
11/10/16

1

GPU	Architectures	
A	CPU	Perspective

Derek	Hower AMD	Research						 	 	 	5/21/2013

Presented	by	Jason	Power

Goals
Data	Parallelism: What	is	it,	and	how	to	exploit	it?
◦ Workload	characteristics

Execution	Models	/	GPU	Architectures
◦ MIMD	(SPMD),	SIMD,	SIMT

GPU	Programming	Models	
◦ Terminology	translations:	CPU	ßà AMD	GPU	ßàNvidia GPU
◦ Intro	to	OpenCL

Modern	GPU	Microarchitectures
◦ i.e.,	programmable	GPU	pipelines,	not	their	fixed-function	predecessors

Advanced	Topics:	(Time	permitting)
◦ The	Limits	of	GPUs:	What	they	can	and	cannot	do
◦ The	Future	of	GPUs:Where	do	we	go	from	here?

2GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

Data	Parallel	
Execution	
on	GPUs
Data	Parallelism,	Programming	Models,	SIMT

3GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

Graphics	Workloads
Streaming computation

GPU

4GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

Graphics	Workloads
Streaming computation	on	pixels

GPU

5GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

Graphics	Workloads
Identical, Streaming computation	on	pixels

GPU

6GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

11/10/16

2

Graphics	Workloads
Identical,	Independent, Streaming computation	on	pixels

GPU

7GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

Architecture	Spelling	Bee

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 8

Spell	
‘Independent’

P-A-R-A-L-L-E-L

Generalize:	Data	Parallel	Workloads
Identical,	Independent computation	on	multiple	data	inputs

3,7 4,0

2,7 5,0

1,7 6,0

0,7 7,0𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

9GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

Naïve	Approach
Split	independent work	over	multiple processors

7,0

6,0

5,0

4,0

CPU0

CPU1

CPU2

CPU3

10GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

2,7

3,7

1,7

0,7 𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Data	Parallelism:	A	MIMD	Approach
Multiple	Instruction	Multiple	Data

Split	independent work	over	multiple processors

7,0

6,0

5,0

4,0

CPU0
Fetch Decode Execute Memory Writeback

CPU1
Fetch Decode Execute Memory Writeback

CPU2
Fetch Decode Execute Memory Writeback

CPU3
Fetch Decode Execute Memory Writeback

11GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

2,7

3,7

1,7

0,7
Program

𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Data	Parallelism:	A	MIMD	Approach
Multiple	Instruction	Multiple	Data

Split	independent work	over	multiple processors

7,0

6,0

5,0

4,0

CPU0
Fetch Decode Execute Memory Writeback

CPU1
Fetch Decode Execute Memory Writeback

CPU2
Fetch Decode Execute Memory Writeback

CPU3
Fetch Decode Execute Memory Writeback

12GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

2,7

3,7

1,7

0,7
Program

𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

When	work	is	identical (same	program):

Single	Program	Multiple	Data	(SPMD)
(Subcategory	of	MIMD)

11/10/16

3

Data	Parallelism:	An	SPMD	Approach
Single	Program	Multiple	Data

Split	identical, independent work	over	multiple processors

7,0

6,0

5,0

4,0

CPU0
Fetch Decode Execute Memory Writeback

CPU1
Fetch Decode Execute Memory Writeback

CPU2
Fetch Decode Execute Memory Writeback

CPU3
Fetch Decode Execute Memory Writeback

13GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

2,7

3,7

1,7

0,7
Program

𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Data	Parallelism:	A	SIMD	Approach
Single	Instruction	Multiple	Data

Split	identical, independent work	over	multiple execution	units	(lanes)

More	efficient:	Eliminate	redundant	fetch/decode

7,0

6,0

5,0

4,0

CPU0

14GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

Fetch Decode

Execute Memory Writeback
Execute
Execute
Execute

Memory
Memory
Memory

Writeback
Writeback
Writeback

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

0,7

1,7

2,7

3,7

SIMD:	A	Closer	Look
One	Thread	+	Data	Parallel	Ops	à Single	PC,	single	register	file

7,0

6,0

5,0

4,0

CPU0

15GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

Fetch Decode

Execute Memory Writeback
Execute
Execute
Execute

Memory
Memory
Memory

Writeback
Writeback
Writeback

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

0,7

1,7

2,7

3,7

Register	File

Data	Parallelism:	A	SIMT	Approach
Single	Instruction	Multiple	Thread

Split	identical, independent work	over	multiple lockstep threads

Multiple	Threads	+	Scalar	Ops	à One	PC,	Multiple	register	files

7,0

6,0

5,0

4,0

CU0

16GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

Fetch Decode

Execute Memory Writeback

Execute

Execute

Execute

Memory

Memory

Memory

Writeback

Writeback

Writeback

Program
𝑐𝑜𝑙𝑜𝑟%&'
= 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

0,7

1,7

2,7

3,7

Terminology	Headache	#1

It’s	common	to	interchange
‘SIMD’	and	‘SIMT’

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 17

Data	Parallel	Execution	Models

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 18

MIMD/SPMD SIMD/Vector SIMT

Multiple	independent
threads	

Multiple	lockstep	threadsOne	thread	with	wide	
execution	datapath

11/10/16

4

Execution	Model	Comparison

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 19

MIMD/SPMD SIMD/Vector SIMT

Example
Architecture Multicore	CPUs x86 SSE/AVX	 GPUs

Pros

More	general:	
supports	TLP

Can	mix	sequential	
& parallel	code

Easier	to	program	
Gather/Scatter	
operations
Can mix	seq.	&	
parallel	(kinda)

Cons
Inefficient for	data	
parallelism

Gather/Scatter	can	
be	awkward

Divergence	kills	
performance

GPU

GPUs	and	Memory
Recall:	GPUs	perform	Streaming computation	à

Streaming memory	access

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 20

DRAM	latency:	100s	of	GPU	cycles

How	do	we	keep	the	GPU	busy	(hide	memory	latency)?

Hiding	Memory	Latency
Options	from	the	CPU	world:

Caches
◦ Need	spatial/temporal	locality

OoO/Dynamic	Scheduling
◦ Need	ILP

Multicore/Multithreading/SMT
◦ Need	independent	threads

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 21

û
û
ü

Multicore	Multithreaded	SIMT
Many	SIMT	“threads”	grouped	together	into	GPU	“Core”

SIMT	threads	in	a	group	≈ SMT	threads	in	a	CPU	core
◦ Unlike	CPU,	groups	are	exposed	to	programmers

Multiple	GPU	“Cores”

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 22

GPU	“Core” GPU	“Core”

GPU

Multicore	Multithreaded	SIMT
Many	SIMT	“threads”	grouped	together	into	GPU	“Core”

SIMT	threads	in	a	group	≈ SMT	threads	in	a	CPU	core
◦ Unlike	CPU,	groups	are	exposed	to	programmers

Multiple	GPU	“Cores”

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 23

GPU	“Core” GPU	“Core”

GPU

This	is	a	GPU	Architecture	(Whew!)

GPU	Component	Names

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 24

GPU	“Core”

Processing	Element

SIMD	Unit

Compute	Unit

GPU	Device

AMD/OpenCL Derek’s	CPU	Analogy

Lane

Pipeline

Core

Device

11/10/16

5

GPU	Programming	
Models
OpenCL

25GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

GPU	Programming	Models
CUDA – Compute	Unified	Device	Architecture
◦ Developed	by	Nvidia -- proprietary
◦ First	serious	GPGPU	language/environment

OpenCL – Open Computing	Language
◦ From	makers	of	OpenGL
◦ Wide	industry	support:	AMD,	Apple,	Qualcomm,	Nvidia (begrudgingly),	etc.

C++	AMP	– C++ Accelerated Massive Parallelism
◦ Microsoft
◦ Much	higher	abstraction	that	CUDA/OpenCL

OpenACC – Open Accelerator
◦ Like	OpenMP for	GPUs	(semi-auto-parallelize	serial	code)
◦ Much	higher	abstraction	than	CUDA/OpenCL

26

GPU	Programming	Models
CUDA – Compute	Unified	Device	Architecture
◦ Developed	by	Nvidia -- proprietary
◦ First	serious	GPGPU	language/environment

OpenCL – Open Computing	Language
◦ From	makers	of	OpenGL
◦ Wide	industry	support:	AMD,	Apple,	Qualcomm,	Nvidia (begrudgingly),	etc.

C++	AMP	– C++ Accelerated Massive Parallelism
◦ Microsoft
◦ Much	higher	abstraction	that	CUDA/OpenCL

OpenACC – Open Accelerator
◦ Like	OpenMP for	GPUs	(semi-auto-parallelize	serial	code)
◦ Much	higher	abstraction	than	CUDA/OpenCL

27

OpenCL
Early	CPU	languages	were	light	abstractions	of	physical	hardware
◦ E.g.,	C

Early	GPU	languages	are	light	abstractions	of	physical	hardware
◦ OpenCL +	CUDA

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 28

OpenCL
Early	CPU	languages	were	light	abstractions	of	physical	hardware
◦ E.g.,	C

Early	GPU	languages	are	light	abstractions	of	physical	hardware
◦ OpenCL +	CUDA

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 29

GPU	“Core” GPU	“Core”

GPU

GPU	Architecture

OpenCL
Early	CPU	languages	were	light	abstractions	of	physical	hardware
◦ E.g.,	C

Early	GPU	languages	are	light	abstractions	of	physical	hardware
◦ OpenCL +	CUDA

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 30

GPU	“Core” GPU	“Core”

GPU

Workgroup Workgroup

NDRange

GPU	Architecture OpenCLModel

WavefrontWork-item

11/10/16

6

NDRange
N-Dimensional	(N	=	1,	2,	or	3)	index	space
◦ Partitioned	into	workgroups,	wavefronts,	and	work-items

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 31

NDRange

Workgroup Workgroup

Kernel
Run	an	NDRange on	a	kernel (i.e.,	a	function)

Same	kernel	executes	for	each	work-item
◦ Smells	like	MIMD/SPMD

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 32

3,7 4,0

2,7 5,0

1,7 6,0

0,7 7,0𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Kernel

Kernel

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 33

3,7 4,0

2,7 5,0

1,7 6,0

0,7 7,0𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

𝑐𝑜𝑙𝑜𝑟%&' = 𝑓(𝑐𝑜𝑙𝑜𝑟+,)

Kernel

Run	an	NDRange on	a	kernel (i.e.,	a	function)

Same	kernel	executes	for	each	work-item
◦ Smells	like	MIMD/SPMD…but	beware,	it’s	not!

Workgroup

OpenCL Code

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 34

__kernel
void flip_and_recolor(__global float3 **in_image,

__global float3 **out_image,
int img_dim_x, int img_dim_y)

{
int x = get_global_id(1); // get work-item id in dim 1
int y = get_global_id(2); // get work-item id in dim 2

out_image[img_dim_x - x][img_dim_y - y] =
recolor(in_image[x][y]);

}

GPU	
Microarchitecture
AMD	Graphics	Core	Next

35GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

GPU	Hardware	Overview

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 36

GPU	“Core”

GPU

GPU

L2	Cache

GDDR5

L1	Cache

Local	Memory

SI
M
T

SI
M
T

SI
M
T

SI
M
T

L1	Cache

Local	Memory

SI
M
T

SI
M
T

SI
M
T

SI
M
T

GPU	“Core”

11/10/16

7

Compute	Unit	– A	GPU	Core
Compute	Unit	(CU)	– Runs	Workgroups
◦ Contains	4	SIMT	Units
◦ Picks	one SIMT	Unit	per	cycle	for	scheduling

SIMT	Unit	– Runs	Wavefronts
◦ Each	SIMT	Unit	has	10	wavefront instruction	buffer
◦ Takes	4	cycles	to	execute	one	wavefront

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 37

L1	Cache

Local	Memory

SI
M
T

SI
M
T

SI
M
T

SI
M
T 10	Wavefront x	4	SIMT	Units	=	

40	Active	Wavefronts /	CU	

64	work-items	/	wavefront x	40	active	wavefronts =	
2560	Active	Work-items	/	CU	

Workgroup

Compute	Unit	Timing	Diagram
On	average:	fetch	&	commit	one										wavefront /	cycle

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 38

Ti
m
e

SIMT0 SIMT1 SIMT2 SIMT3

WF1_0
WF1_1
WF1_2
WF1_3

WF2_0
WF2_1
WF2_2
WF2_3

WF3_0
WF3_1
WF3_2
WF3_3

WF4_0
WF4_1
WF4_2
WF4_3

WF5_0
WF5_1
WF5_2
WF5_3

WF6_0
WF6_1
WF6_2
WF6_3

WF7_0
WF7_1
WF7_2
WF7_3

WF8_0
WF8_1
WF8_2
WF8_3

WF9_0
WF9_1
WF9_2
WF9_3

WF10_0
WF10_1
WF10_2

WF11_0
WF11_1 WF12_0

1
2
3
4
5
6
7
8
9
10
11
12

SIMT	Unit	– A	GPU	Pipeline
Like	a	wide	CPU	pipeline	– except	one	fetch	for	entire	width

16-wide	physical	ALU
◦ Executes	64-wavefront	over	4	cycles.	Why??

64KB	register	state	/	SIMT	Unit
◦ Compare	to	x86	(Bulldozer):	~1KB	of	physical	register	file	state	(~1/64	size)

Address	Coalescing	Unit
◦ A key	to	good	memory	performance	

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 39

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Re
gi
st
er
s

Address	Coalescing	Unit

Address	Coalescing
Wavefront:	Issue	64	memory	requests

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 40

NDRange

Workgroup Workgroup

Address	Coalescing
Wavefront:	Issue	64	memory	requests

Common	case:	
◦ work-items	in	same	wavefront touch	same	cache	block

Coalescing:
◦ Merge	many	work-items	requests	into	single	cache	block	request

Important	for	performance:
◦ Reduces	bandwidth	to	DRAM

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 41

GPU	Memory

GPUs	have	caches.

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 42

11/10/16

8

Not	Your	CPU’s	Cache
By	the	numbers:	Bulldozer	– FX-8170			vs.		GCN	– Radeon	HD	7970

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 43

CPU	(Bulldozer) GPU	(GCN)
L1	data	cache capacity 16KB 16	KB
Active	threads (work-items)	
sharing	L1	D	Cache	

1 2560

L1	dcache capacity	/	thread 16KB 6.4	bytes

Last level cache	(LLC) capacity 8MB 768KB
Active	threads	(work-items)	
sharing	LLC

8 81,920

LLC	capacity	/	thread 1MB 9.6	bytes

GPU	Caches
Maximize	throughput,	not	hide	latency
◦ Not	there	for	either	spatial	or	temporal	locality

L1	Cache:	Coalesce	requests	to	same	cache	block	by	different	work-items
◦ i.e.,	streaming	thread	locality?
◦ Keep	block	around	just	long	enough	for	each	work-item	to	hit	once
◦ Ultimate	goal:	Reduce	bandwidth	to	DRAM

L2	Cache:	DRAM	staging	buffer	+	some	instruction	reuse
◦ Ultimate	goal:	Tolerate	spikes	in	DRAM	bandwidth

If	there	is	any	spatial/temporal	locality:
◦ Use	local	memory	(scratchpad)

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 44

Scratchpad	Memory
GPUs	have	scratchpads	(Local	Memory)
◦ Separate	address	space
◦ Managed	by	software:

◦ Rename	address

◦ Manage	capacity	– manual	fill/eviction

Allocated	to	a	workgroup
◦ i.e.,	shared	by	wavefronts in	workgroup

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 45

L1	Cache

Local	Memory

SI
M
T

SI
M
T

SI
M
T

SI
M
T

Example	System:	Radeon	HD	7970
High-end	part

32	Compute	Units:
◦ 81,920	Active	work-items
◦ 32	CUs	*	4	SIMT	Units	*	16	ALUs	=	2048	Max	FP	ops/cycle
◦ 264	GB/s	Max	memory	bandwidth

925	MHz	engine	clock
◦ 3.79	TFLOPS	single	precision	(accounting	trickery:	FMA)

210W	Max	Power	(Chip)
◦ >350W	Max	Power	(card)
◦ 100W	idle	power	(card)

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 46

Radeon	HD	7990	- Cooking

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 47

Two	7970s	on	one	card:
375W	(AMD	Official)	– 450W	(OEM)

A	Rose	by	Any	
Other	Name…

48GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE

11/10/16

9

Terminology	Headaches	#2-5

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 49

GPU	“Core”

CUDA	Core Processing	Element

Core	cluster? SIMD	Unit

Streaming	
Multiprocessor

Compute	Unit

GPU	DeviceGPU	Device

Nvidia/CUDA AMD/OpenCL Derek’s	CPU	Analogy

Lane

Pipeline

Core

Device

Terminology	Headaches	#6-9

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 50

Group

Thread Work-item

Warp Wavefront

Block Workgroup

NDRangeGrid

CUDA/Nvidia OpenCL/AMD Henn&Patt

Sequence	of	
SIMD	Lane	
Operations

Thread	of	
SIMD	
Instructions

Body	of	
vectorized
loop

Vectorized
loop

Terminology	Headache	#10
GPUs	have	scratchpads	(Local	Memory)
◦ Separate	address	space
◦ Managed	by	software:

◦ Rename	address

◦ Manage	capacity	– manual	fill/eviction

Allocated	to	a	workgroup
◦ i.e.,	shared	by	wavefronts in	workgroup

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 51

L1	Cache

Local	Memory

SI
M
T

SI
M
T

SI
M
T

SI
M
T

Nvidia calls	‘Local	Memory’	
‘Shared	Memory’.	

AMD	sometimes	calls	it	‘Group	Memory’.

Recap
Data	Parallelism:	Identical,	Independent	work	over	multiple	data	inputs
◦ GPU	version:	Add	streaming	access	pattern

Data	Parallel	Execution	Models:	MIMD,	SIMD,	SIMT

GPU	Execution	Model:	Multicore	Multithreaded	SIMT

OpenCL Programming	Model	
◦ NDRange over	workgroup/wavefront

Modern	GPU	Microarchitecture: AMD	Graphics	Core	Next	(GCN)
◦ Compute	Unit	(“GPU	Core”):	4	SIMT	Units
◦ SIMT	Unit	(“GPU	Pipeline”):	16-wide	ALU	pipe	(16x4	execution)
◦ Memory:	designed	to	stream

GPUs:	Great	for	data	parallelism.	Bad	for	everything	else.

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 52

Advanced	Topics
GPU	Limitations,	Future	of	GPGPU

53

SIMT	Control	Flow
Consider	SIMT	conditional	branch:
◦ One	PC
◦ Multiple	data	(i.e.,	multiple	conditions)

54

if (x <= 0)
y = 0;

else
y = x;

?

11/10/16

10

SIMT	Control	Flow
Work-items	in	wavefront run	in	lockstep
◦ Don’t	all	have	to	commit

Branching	through	predication

55

if (x <= 0)
y = 0;

else
y = x;

Branch	à set	execution	mask:	1000

Else	à invert	execution	mask:	0111

Converge	à Reset	execution	mask:	1111

Active	lane:	commit	result Inactive	lane:	throw	away	result

All	lanes	active	at	start:	1111

SIMT	Control	Flow
Work-items	in	wavefront run	in	lockstep
◦ Don’t	all	have	to	commit

Branching	through	predication

56

if (x <= 0)
y = 0;

else
y = x;

Branch	à set	execution	mask:	1000

Else	à invert	execution	mask:	0111

Converge	à Reset	execution	mask:	1111

Active	lane:	commit	result Inactive	lane:	throw	away	result

All	lanes	active	at	start:	1111Branch	divergence

Branch	Divergence

When	control	flow	diverges,	all	lanes	take	all	paths

Divergence	Kills	Performance

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 57

Beware!	
Divergence	isn’t	just	a	performance	problem:

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 58

__global int lock = 0;

void mutex_lock(…)
{
…

// acquire lock
while (test&set(lock, 1) == false) {

// spin
}
return;

}

Beware!	
Divergence	isn’t	just	a	performance	problem:

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 59

__global int lock = 0;

void mutex_lock(…)
{
…

// acquire lock
while (test&set(lock, 1) == false) {

// spin
}
return;

}

Deadlock:	work-items	can’t	enter	mutex together!

Memory	Bandwidth

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 60

ü -- Parallel	Access

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

Cache	block:

Word

11/10/16

11

Memory	Bandwidth

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 61

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

La
ne

Cache	blocks

û -- Uncoalesced Access

Memory	divergence

Memory	Bandwidth

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 62

Bank	0
Bank	1
Bank	2
Bank	3

Lane	0
Lane	1
Lane	2
Lane	3

DRAMSIMT

û -- Sequential	Access

Memory	divergence

Memory	Divergence
One	work-item	stalls	à entire	wavefront must	stall
◦ Cause:	Bank	conflicts,	cache	misses

Data	layout	&	partitioning	is	important

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 63

Memory	Divergence
One	work-item	stalls	à entire	wavefront must	stall
◦ Cause:	Bank	conflicts,	cache	misses

Data	layout	&	partitioning	is	important

Divergence	Kills	Performance

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 64

Communication	and	Synchronization
Work-items	can	communicate	with:
◦ Work-items	in	same	wavefront

◦ No	special	sync	needed…they	are	lockstep!

◦ Work-items	in	different	wavefront,	same	workgroup	(local)
◦ Local	barrier

◦ Work-items	in	different	wavefront,	different	workgroup	(global)
◦ OpenCL 1.x:	Nope
◦ CUDA	4.x:	Yes,	but	complicated

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 65

GPU	Consistency	Models
Very	weak	guarantee:
◦ Program	order	respected	within	single	work-item
◦ All	other	bets	are	off

Safety	net:
◦ Fence	– “make	sure	all	previous	accesses	are	visible	before	proceeding”
◦ Built-in	barriers	are	also	fences

A	wrench:
◦ GPU	fences	are	scoped – only	apply	to	subset	of	work-items	in	system

◦ E.g.,	local	barrier

Take-away:	confusion	abounds

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 66

11/10/16

12

GPU	Coherence?
Notice:	GPU	consistency	model	does	not	require	coherence
◦ i.e.,	Single	Writer,	Multiple	Reader

Marketing	claims	they	are	coherent…

GPU	“Coherence”:
◦ Nvidia:	disable	private	caches
◦ AMD:	flush/invalidate	entire	cache	at	fences

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 67

GPU	Architecture	Research
Blending	with	CPU	architecture:
◦ Dynamic	scheduling	/	dynamic	wavefront re-org
◦ Work-items	have	more	locality	than	we	think

Tighter	integration	with	CPU	on	SOC:
◦ Fast	kernel	launch

◦ Exploit	fine-grained	parallel	region:	Remember	Amdahl’s	law

◦ Common	shared	memory

Reliability:
◦ Historically:	Who	notices	a	bad	pixel?
◦ Future:	GPU	compute	demands	correctness

Power:
◦ Mobile,	mobile	mobile!!!

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 68

Computer	Economics	101
GPU	Compute	is	cool	+	gaining	steam,	but…
◦ Is	a	0	billion	dollar	industry	(to	quote	Mark	Hill)

GPU	design	priorities:
1.						Graphics
2.						Graphics

…
N-1.		Graphics
N.						GPU	Compute

Moral	of	the	story:	
◦ GPU	won’t	become	a	CPU	(nor	should	it)

GPU	ARCHITECTURES:	A	CPU	PERSPECTIVE 69

