
1

1Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Deductive Databases                

Chapter 25

2Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Motivation

SQL-92 cannot express some queries:
Are we running low on any parts needed 
to build a ZX600 sports car?
What is the total component and assembly 
cost to build a ZX600 at today's part prices?

Can we extend the query language to cover 
such queries?

Yes, by adding recursion.

3Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Datalog

SQL queries can be read as follows:                           
“If some tuples exist in the From tables that 
satisfy the Where conditions,                                
then the Select tuple is in the answer.”
Datalog is a query language that has the same 
if-then flavor:

New: The answer table can appear in the 
From clause, i.e., be defined recursively.
Prolog style syntax is commonly used.



2

4Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Example

Find the components of a trike?
We can write a relational algebra 
query to compute the answer on 
the given instance of Assembly.
But there is no R.A. (or SQL-92) 
query that computes the answer 
on all Assembly instances.

trike wheel 3
trike frame 1
frame seat 1
frame pedal 1
wheel spoke 2
wheel tire 1
tire rim 1
tire tube 1

Assembly instance

pa
rt

su
bp

ar
t

nu
m

be
rtrike

wheel             frame

spoke    tire      seat     pedal

rim    tube

3 1

2 1 1 1

1 1

5Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

The Problem with R.A. and SQL-92
Intuitively, we must join Assembly with itself to 
deduce that trike contains spoke and tire.

Takes us one level down Assembly hierarchy.
To find components that are one level deeper 
(e.g., rim), need another join.
To find all components, need as many joins as
there are levels in the given instance!

For any relational algebra expression, we can 
create an Assembly instance for which some 
answers are not computed by including more 
levels than the number of joins in the expression!

6Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

A Datalog Query that Does the Job

Comp(Part, Subpt) :- Assembly(Part, Subpt, Qty).
Comp(Part, Subpt) :- Assembly(Part, Part2, Qty),

Comp(Part2, Subpt).

Can read the second rule as follows:
“For all values of Part, Subpt and Qty,
if there is a tuple (Part, Part2, Qty) in Assembly 
and a tuple (Part2, Subpt) in Comp,
then there must be a tuple (Part, Subpt) in Comp.”

head of rule body of ruleimplication



3

7Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Using a Rule to Deduce New Tuples

Each rule is a template: by assigning constants 
to the variables in such a way that each body 
“literal” is a tuple in the corresponding relation, 
we identify a tuple that must be in the head 
relation.

By setting Part=trike, Subpt=wheel, Qty=3 in the first 
rule, we can deduce that the tuple <trike,wheel> is in 
the relation Comp.
This is called an inference using the rule.
Given a set of tuples, we apply the rule by making all 
possible inferences with these tuples in the body.

8Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Example

For any instance 
of Assembly, we 
can compute all 
Comp tuples by 
repeatedly 
applying the two 
rules.  (Actually, 
we can apply 
Rule 1 just once, 
then apply Rule 
2 repeatedly.)

trike spoke
trike tire
trike seat
trike pedal
wheel rim
wheel tube

trike spoke
trike tire
trike seat
trike pedal
wheel rim
wheel tube
trike rim
trike tube

Comp tuples
got by applying   
Rule 2 twice

Comp tuples
got by applying 
Rule 2 once

9Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Datalog vs. SQL Notation

Don’t let the rule syntax of Datalog fool you: a 
collection of Datalog rules can be rewritten in 
SQL syntax, if recursion is allowed.

WITH RECURSIVE Comp(Part, Subpt) AS

(SELECT A1.Part, A1.Subpt FROM Assembly A1)
UNION
(SELECT A2.Part, C1.Subpt
FROM Assembly A2, Comp C1
WHERE A2.Subpt=C1.Part)

SELECT * FROM Comp C2



4

10Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Fixpoints

Let f be a function that takes values from domain 
D and returns values from D.  A value v in D is a 
fixpoint of f if f(v)=v.
Consider the fn double+, which is applied to a set 
of integers and returns a set of integers (I.e., D is 
the set of all sets of integers).  

E.g., double+({1,2,5})={2,4,10} Union {1,2,5}
The set of all integers is a fixpoint of double+.
The set of all even integers is another fixpoint
of double+; it is smaller than the first fixpoint.

11Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Least Fixpoint Semantics for Datalog

The least fixpoint of a function f is a fixpoint  
v of f such that every other fixpoint of f is 
smaller than or equal to v.
In general, there may be no least fixpoint (we 
could have two minimal fixpoints, neither of 
which is smaller than the other).
If we think of a Datalog program as a 
function that is applied to a set of tuples and 
returns another set of tuples, this function 
(fortunately!) always has a least fixpoint.

12Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Negation

If rules contain not there may not be a least 
fixpoint.  Consider the Assembly instance; 
trike is the only part that has 3 or more copies 
of some subpart.  Intuitively, it should be in 
Big, and it will be if we apply Rule 1 first.

But we have Small(trike) if Rule 2 is applied first!
There are two minimal fixpoints for this program:  
Big is empty in one, and contains trike in the other 
(and all other parts are in Small in both fixpoints).

Need a way to choose the intended fixpoint.

Big(Part) :- Assembly(Part, Subpt, Qty), 
Qty >2, not Small(Part).

Small(Part) :- Assembly(Part, Subpt, Qty), 
not Big(Part).



5

13Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Stratification
T depends on S if some rule with T in the 
head contains S or (recursively) some 
predicate that depends on S, in the body.
Stratified program: If T depends on not S, 
then S cannot depend on T (or not T).
If a program is stratified, the tables in the 
program can be partitioned into strata:

Stratum 0:  All database tables.  
Stratum I:  Tables defined in terms of tables in 
Stratum I and lower strata.
If T depends on not S, S is in lower stratum than T.

14Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Fixpoint Semantics for Stratified Pgms
The semantics of a stratified program is given 
by one of the minimal fixpoints, which is 
identified by the following operational defn:

First, compute the least fixpoint of all 
tables in Stratum 1.  (Stratum 0 tables are 
fixed.)
Then, compute the least fixpoint of tables 
in Stratum 2; then the lfp of tables in 
Stratum 3, and so on, stratum-by-stratum.

Note that Big/Small program is not stratified.

15Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Aggregate Operators

The < … > notation in the head indicates 
grouping; the remaining arguments (Part, in 
this example) are the GROUP BY fields.
In order to apply such a rule, must have all of 
Assembly relation available.
Stratification with respect to use of < … > is the 
usual restriction to deal with this problem; 
similar to negation.

NumParts(Part, SUM(<Qty>)) :- Assembly(Part, Subpt, Qty).

SELECT A.Part, SUM(A.Qty)
FROM Assembly A
GROUP BY A.Part



6

16Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Evaluation of Datalog Programs

Repeated inferences: When recursive rules 
are repeatedly applied in the naïve way, we 
make the same inferences in several 
iterations.
Unnecessary inferences: Also, if we just want 
to find the components of a particular part, 
say wheel, computing the fixpoint of the 
Comp program and then selecting tuples
with wheel in the first column is wasteful, in 
that we compute many irrelevant facts.

17Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Avoiding Repeated Inferences
Seminaive Fixpoint Evaluation: Avoid repeated 
inferences by ensuring that when a rule is 
applied, at least one of the body facts was 
generated in the most recent iteration.  (Which 
means this inference could not have been carried 
out in earlier iterations.)

For each recursive table P, use a table delta_P to store 
the P tuples generated in the previous iteration.
Rewrite the program to use the delta tables, and 
update the delta tables between iterations.

Comp(Part, Subpt) :- Assembly(Part, Part2, Qty),
delta_Comp(Part2, Subpt).

18Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Avoiding Unnecessary Inferences

There is a tuple (S1,S2) in 
SameLev if there is a path 
up from S1 to some node 
and down to S2 with the 
same number of up and 
down edges.

SameLev(S1,S2) :- Assembly(P1,S1,Q1), Assembly(P2,S2,Q2).
SameLev(S1,S2) :- Assembly(P1,S1,Q1),

SameLev(P1,P2), Assembly(P2,S2,Q2).

trike

wheel             frame

spoke    tire      seat     pedal

rim    tube

3 1

2 1 1 1

1 1



7

19Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Avoiding Unnecessary Inferences

Suppose that we want to find all SameLev
tuples with spoke in the first column. We 
should “push” this selection into the fixpoint
computation to avoid unnecessary inferences.
But we can’t just compute SameLev tuples
with spoke in the first column, because some 
other SameLev tuples are needed to compute 
all such tuples:
SameLev(spoke,seat) :- Assembly(wheel,spoke,2),

SameLev(wheel,frame), Assembly(frame,seat,1).

20Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

“Magic Sets” Idea

Idea: Define a “filter” table that computes all 
relevant values, and restrict the computation 
of SameLev to infer only tuples with a 
relevant value in the first column.
Magic_SL(P1) :- Magic_SL(S1), Assembly(P1,S1,Q1).
Magic(spoke).

SameLev(S1,S2) :- Magic_SL(S1), Assembly(P1,S1,Q1), 
Assembly(P2,S2,Q2).

SameLev(S1,S2) :- Magic_SL(S1), Assembly(P1,S1,Q1),
SameLev(P1,P2), Assembly(P2,S2,Q2).

21Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

The Magic Sets Algorithm

Generate an “adorned” program
Program is rewritten to make the pattern of bound and 
free arguments in the query explicit; evaluating 
SameLevel with the first argument bound to a constant 
is quite different from evaluating it with the second 
argument bound
This step was omitted for simplicity in previous slide

Add filters of the form “Magic_P” to each rule in 
the adorned program that defines a predicate P to 
restrict these rules
Define new rules to define the filter tables of the 
form Magic_P



8

22Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Generating Adorned Rules

The adorned program for the query pattern SameLevbf, 
assuming a right-to-left order of rule evaluation :

SameLevbf (S1,S2) :- Assembly(P1,S1,Q1), Assembly(P2,S2,Q2).

SameLevbf (S1,S2) :- Assembly(P1,S1,Q1),

SameLevbf (P1,P2), Assembly(P2,S2,Q2).

An argument of (a given body occurrence of) SameLev is b 
if it appears to the left in the body, or in a b arg of the head 
of the rule.
Assembly is not adorned because it is an explicitly stored 
table.

23Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Defining Magic Tables

After modifying each rule in the adorned program 
by adding filter “Magic” predicates, a rule for 
Magic_P is generated from each occurrence O of P 
in the body of such a rule:

Delete everything to the right of O
Add the prefix “Magic” and delete the free columns of O
Move O, with these changes, into the head of the rule

SameLevbf (S1,S2) :- Magic_SL(S1), Assembly(P1,S1,Q1),
SameLevbf (P1,P2), Assembly(P2,S2,Q2).

Magic_SL(P1) :- Magic_SL(S1), Assembly(P1,S1,Q1).

24Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke

Summary
Adding recursion extends relational algebra 
and SQL-92 in a fundamental way; included 
in SQL:1999, though not the core subset.
Semantics based on iterative fixpoint
evaluation.  Programs with negation are 
restricted to be stratified to ensure that 
semantics is intuitive and unambiguous.
Evaluation must avoid repeated and 
unnecessary inferences.

“Seminaive” fixpoint evaluation
“Magic Sets” query transformation


