Database Tuning

Chapter 16, Part B

Database Systems, R. and J. Gehrke

\Example Schemas

Contracts (Cid, Sid, Jid, Did, Pid, Qty, Val)
Depts (Did, Budget, Report)

Suppliers (Sid, Address)

Parts (Pid, Cost)

Projects (Jid, Mgr)

0 We will concentrate on Contracts, denoted as
CSJDPQV. The following ICs are given to hold:
JP- C, SD — P, Cis the primary key.
- What are the candidate keys for CSJDPQV?
- What normal form is this relation schema in?

Database Systems, R. krish and J. Gehrke

Tuning the Conceptual Schema

0 Thechoice of conceptual schema should be guided by
the workload, in addition to redundancy issues:
~ We may settle for a 3NF schema rather than BCNF.

- Workload may influence the choice we make in
decomposing a relation into 3NF or BCNF.

~ We may further decompose a BCNF schema!

~ We might denormalize (i.e., undo a decomposition step), or
we might add fields to a relation.

- We might consider horizontal decompositions.
0 If such changes are made after a database is in use,
called schema evolution; might want to mask some of
these changes from applications by defining views.

Database Systems, R. and J. Gehrke

\Settling for 3NF vs BCNF

0 CSJDPQV can be decomposed into SDP and CSJDQV,
and both relations are in BCNF. (Which FD suggests
that we do this?)

- Lossless decomposition, but not dependency-preserving.
- Adding CJP makes it dependency-preserving as well.

0 Suppose that this query is very important:
— Find the number of copies Q of part P ordered in contract C.

- Requires a join on the decomposed schema, but can be
answered by a scan of the original relation CSJDPQV.

- Could lead us to settle for the 3NF schema CSJDPQV.

Database Systems, R. krishnan and J. Gehrke 4

Denormalization

0 Suppose that the following query is important:

— Is the value of a contract less than the budget of the department?

0 To speed up this query, we might add a field budget B
to Contracts.

~ This introduces the FD D — B wrt Contracts.
- Thus, Contracts is no longer in 3NF.

0 We might choose to modify Contracts thus if the
query is sufficiently important, and we cannot obtain
adequate performance otherwise (i.e., by adding
indexes or by choosing an alternative 3NF schema.)

Database Systems, R. and J. Gehrke 5

\Choice of Decompositions

0 There are 2 ways to decompose CSJDPQV into BCNF:
- SDP and CSJDQV; lossless-join but not dep-preserving.
- SDP, CSJDQV and CJP; dep-preserving as well.

0 The difference between these is really the cost of
enforcing the FDJP - C.

- 2nd decomposition: Index on JP on relation CJP.

_ 1st: CREATE ASSERTION CheckDep
CHECK (NOT EXISTS (SELECT *
FROM PartInfo P, ContractInfo C
WHERE P.sid=C.sid AND P.did=C.did
GROUPBY Cjid, P.pid
HAVING COUNT (C.cid) > 1))

Database Systems, R. and J. Gehrke 6

Choice of Decompositions (Contd.)

0 The following ICs were given to hold:
JP-~ C, SD - P, Cis the primary key.
0 Suppose that, in addition, a given supplier always
charges the same price for a given part: SPQ — V.
0 If we decide that we want to decompose CSJDPQV
into BCNF, we now have a third choice:
- Begin by decomposing it into SPQV and CSJDPQ.
- Then, decompose CSJDPQ (not in 3NF) into SDP, CSJDQ.
- This gives us the lossless-join decomp: SPQV, SDP, CSJDQ.
- To preserve JP - C, we can add CJP, as before.
0 Choice: { SPQ\R/, SDP, CS{]]]%(}%@} or { SDP, CSJDQV } ? ,

Database Sys

Decomposition of a BCNF Relation

O Suppose that we choose { SDP, CSJDQV }. This is in
BCNF, and there is no reason to decompose further
(assuming that all known ICs are FDs).

0 However, suppose that these queries are important:

— Find the contracts held by supplier S.
- Find the contracts that department D is involved in.

0 Decomposing CSJDQYV further into CS, CD and CJQV
could speed up these queries. (Why?)

0 On the other hand, the following query is slower:

— Find the total value of all contracts held by supplier S.

Database Systems, R. and J. Gehrke 8

\Horz'zontal Decompositions

0 Our definition of decomposition: Relation is replaced
by a collection of relations that are projections. Most
important case.

0 Sometimes, might want to replace relation by a
collection of relations that are selections.

- Each new relation has same schema as the original, but a
subset of the rows.

- Collectively, new relations contain all rows of the original.
Typically, the new relations are disjoint.

Database Systems, R. krish and J. Gehrke 9

\Horizontal Decompositions (Contd.)

0 Suppose that contracts with value > 10000 are subject
to different rules. This means that queries on
Contracts will often contain the condition val>10000.

0 One way to deal with this is to build a clustered B+
tree index on the val field of Contracts.

0 A second approach is to replace contracts by two new
relations: LargeContracts and SmallContracts, with
the same attributes (CSJDPQV).

- Performs like index on such queries, but no index overhead.
- Canbuild clustered indexes on other attributes, in addition!

Database Systems, R. krish: and J. Gehrke 10

\Masking Conceptual Schema Changes

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)
AS SELECT *
FROM LargeContracts
UNION
SELECT *
FROM SmallContracts

0 The replacement of Contracts by LargeContracts and
SmallContracts can be masked by the view.

0 However, queries with the condition val>10000 must
be asked wrt LargeContracts for efficient execution:
so users concerned with performance have to be

aware of the change.
Database Systems, R. and]. Gehrke 11

Tuning Queries and Views

0 If a query runs slower than expected, check if an

index needs to be re-built, or if statistics are too old.
0 Sometimes, the DBMS may not be executing the plan

you had in mind. Common areas of weakness:

- Selections involving null values.

- Selections involving arithmetic or string expressions.

- Selections involving OR conditions.

- Lack of evaluation features like index-only strategies or

certain join methods or poor size estimation.

0 Check the plan that is being used! Then adjust the

choice of indexes or rewrite the query/view.

Database Systems, R. and J. Gehrke 12

Rewriting SQL Queries
o plicated by interaction of:
- NULLs, duplicates, aggregation, subqueries.
0 Guideline: Use only one “query block”, if possible.

SELECT DI STINCT *
FROM Sai lors S
WHERE S.snanme | N
(SELECT Y. snane
FROM YoungSai | ors Y)

SELECT DI STINCT S. *
— FROM Sailors S,
- YoungSai l ors Y
WHERE S.snane = Y.snane

0 Not always possible ...

SELECT *
. SELECT S.*
FROM Sailors S ;é FROM Sai | ors S,
YoungSai l ors Y

WHERE S.snane IN
(SELECT DI STI NCT Y. snane _
FROM YoungSai | or's Y) WHERE S. snane = Y.snane

Database Systems, R. and J. Gehrke 13

\The Notorious COUNT Bug

SELECT dnane FROM Departnent D
WHERE D. num enps >
(SELECT COUNT(*) FROM Enpl oyee E
WHERE D. bui | di ng = E. bui | di ng)

CREATE VI EW Tenp (enpcount, building) AS
SELECT COUNT(*), E. building
FROM Enpl oyee E
GROUP BY E. bui | di ng

SELECT dnane
FROM Depart nent D, Tenp
WHERE D. bui | di ng = Tenp. bui | di ng
AND D. num enps > Tenp. enpcount ;

0 What happens when Employee is empty??

Database Systems, R. and J. Gehrke 14

XSummary on Unnesting Queries

DISTINCT at top level: Can ignore duplicates.

- Can sometimes infer DISTINCT at top level! (e.g.
subquery clause matches at most one tuple)

o DISTINCT in subquery w /o DISTINCT at top:
Hard to convert.

0 Subqueries inside OR: Hard to convert.

0 ALL subqueries: Hard to convert.
- EXISTS and ANY are just like IN.

0 Aggregates in subqueries: Tricky.

0 Good news: Some systems now rewrite under
the covers (e.g. DB2).

Database Systems, R. krish and J. Gehrke 15

More Guidelines for Query Tuning

0 Minimize the use of DISTINCT: don’t need it if
duplicates are acceptable, or if answer contains a key.

0 Minimize the use of GROUP BY and HAVING:

SELECT MIN (E.age)
FROM Employee E
GROUP BY E.dno
HAVING E.dno=102

SELECT MIN (E.age)
FROM Employee E
WHERE E.dno=102

0 Consider DBMS use of index when writing arithmetic
expressions: E.age=2*D.age will benefit from index on
E.age, but might not benefit from index on D.age!

Database Systems, R. krish: and J. Gehrke 16

Guidelines for Query Tuning (Contd.)

SELECT * INTO Temp
FROM Emp E, Dept D
WHERE E.dno=D.dno
AND D.mgrname="Joe’

0 Avoid using intermediate
relations:

SELECT E.dno, AVG(E.sal)

and
FROM Emp E, Dept D

vs. | WHERE E.dno=D.dno SELECT T.dno, AVG(T.sal)
AND D.mgrname:’]oe’ FROM Temp T
GROUP BY E.dno GROUP BY T.dno

0 Does not materialize the intermediate reln Temp.

0 If there is a dense B+ tree index on <dno, sal>, an
index-only plan can be used to avoid retrieving Emp

tuples in the second query!
Database Systems, R. and J. Gehrke 17

\Scummary of Database Tuning

0 The'conceptual schema should be refined by
considering performance criteria and workload:
- May choose 3NF or lower normal form over BCNF.

- May choose among alternative decompositions into BCNF
(or 3NF) based upon the workload.

~ May denormalize, or undo some decompositions.
- May decompose a BCNF relation further!
- May choose a horizontal decomposition of a relation.

- Importance of dependency-preservation based upon the
dependency to be preserved, and the cost of the IC check.

o Can add a relation to ensure dep-preservation (for 3NF,

not BCNF!); or else, can check dependency using a join.
Database Systems, R. and J. Gehrke 18

Summary (Contd.)

0 Over time, indexes have to be fine-tuned (dropped,
created, re-built, ...) for performance.
- Should determine the plan used by the system, and adjust
the choice of indexes appropriately.
0 System may still not find a good plan:
- Only left-deep plans considered!
~ Null values, arithmetic conditions, string expressions, the
use of ORs, etc. can confuse an optimizer.
0 So, may have to rewrite the query/view:

- Avoid nested queries, temporary relations, complex
conditions, and operations like DISTINCT and GROUP BY.

Database Systems, R. and J. Gehrke

