TaskMan:
Simple Task-Parallel Programming in C++

“Let me tell you how it will be...”

Derek Hower & Steve Jackson

University of Wisconsin — Madison

19 December 2007

Task Parallelism

Executive Summary

o Task-Parallel Programming is gaining steam.

e Existing support in C++ sacrifices programmability for
performance
e TaskMan - A task programming interface & runtime
e Simple interface
o Feels like serial code
e Results

o Comparable to existing systems with large tasks
o Slower with small tasks

@ ...but we haven't yet applied optimizations!

Task Parallelism

Task Parallel Programming

o Task

e An independent unit of work
o Typically smaller than a thread
e Many more tasks than cores
e Tasks executed by runtime
e Schedules and synchronizes tasks
e Load balancing
e Examples
e Loops with no loop-carried dependence
o Tree traversal algorithms
o Recursion

Task Parallelism

Runtime Characteristics

e Tasks Tuple: < func, argy, arg, ... >
e Stored on a task queue

o Always-present helper threads

e Task Queues

o Logically global, practically local
o One per helper thread (i.e. per core)
o A thread that runs out of local work steals from another queue

Task Parallelism

Existing Systems

e Threading Building Blocks (TBB)
o C++ Library from Intel
e Object-Oriented approach to task programming
e Task syntax clunky (in our opinion)

Task Parallelism

Existing Systems

e Threading Building Blocks (TBB)

o C++ Library from Intel
o Object-Oriented approach to task programming
e Task syntax clunky (in our opinion)

o Cilk

o C compiler & runtime from MIT
o Task spawns look like function calls

o Programmer-specified sync points

e C only, heavyweight

Task Parallelism

Existing Systems

e Threading Building Blocks (TBB)
o C++ Library from Intel
e Object-Oriented approach to task programming
e Task syntax clunky (in our opinion)

o Cilk

o C compiler & runtime from MIT
e Task spawns look like function calls
o Programmer-specified sync points
e C only, heavyweight
o Thread Parallel Library (TPL, aka ParallelFX)
C# library from Microsoft
Task syntax similar to TaskMan

Proprietary
First preview release came out on December 5

@ No, we haven't tried it

TaskMan
TaskMan Example

int fib(int n)

{
if (n < 2)
return (n);
else {
int x, y;

x = fib(n-1);
y = fib(n-2);
return (x + y);
}
}

TaskMan
TaskMan Example

int fib(int n) int fib(int n)
{ {
if (n < 2) if (n < 2)
return (n); return (n);
else { else {
int x, y; result<int> x, y;
x = fib(n-1); x = task(fib, n-1);
y = fib(n-2); y = task(fib, n-2);
return (x + y); return (*x + *y);
} }

TaskMan

TaskMan Implementation

task(...)

@ Push the task on top of thread's work queue, then
continue executing
e Extensive use of templates

+ task() can accept any combination of arguments
+ Type safety
— Explosively verbose error messages

TaskMan

TaskMan Implementation

result<...>

o Represents a future
e operatorx* forces the future

e Pending tasks are evaluated until result is ready
e Once launched, a task never leaves its thread

-+ Simple approach, no need for continuation passing

— Potentially deep recursions

Results

Results

@ microbenchmark: stat
e Converted Cilk benchmarks: heat, plu, matmul
e Othello Al

Unless otherwise noted, performance numbers are for an 8
core Intel system.

Results

Microbenchmark: Statistically Distributed Task Sizes

Normalized Total Runtime

Create and run no-op tasks that take time t to complete, where t
is produced via a statistical distribution.

18
16
14
12

08
06
04
02

100

Exponential Task Runtimes - 350K Tasks

Loop Parallelism

1000 10000 100000
Mean Task Length (ns)

O TaskMan
W TBB

1000000

Normalized Total Runtime

25

N

3]

e
o

100

Exponential Task Runtimes - 350K Tasks
Tail Recursion

11

1000 10000 100000 1000000
Mean Task Length (ns)

O TaskMan
B TBB

Results

Converted Cilk Benchmark: plu

PLU - 2048

6
5
s -+ TBB
3 & Cilk
;’-’. 4 A TaskMan
M Perfect
3
2
1
0
0 1 2 3 4 5 6 7 8 9

threads

Results

Converted Cilk Benchmark: heat

Heat - 4096x4096 200 t

5 i - TBB
= Cilk

4 X A TaskMan
M Perfect

Speedup

0 1 2 3 4 5 6 7 8 9
threads

Results

Converted Cilk Benchmark: Matrix Multiply

Matmul - 1500

9

8 R

7

6
2 5 -+ TBB
B & Cilk
g 4 A TaskMan
i X Perfect

3

2

1

0

0 1 2 3 4 5 6 7 8 9

threads

Othello Benchmark

@ A recursive minimax Al for
the game Othello (Reversi)

o Two different board
evaluators:

e Simple: evaluation function is
a count of pieces on the board
— shorter tasks

e Strategic: evaluation function
considers board position
(corners, edges, etc.)

— longer tasks

Results

Othello vs. TBB

Speedup

Speedup

Clovertown speedup, depth = 4

Results

Clovertown speedup, depth =5

8
— Perfect 2T Perfect
—&— TBB —o— TBB
6| —®— Taskman 6| —®— Taskman
5 Ss
3
4 a 4
(7]
3 3
2 2
1@ 1
2 3 4 5 6 7 2 3 4 5 6 7
Processors Processors
8 Clovertown speedup, depth =6 s Clovertown speedup, depth =7
7 Perfect 7 Perfect
—e— TBB —e— TBB
6| —®— Taskman 6| —®— Taskman
5 Ss
S
i3
4 4
»
3 3
2 2

2 3 4 5 6 7
Processors

2 3 4 5 6 7
Processors

Results

Othello on Niagara: 8 cores x 4 threads = 32 threads

Niagara speedup, depth =3 Niagara speedup, depth = 4
o5} — Perfect 25t — Perfect
—8— Simple —— Simple
—©— Strategic —©— Strategic
20 20
S S
15 215
o o
& @
10 10
5 5
5 10 15 20 25 30 5 10 15 20 25 30
Processors Processors
Niagara speedup, depth =5 Niagara speedup, depth = 6
o5t — Perfect 25t — Perfect
—8— Simple —— Simple
—&— Strategic —&— Strategic
20 20
g 3
B 15 B 15
o o
& &
10 10
5 5
5 10 15 20 25 30 5 10 15 20 25 30

Processors Processors

Conclusion

Future Directions

e Optimize TaskMan for performance
e Side-by-side comparison of work queue implementations

o Lock-free structures?
e Transactional memory?
e Dedicated task-management hardware?

e Extend programming model

e e.g. parallel loops
e But avoid needlessly complex syntax
e Compiler may become necessary

Conclusion

Concluding Remarks

e Task parallelism is a useful programming model
e Much easier to write than raw pthreads code!
e Particularly well-suited to certain problems
@ (And not for certain others)
e The work-stealing task queue algorithm supports this
model
e A simple, untuned implementation can achieve significant
speedup
o Optimized implementations are still better

Conclusion

Concluding Remarks

But, there is beauty in simplicity:

x107° Speedup and Code Size

|| —©— Taskman
—e— TBB

Speedup / lines of library code

Processors

Backup: Fibonacci in Cilk

cilk int fib(int n)
{
if (n < 2)
return (n);
else {
int x, y;
x = spawn fib(n - 1);
y = spawn fib(n - 2);
sync;
return (x + y);

Conclusion

Backup: Fibonacci in TBB

class FibTask: public task {
public:

int* const sum;

const int n;

FibTask(long _n, long* _sum) : sum(_sum), n(_n) {}

task* execute(){
int x, y;
FibTask& a = *new(allocate_child()) FibTask(n-1, &x);
FibTask& b = *new(allocate_child()) FibTask(n-2, &y);
set_ref_count(3);
spawn (b) ;
spawn_and_wait_for_all(a);
XSuUm = X+y;
}
return NULL;
}
};

	 Task Parallelism
	 TaskMan
	 Results
	 Conclusion

