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Executive Summary

Task-Parallel Programming is gaining steam.

Existing support in C++ sacrifices programmability for
performance
TaskMan - A task programming interface & runtime

Simple interface
Feels like serial code

Results
Comparable to existing systems with large tasks
Slower with small tasks

...but we haven’t yet applied optimizations!
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Task Parallel Programming

Task
An independent unit of work
Typically smaller than a thread
Many more tasks than cores

Tasks executed by runtime
Schedules and synchronizes tasks
Load balancing

Examples
Loops with no loop-carried dependence
Tree traversal algorithms
Recursion
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Runtime Characteristics

Tasks Tuple: < func , arg1, arg2, ... >
Stored on a task queue

Always-present helper threads
Task Queues

Logically global, practically local
One per helper thread (i.e. per core)
A thread that runs out of local work steals from another queue
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Existing Systems

Threading Building Blocks (TBB)
C++ Library from Intel
Object-Oriented approach to task programming
Task syntax clunky (in our opinion)

Cilk
C compiler & runtime from MIT
Task spawns look like function calls

Programmer-specified sync points

C only, heavyweight

Thread Parallel Library (TPL, aka ParallelFX)
C# library from Microsoft
Task syntax similar to TaskMan
Proprietary
First preview release came out on December 5

No, we haven’t tried it
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TaskMan Example

int fib(int n)

{

if (n < 2)

return (n);

else {

int x, y;

x = fib( n-1 );

y = fib( n-2 );

return (x + y);

}

}

int fib(int n)

{

if (n < 2)

return (n);

else {

result<int> x, y;

x = task( fib, n-1 );

y = task( fib, n-2 );

return (*x + *y);

}

}
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TaskMan Implementation

task( ... )

Push the task on top of thread’s work queue, then
continue executing
Extensive use of templates

+ task() can accept any combination of arguments
+ Type safety
− Explosively verbose error messages
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TaskMan Implementation

result<...>

Represents a future
operator* forces the future

Pending tasks are evaluated until result is ready
Once launched, a task never leaves its thread

+ Simple approach, no need for continuation passing

− Potentially deep recursions
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Results

microbenchmark: stat

Converted Cilk benchmarks: heat, plu, matmul

Othello AI

Unless otherwise noted, performance numbers are for an 8
core Intel system.
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Microbenchmark: Statistically Distributed Task Sizes

Create and run no-op tasks that take time t to complete, where t
is produced via a statistical distribution.

bicycle
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Converted Cilk Benchmark: plu
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Converted Cilk Benchmark: heat
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Converted Cilk Benchmark: Matrix Multiply
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Othello Benchmark

A recursive minimax AI for
the game Othello (Reversi)

Two different board
evaluators:

Simple: evaluation function is
a count of pieces on the board
→ shorter tasks
Strategic: evaluation function
considers board position
(corners, edges, etc.)
→ longer tasks
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Othello vs. TBB
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Othello on Niagara: 8 cores x 4 threads = 32 threads
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Future Directions

Optimize TaskMan for performance
Side-by-side comparison of work queue implementations

Lock-free structures?
Transactional memory?
Dedicated task-management hardware?

Extend programming model
e.g. parallel loops
But avoid needlessly complex syntax
Compiler may become necessary
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Concluding Remarks

Task parallelism is a useful programming model
Much easier to write than raw pthreads code!
Particularly well-suited to certain problems

(And not for certain others)

The work-stealing task queue algorithm supports this
model

A simple, untuned implementation can achieve significant
speedup
Optimized implementations are still better



Task Parallelism TaskMan Results Conclusion

Concluding Remarks

But, there is beauty in simplicity:

text
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Backup: Fibonacci in Cilk

cilk int fib(int n)

{

if (n < 2)

return (n);

else {

int x, y;

x = spawn fib(n - 1);

y = spawn fib(n - 2);

sync;

return (x + y);

}

}
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Backup: Fibonacci in TBB

class FibTask: public task {
public:
int* const sum;
const int n;

FibTask( long _n, long* _sum ) : sum(_sum), n(_n) {}

task* execute(){
int x, y;
FibTask& a = *new( allocate_child() ) FibTask(n-1, &x);
FibTask& b = *new( allocate_child() ) FibTask(n-2, &y);
set_ref_count(3);
spawn(b);
spawn_and_wait_for_all(a);
*sum = x+y;

}
return NULL;

}
};
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