by-side comparison of work queue implementations

Lock-free structures?
Transactional memory?
Dedicated task-management hardware?

Extend programming model
e.g. parallel loops
But avoid needlessly complex syntax
Compiler may become necessary

Task Parallelism TaskMan Results Conclusion

Concluding Remarks

Task parallelism is a useful programming model
Much easier to write than raw pthreads code!
Particularly well-suited to certain problems

(And not for certain others)

The work-stealing task queue algorithm supports this
model

A simple, untuned implementation can achieve significant
speedup
Optimized implementations are still better

Task Parallelism TaskMan Results Conclusion

Concluding Remarks

But, there is beauty in simplicity:

text

Task Parallelism TaskMan Results Conclusion

Backup: Fibonacci in Cilk

cilk int fib(int n)

{

if (n < 2)

return (n);

else {

int x, y;

x = spawn fib(n - 1);

y = spawn fib(n - 2);

sync;

return (x + y);

}

}

Task Parallelism TaskMan Results Conclusion

Backup: Fibonacci in TBB

class FibTask: public task {
public:
int* const sum;
const int n;

FibTask(long _n, long* _sum) : sum(_sum), n(_n) {}

task* execute(){
int x, y;
FibTask& a = *new(allocate_child()) FibTask(n-1, &x);
FibTask& b = *new(allocate_child()) FibTask(n-2, &y);
set_ref_count(3);
spawn(b);
spawn_and_wait_for_all(a);
*sum = x+y;

}
return NULL;

}
};

	 Task Parallelism
	 TaskMan
	 Results
	 Conclusion

