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The reduced monic Gröbner basis for a zero-dimensional ideal 270

17 Background
A nonempty finite subset of R contains a maximal element 271
A nonempty bounded subset of R has a least upper bound . 271
Complex numbers . . . . . . . . . . . . 272
Convergence of a scalar sequence . . . . . . . . . 274
A real continuous function on a compact set in Rn

has a maximum . . . . . . . . . . . 275
Groups, rings, and fields . . . . . . . . . . . 276
The ring of univariate polynomials . . . . . . . 279
Horner, or: How to divide a polynomial by a linear factor . 280
The Euclidean Algorithm . . . . . . . . . . 281

18 List of Notation
Rough index for this book . . 284



Preface

This book is motivated by the following realizations:

(1) The linear maps between a vector space X over the scalar field IF and
the associated coordinate spaces IFn are efficient tools for work on theoretical
and practical problems involvingX. Those from IFn toX share with matrices
the feature of columns, hence are called column maps, while those from X
to IFn share with matrices the feature of rows, hence are called row maps.
Work with a linear map A usually requires its factorization into a column
map and a row map. Such factorization is most efficient for the task if the
particular column map is invertible as a map to the range of A, i.e., if it is a
basis for that range.

(2) Gauss elimination is applied to matrices for the purpose of obtaining
bases for their nullspace and for their range. It results in a sequence of ma-
trices all with the same nullspace, with the last matrix making the nullspace
quite evident.

(3) A change of basis amounts to interpolation and vice versa.

(4) Since the eigenstructure of a linear map A on a vector space X over
the scalar field IF is of interest in the study of the sequence A0 = id, A1 =
A,A2, . . . of the powers of A, its derivation and discussion is best handled in
terms of polynomials p(A) in that linear map with coefficients in IF. While
determinants are indispensible and powerful tools in certain situations, they
do not provide the best path to understanding eigenstructure.

(5) In applications, vector spaces are, by and large, spaces of maps with
the vector operations defined pointwise, or derived from such spaces in a
straightforward manner. The coordinate spaces IFn are merely the simplest
examples of such vector spaces.

These realizations led me to volunteer to teach the follow-up linear al-
gebra course offered in the Mathematics Department of the University of
Wisconsin-Madison and taken by undergraduate Math majors and graduate
students from science and engineering departments. Each time, I produced
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Preface vii

lecture notes, and this book derives from them.

The numbered problems, posed throughout the book and typeset in the smaller font

of this paragraph, are meant to deepen understanding of the material. While there are

answers available to all the problems, the book contains only the answers to those problems

that are referred to in the text for some missing proof detail or as an illustration of a point

being made. The latter problems are starred.

I adhere to certain notational conventions:

(1) I distinguish between equalities being asserted or derived and equali-
ties that hold by definition. For the latter, I use := or =: depending on which
side is being defined.

(2) I distinguish between terms or phrases being defined and those being
emphasized. The former are set in boldface (to make them easy to find),
the latter in italic.

(3) I use only one numerical sequence for labeling all the equations, fig-
ures and formal statements in each chapter as that seems to me more helpful
for finding any particular labeled item than the more standard separate enu-
meration of various classes of items. I do, however, number separately the
problems given throughout.

(4) I use standard symbols, like ∀ (‘for all’) and ∃ (‘there exist(s)’) with
the subsequent ‘such that’ not written out, and standard abbreviations, like
‘iff’ for ‘if and only if’, and use braces, {...}, only to delimit the description
of a set.

(5) A question mark in an equation indicates the unknown item, the
item for which to solve the equation.

(6) n-vectors, i.e., elements of Rn or, more generally, of IFn, are written
in boldface, like x ∈ Rn, with their entries written in subscripted italics,
e.g., x = (x1, . . . , xn). In particular, n-vectors are not written as 1-column
matrices.

The study of Linear Algebra is incomplete without some numerical experimen-
tation. I carry out such experimentation with the help of MATLAB, a program that
has grown well beyond its initial purpose of being a “Matrix laboratory” into a very
handy tool for experimentation in general scientific computing. Throughout this
book, there are paragraphs, typeset like this one, that provide information about
MATLAB essential for experimenting with the material under discussion. Some of
the problems also require MATLAB, but most of these are easily adapted to other
programming languages. With that proviso, any reader not interested in numerical
experimentation or well familiar with MATLAB can safely skip all such paragraphs.



Overview

Here is a quick run-down on this book, with various terms to be learned by
studying this book printed in boldface.

Much of scientific work involves relationships called maps, specified in
this book by the notational template

f : X → Y : x 7→ y

that is read: f is a map from the set X to the set Y , and maps x ∈ X
to y ∈ Y , with 7→ read ‘maps to’ and with “y” usually replaced by some
expression or formula involving x. If these latter details do not matter, then
the shorthand

f : X → Y

indicates that f is a map with domain X =: dom f and target Y =: tar f .
When X and Y are understood from the context, the shorter form

f : x 7→ y

is often used, at times even without mention of the name “f”.

For example,

◦ time 7→ the population of the US;

◦ temperature 7→ pressure in a bottle;

◦ location (longitude, latitude, altitude) 7→ (barometric pressure, humid-
ity, temperature);

◦ mother’s age 7→ frequency of newborn with Down syndrom;

◦ available resources ( capital, raw materials, labor pool, etc) 7→ output
of the US economy;

◦ etc. .

All this is part of our hope to understand effects in terms of causes.

viii



Overview ix

Once we feel we understand such a relationship, we are eager to put it
to use in order to find out how to cause certain effects. Mathematically, we
are trying to solve the equation

f(?) = y

for given f : X → Y and given y ∈ Y where, here and throughout the
book, the question mark indicates exactly what quantity we are hoping to
determine.

In this generality and vagueness, nothing much can be said other than to
urge familiarity with basic map terms, such as, domain, target and range
of a map, the map properties 1-1 (equivalent to uniqueness of solutions),
onto (equivalent to existence of a solution for any y), invertible (equivalent
to having exactly one solution for any y ∈ Y , the best-possible situation),
and the notions of left inverse, right inverse and inverse related to the
earlier notions by the concept of map composition.

Often, though, the map f is a smooth map, from some subset X of
real n-dimensional coordinate space, Rn, to Rm, say. With the list
x = (x1, . . . , xn) our notation for x ∈ Rn, this means that, first of all,

f(x) = (f1(x), f2(x), . . . , fm(x)) ∈ Rm

with each fj a real-valued function, and, secondly, at any point p ∈ X, we
can expand each fj into a Taylor series:

fj(p+ h) = fj(p) +Dfj(p)
th+ o(h), j = 1, . . . ,m,

with
Dfj(p) := (D1fj(p), . . . , Dnfj(p)) ∈ Rn

the gradient of fj at p, and xty := x1y1 + · · ·+ xnyn the scalar product
of the n-vectors x and y, and the o(h) denoting ‘higher-order’ terms that
we eventually are going to ignore in best scientific fashion.

This implies that

f(p+ h) = f(p) +Df(p)h+ o(h),

with

Df(p) :=

 D1f1(p) · · · Dnf1(p)
... · · ·

...
D1fm(p) · · · Dnfm(p)


the Jacobian matrix of f at p.

With this, a standard approach to finding a solution to the equation

f(?) = y
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is Newton’s method: We are looking for a correction h to our current
guess x for the solution for which

y = f(x+ h) = f(x) +Df(x)h+ o(h);

we ignore the ‘higher-order’ terms that hide behind the expression o(h), and
so get a linear equation for h:

y − f(x) = Df(x)?,

which we solve for h, add this correction to our current x to get a new guess

x← x+ h = x+Df(x)−1(y − f(x))

and repeat. Under suitable circumstances, the process converges, to a solu-
tion.

The key idea here is the reduction, from solving a general equation f(?) =
y to solving a sequence of linear equations, Df(x)? = z. This works since,
in principle, we can always solve a linear system.

Most equations f(?) = y that can be solved are actually solved by this
process or some variant thereof, hence the importance of knowing how to
solve linear equations.

For this reason, our first task will be to introduce linear maps and
vector spaces over the scalar field IF, with IF either the real (R) or the
complex (C) numbers (though it pays to think through the material for the
case of a more general commutative field IF). We focus on linear spaces of
functions, i.e., vector spaces in which the basic vector operations, namely
vector addition and multiplication by a scalar, are defined pointwise.
These provide the proper means for expressing the concept of linearity. We
recognize that, for a linear map A from the vector space X to the vector
space Y , the linear equation A? = y has a solution, x0 say, if and only if y is
an element of ranA, the range of A, in which case the general solution to the
linear equation A? = y is of the form x0 + nullA, with nullA the nullspace
of A, i.e., the set of solutions to the homogeneous equation A? = 0.

Both ranA and nullA are linear subspaces, of Y and X respectively,
and efficient descriptions for them are in terms of a basis, i.e., in terms of
an invertible linear map V from some coordinate space IFn to the linear
subspace in question. This identifies bases as particular column maps, i.e.,
linear maps from some coordinate space, i.e., maps of the form

IFn → X : a 7→ a1v1 + · · ·+ anvn =: [v1, . . . , vn]a

for some sequence v1, . . . , vn in the linear space X in question.

We will spend some time recalling various details about bases, how to
construct them (using the concept of bound and free columns of column
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map), how to use them, and will also mention their generalization, direct
sums and their associated linear projectors or idempotents. We stress
the notion of dimension (:= number of columns or elements in a basis), in
particular the Dimension Formula

dimdomA = dim ranA+ dimnullA,

valid for any linear map A, which summarizes much of what is important
about dimension.

Then we recall elimination as the method for solving a homogeneous
linear system

A? = 0

with A ∈ IFm×n. Specifically, we show that elimination identifies the bound
and free columns of a matrix A, and this leads to row echelon forms for
the matrix A, in particular the rrref or really reduced row echelon form,
from which we can obtain a complete description of the solution set of A? = 0,
i.e., for nullA as well as an efficient description of ranA. Thus equipped, we
deal with the general linear system A? = y via the homogeneous linear system
[A,y]? = 0.

We will also worry about how to determine the coordinates of a given
x ∈ X with respect to a given basis V for X, i.e., how to solve the equation

V ? = x.

This will lead us to row maps, i.e., linear maps from some vector space to
coordinate space, i.e., maps of the form

X → IFn : x 7→ (λ1x, . . . , λnx) =: [λ1, . . . , λn]
tx

for some sequence λ1, . . . , λn of linear functionals, i.e., scalar-valued linear
maps, on the vector spaceX in question. It will also lead us to interpolation
aka change of basis, and will make us single out inner product spaces
as spaces with a ready supply of suitable row maps, and thence to least-
squares, to particularly good bases, namely o.n. (:= orthonormal) bases
(which are the isometries for the standard norm, the Euclidean norm
∥x∥2 =

√
xtx associated with the standard inner product, and which can

be constructed from an arbitrary basis by Gram-Schmidt).

We will find that bases also show up naturally when we try to factor a
given linear map A ∈ L(X,Y ) in the most efficient way, as a product

A = V Λt

with Λt ∈ L(X, IFr) and V ∈ L(IFr, Y ) and r as small as possible. It will
be one of my tasks to convince you that you have actually carried out such
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factorizations, in fact had to do this in order to do certain standard oper-
ations, like differentiating or integrating polynomials and other functions.
Such factorizations are intimately connected with the rank of A (since the
smallest possible r is the rank of A) and lead, for a matrix A, to the SVD,
or Singular Value Decomposition,

A = V ΣW c

with V , W orthonormal bases, W c the conjugate transpose ofW , and Σ
diagonal, a factorization that is, in a certain sense, a best way of describing
the action of the linear map A. Other common factorizations for matrices
are the PLU factorization with P a permutation matrix, L unit lower
triangular, and U upper triangular (generated during elimination); and
the (more stable) QR factorization, with Q unitary (i.e., an orthonormal
basis) and R upper, or, right triangular, obtained by elimination with the
aid of specific elementary matrices called Householder reflections.

For squarematrices, one hopes to (but does not always) get factorizations
of the form A = V ΣV −1 with Σ diagonal (the simplest example of a matrix

without such a factorization is the nilpotent matrix

[
0 1
0 0

]
), but often

must be (and is) content to get the Schur form, which is available for any
square matrix and is of the form A = V UV c with V an o.n. basis and U
upper triangular. In either case, A is then said to be similar to Σ and U ,
respectively. These latter factorizations, or similarities, are essential for an
understanding of the power sequence

A0 = id, A1 = A,A2 = AA,A3 = AAA, ....

of the square matrix A and, more generally, for an understanding of the
matrix polynomial p(A), since, e.g.,

A = V diag(µ1, . . . , µn)V
−1 =⇒ p(A) = V diag(p(µ1), . . . , p(µn))V

−1,

for any polynomial p and even for some well-behaved functions p like the
exponential p : t 7→ exp(t). In particular, then

Ak = V diag(µk
1 , . . . , µ

k
n)V

−1, k = 0, 1, 2, . . . ,

therefore we can describe the behavior of the matrix sequence (Ak : k =
0, 1, 2, . . .) entirely in terms of the scalar sequences (µk

j : k = 0, 1, 2, . . .).
Specifically, we can characterize power-boundedness, convergence, and
convergence to 0.

There are many reasons for wanting to understand the power sequence
of a matrix; here is one. Often, elimination is not the most efficient way to
solve a linear system. Rather, the linear system

A? = y
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itself is solved by iteration, by splitting A =:M−N withM ‘easily’ invertible,
and looking at the equivalent equation

M? = N? + y

which leads to the iteration

x←M−1(Nx+ y) =: Bx+ c.

Convergence of this process depends crucially on the behavior of the power
sequence for B (and does not at all depend on the particular vector norm
or map norm used).

The factorization

A = V diag(µ1, . . . , µn)V
−1

is equivalent to having AV = V diag(µ1, . . . , µn), i.e.,

[Av1, . . . , Avn] = [µ1v1, . . . , µnvn]

for some invertible V = [v1, . . . , vn] : IF
n → domA, i.e., to having a basis V

consisting of eigenvectors forA, with the µj the corresponding eigenvalues.
For this reason, we will study the eigenstructure of A and the spectrum
of A, as well as similarity, i.e., the equivalence relation

A ∼ C := ∃V A = V CV −1.

In this study, we make use of polynomials, particular the annihilating poly-
nomials (which are the nontrivial polynomials p for which p(A) = 0) and
their cousins, the nontrivial polynomials p for which p(A)x = 0 for some
x ̸= 0, and the unique monic annihilating polynomial of minimal degree,
called the minimal polynomial for A, as well as the Krylov sequence
x,Ax,A2x, . . . .

We will discuss the most important classification of eigenvalues, into
defective and non-defective eigenvalues, and give a complete description
of the asymptotic behavior of the power sequence A0, A1, A2, . . . in terms
of the eigenstructure of A, even when A is not diagonalizable, i.e., is not
similar to a diagonal matrix (which is equivalent to some eigenvalue of A
being defective).

We will also discuss standard means for locating the spectrum, i.e., the
collection of all eigenvalues, of a matrix, such as Gershgorin’s disks and
the characteristic polynomial of a matrix, and give the Perron-Frobenius
theory concerning the dominant eigenvalue of a positive matrix.

From the Schur form (mentioned earlier), we derive the basic facts about
the eigenstructure of hermitian and of normal matrices. We give the Jor-
dan form only because of its mathematical elegance since, in contrast to the
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Schur form, it cannot be constructed reliably numerically. We briefly discuss
a related form, the Weyr form.

Further, we also consider briefly minimization of a real-valued map

f : K → R

with K ⊂ Rn. Returning to our Taylor expansion

f(p+ h) = f(p) +Df(p)th+ o(h),

we notice that, usually, p cannot be a minimum point for f unless it is
a critical point, i.e., unless the gradient, Df(p), of f at p is the zero
vector. However, even with Df(p) = 0, we only know that f is ‘flat’ at p. In
particular, a critical point could also be a (local) maximum point, or a saddle
point, etc. . To distinguish between the various possibilities, we must look at
the second-order terms, i.e., we must write and know, more explicitly, that

f(p+ h) = f(p) +Df(p)th+ htD2f(p)h/2 + o(hth),

with

H := D2f :=

D1D1f · · · D1Dnf
... · · ·

...
DnD1f · · · DnDnf


the Hessian for f , hence

h 7→ htD2f(p)h =
∑
i,j

DiDjf(p)hihj

the associated quadratic form.

We will learn to distinguish between maxima, minima, and saddle points
by the signs of the eigenvalues of the Hessian, mention Sylvester’s Law of
Inertia, and show how to estimate the effect of perturbations of H on the
spectrum of H, using ideas connected with the Rayleigh quotient.

At this point, you will realize that this book is strongly influenced by
the use of Linear Algebra in Analysis, with important applications, e.g., in
Graph Theory, ???, or ???, being ignored (partly through ignorance).

Finally, although determinants have little to contribute to Linear Alge-
bra at the level of this book, we will give a complete introduction to this very
important Linear Algebra tool, and then discuss the Schur complement,
Sylvester’s determinant identity, and the Binet-Cauchy formula.

As a taste of the many different applications of Linear Algebra, we dis-
cuss briefly: the solution of a system of constant-coefficient ODEs, Markov
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processes, subdivision in CAGD, Linear Programming, the Discrete Fourier
Transform, approximation by broken lines, the B-spline basis of a spline
space, multivariate polynomial interpolation, the reduced monic Gröbner ba-
sis for a zero-dimensional polynomial ideal, and the use of flats in analysis
and CAGD.

Throughout, we will rely on needed material from ancillary courses as
collected in an appendix called Background.



1 Sets, assignments, lists, and maps

The basic objects of Mathematics are sets and maps. Linear Algebra is
perhaps the first course where this fact becomes evident and where it can be
illustrated in a relatively straightforward context. Since a complete under-
standing of the course material requires a thorough appreciation of the basic
facts about maps, we begin with these and their simpler cousins, lists and as-
signments, after a brief review of standard language and notation concerning
sets.

Sets

Sets of interest in this book include

◦ the natural numbers : N := {1, 2, . . .};
◦ the integers : Z := {. . . ,−1, 0, 1, . . .} = (−N) ∪ {0} ∪ N;
◦ the integer interval m:n := {m,m+ 1, . . . , n} with m,n ∈ Z which is

empty if m > n;

◦ the nonnegative integers : Z+ := {p ∈ Z : p ≥ 0} = N ∪ {0};
◦ the rational numbers : Q := Z÷ N := {p/q : p ∈ Z, q ∈ N};
◦ the real numbers: R;
◦ the nonnegative reals: R+ := {x ∈ R : x ≥ 0};
◦ the open interval (a . . b) := {r ∈ R : a < r < b} with endpoints
a, b ∈ R;

◦ the closed interval [a . . b] := {r ∈ R : a ≤ r ≤ b};
◦ the half-open interval [a . . b) := {r ∈ R : a ≤ r < b};
◦ the complex numbers : C := R+iR = {x+iy : x, y ∈ R}, i :=

√
−1.

As these examples show, a set is often specified in the form {x : P (x)}
which is read ‘the set of all x that have the property P (x)’. Note the use of the
colon, ‘:’, (rather than a vertical bar, ‘|’) to separate the initial, provisional,
description of the typical element of the set from the conditions imposed on

1
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it for membership in the set, with that provisional description often only
clear from the context. In this book, braces, ‘{’, ‘}’, are used solely in the
description of sets.

Standard notation concerning sets includes:

◦ #S denotes the cardinality of the set S, i.e., the count of its elements.

◦ x ∈ S and S ∋ x both mean that x is an element of S.

◦ S ⊂ T , T ⊃ S both mean that S is a subset of T , i.e., all the elements
of S are also elements of T ; if we want to convey that S is a proper
subset of T , meaning that S ⊂ T but S ̸= T , we write S ⊆′ T .

◦ {} denotes the empty set, the set with no elements.

◦ S ∩ T := {x : x ∈ S and x ∈ T} is the intersection of S and T .

◦ S ∪ T := {x : x ∈ S or x ∈ T} is the union of S and T .

◦ S\T := {x : x ∈ S but not x ∈ T} is the difference of S from T and is
often read ‘S take away T ’. In this book, this difference is never written
S−T , as the latter is reserved for the set {s− t : s ∈ S, t ∈ T} formable
when both S and T are subsets of the same vector space.

1.1 What is the standard name for the elements of R\Q?

1.2 What is the standard name for the elements of iR?
1.3 Work out each of the following sets. (a) ({−1, 0, 1} ∩ N) ∪ {−2};

(b) ({−1, 0, 1} ∪ {−2}) ∩ N; (c) Z\(2Z); (d) {z2 : z ∈ iR}.

1.4 Determine #((R+\{x ∈ R : x2 > 16}) ∩ N).
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Assignments, lists

(1.1) Definition: An assignment or, more precisely, an assignment
on I or I-assignment

f = (fi : i ∈ I)

associates with each element i in its domain (or, index set)

dom f := I

some term or item or entry or value fi. In symbols:

f : dom f : i 7→ fi.

The set
ran f := {fi : i ∈ dom f}

of all items appearing in the assignment f is called the range of the
assignment.

If also g is an assignment, then f = g exactly when fi = gi for all
i ∈ dom f = dom g.

Very confusingly, many mathematicians call an assignment an indexed
set, even though it is not a set whose elements have been indexed. The term
family is also used; however it, too, smacks too much of a set or collection.

We call the assignment f 1-1 if fi = fj implies i = j.

The simplest assignment is the empty assignment, (), i.e., the unique
assignment whose domain is the empty set. Note that the empty assignment
is 1-1 (why?? See Problem 1.5).

An assignment with domain the set

n := {1, 2, . . . , n}

of the first n natural numbers is called a list, or, more explicitly, an n-list.
Note that the empty assignment, (), is the only 0-list. We use the notation

#f := n

for the number of entries of the n-list f .

To specify an n-list f , it is sufficient to write down the sequence
f1, f2, . . . , fn of its terms or values:

f = (f1, f2, . . . , fn).
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For example, the cartesian product

×n
i=1Xi := X1 ×X2 × · · · ×Xn := {(x1, x2, . . . , xn) : xi ∈ Xi, i ∈ n}

of the set sequence X1, . . . , Xn is, by definition, the collection of all n-lists
with the ith item or coordinate taken from Xi, all i.

In this book, we deal with n-vectors, i.e., n-lists of numbers, such as the
3-lists (1, 3.14,−14) or (3, 3, 3). (Note that the list (3, 3, 3) is quite different
from the set {3, 3, 3}. The list (3, 3, 3) has three terms, while the set {3, 3, 3}
has exactly one element.)

(1.2) Definition: An n-vector

x = (x1, . . . , xn)

is a list of n scalars (numbers). The collection of all real (complex)
n-vectors is denoted by Rn (Cn).

In this book, a single boldface roman letter always denotes an n-vector,
with the n clear from the context. However, the ith entry of the n-vector x
is not denoted xi but xi.

In MATLAB, there are (at least) two ways to specify an n-vector, namely as a
one-row matrix (colloquially known as a row vector), or as a one-column matrix
(colloquially known as a column vector). For example, one can record the
3-vector x = (1.3, 3.14,−15) as the one-row matrix

x_as_row = [1.3,3.14,-15]; % with the commas optional

or as the one-column matrix

x_as_col = [1.3;3.14;-15]; % with semicolons separating the rows

One can also write a one-column matrix as a column, without the need for the
semicolons, e.g.,

x_as_col = [1.3
3.14
-15 ];

Back to general assignments. If dom f is finite, say #dom f = n, then
we could always describe f by listing the n pairs (i, fi), i ∈ dom f , in some
fashion. However, that may not always be the most helpful thing to do. Here
is a famous example.
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During the Cholera outbreak in 1854 in London, Dr. John Snow recorded
the deaths by address, thus setting up an assignment whose domain consisted
of all the houses in London. But he did not simply make a list of all the
addresses and then record the deaths in that list. Rather, he took a map of
London and marked the number of deaths at each address as a corresponding
number of black dots right on the map. He found that the deaths clustered
around one particular public water pump, jumped to a conclusion (remember
that this was well before Pasteur’s discoveries), had the handle of that pump
removed, and had the satisfaction of seeing the epidemic fade.

Thus, one way to think of an assignment is to visualize its domain in
some convenient fashion, and, ‘at’ each element of the domain, its assigned
item or value.

This is routinely done for matrices, another basic object in this book.

1.5∗ Why is any assignment 1-1 whose domain contains fewer than 2 elements?

1.6 In some courses, students are assigned to specific seats in the class room. (a) If
you were the instructor in such a class, how would you record this seating assignment? (b)
What are the range and domain of this assignment?

1.7∗ A relation between the sets X and Y is any subset of X × Y . Each such
relation relates or associates with some elements of X one or more elements of Y . For
each of the following relations, determine whether or not it provides an assignment on the
set X := 3 =: Y . (i) R = X × Y ; (ii) R = {(x, x) : x ∈ X}; (iii) R = {(1, 2), (2, 2)}; (iv)
R = {(1, 2), (2, 1)}; (v) R = {(1, 2), (3, 1), (2, 1)}; (vi) R = {(1, 2), (2, 2), (3, 1), (2, 1)}.

Matrices

(1.3) Definition: A matrix, or, more precisely, an m × n-matrix, is
any assignment with domain the cartesian product

m× n = {(i, j) : i ∈ m, j ∈ n}

of m with n, for some nonnegative m and n.

A matrix is called real resp. complex if all its entries are real, resp.
complex numbers.

The collection of all real, resp. complex m×n-matrices is denoted
by Rm×n, resp. Cm×n.

It is customary to display an m× n-matrix A as a rectangle of items:

A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n

 .

This means that we must think of its domain rotated clockwise 90◦ when
compared to the ordinary (x, y)-plane, i.e., the domain of many other bivari-
ate assignments (or maps).
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This way of displaying a matrix has led to the following language.

(1.4) Let A be an m× n-matrix. The item

Aij := Ai,j

corresponding to the index (i, j) is also called the (i, j)-entry of A. The
list Ai:: := Ai,:: := (Ai,j : j ∈ n) is called the ith row of A, the list
A::j := A::,j := (Ai,j : i ∈ m) is called the jth column of A, and the
list (Aii = Ai,i : 1 ≤ i ≤ min{m,n}) is called the (main) diagonal of
A.

A matrix with nonzero entries only on or above (below) the diagonal is
called upper (lower) triangular. A diagonal matrix is one that is
both upper and lower triangular.

By definition, At denotes the transpose of the matrix A, i.e., the n×m-
matrix whose (i, j)-entry is Aji, all i, j. A is symmetric if At = A.
Because of its importance in the later parts of this book, we usually
use the conjugate transpose Ac := At whose (i, j)-entry is the scalar
Aji, with α the complex conjugate of the scalar α. A is Hermitian if
Ac = A.

When m = n, A is called a square matrix of order n.

The notation Ai:: for the ith row and A::j for the jth column of the matrix A
is taken from MATLAB, where, however, A(i,:) is a one-row matrix and A(:,j) is
a one-column matrix (rather than just a vector). The (main) diagonal of a matrix
A is obtained in MATLAB by the command diag(A), which returns, in a one-column
matrix, the list of the diagonal elements. The upper (lower) triangular part of a
matrix A is the matrix obtained from A by setting to zero all entries below (above)
the diagonal; it is provided by the command triu(A) (tril(A)). The conjugate
transpose of a matrix A is obtained by A’. This is the same as the transpose if A is
real. To get the mere transpose At in the contrary case, you must use the notation
A.’ which is strange since there is nothing pointwise about this operation.

MATLAB’s command mesh(A) plots the matrix A, treating its entries as the
values of a function on a corresponding rectangular mesh but not in the way sug-
gested earlier but rather by taking A(i,j) as the value at the point (j,i). Here,
for example, is the ‘picture’ of the 8×16-matrix A := eye(8,16) as generated by
the command mesh(eye(8,16)). This matrix has all its diagonal entries equal to
1 and all other entries equal to 0. But note that a careless interpretation of this
figure would lead one to see a matrix with 16 rows and only 8 columns.
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Figure. The rectangular identity matrix eye(8,16) as plotted in MATLAB

via mesh

While lists can be concatenated in just one way, by letting one follow
the other, matrices can be ‘concatenated’ by laying them next to each other
and/or one underneath the other. The only requirement is that the result be
again a matrix. If, for example,

A := [ 1 2 ] , B :=

 3
6
9

 , C :=

[
4 5
7 8

]
,

then there are four different ways to ‘concatenate’ these three matrices,
namely  1 2 3

4 5 6
7 8 9

 ,
 4 5 3
7 8 6
1 2 9

 ,
 3 1 2
6 4 5
9 7 8

 ,
 3 4 5
6 7 8
9 1 2

 .
In MATLAB, one would write the three matrices

A = [1 2]; B = [3;6;9]; C = [4 5; 7 8];

and would describe the four possible ‘concatenations’ as follows:

[[A;C],B]; [[C;A],B]; [B,[A;C]]; [B,[C;A]];

We saw earlier that even vectors are described in MATLAB by matrices since
plain MATLAB only knows matrices.
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The MATLAB use of semicolons and commas in the preceding MATLAB

discussion is so handy that I will use it throughout the book in the description
of matrices composed of submatrices.

1.8 For the matrix A given by [[0 0 0 0];eye(2,4)], determine the following items:

(a) the main diagonal; (b) the second column; (c) the third row; (d) A32; (e) At; (f) Ac.

(g) Is A lower or upper triangular?

Lists of lists

Matrices are often used to record or represent a list f = (f1, f2, . . . , fn) in
which all the items fj are themselves lists. This can always be done if all
the items fj in that list have the same length, i.e., for some m and all j,
#fj = m. Further, it can be done in two ways, by columns or by rows.

Offhand, it seems more natural to think of a matrix as a list of its rows,
particularly since we are used to writing things in rows from left to right,
each new row underneath the previous row. Nevertheless, in this book, it will
always be done by column (the Chinese and Japanese way or the way the
ancient Law Code of Hammurabi was written), i.e., the list (a1,a2, . . . ,an)
of m-vectors will be associated with the m × n-matrix A whose jth column
is aj , all j. We write this fact in this way:

A = [a1,a2, . . . ,an]; i.e., A::j = aj , j ∈ n.

This makes it acceptable to denote by

#A

the number of columns of the matrix A. If I need to refer to the number of
rows of A, I will simply count the number of columns of its transpose, At, or
its conjugate transpose, Ac, i.e., write

#At or #Ac,

rather than introduce yet another notation.
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Maps

(1.5) Definition: A map

f : X → Y : x 7→ f(x)

associates with each element x of its domain dom f := X a unique
element y = f(x), called the value of f at x, from its target tar f := Y .
If g is also a map, then f = g means that dom f = dom g, tar f = tar g,
and f(x) = g(x) for all x ∈ dom f .

The collection
ran f := {f(x) : x ∈ X}

of all values taken by f is called the range of f . More generally, for
any subset Z of X,

fZ := f(Z) := {f(z) : z ∈ Z}

is called the image of Z under f . In these terms,

ran f = f(dom f).

Also, for any U ⊂ Y , the set

f−1U := {x ∈ X : f(x) ∈ U}

is called the pre-image of U under f . The collection of all maps from
X to Y is denoted by

Y X .

Names other than map are in use, such as function, transformation,
mapping, morphism, operator, etc., all longer than ‘map’. I have ac-
knowledged the standard name, ’function’, by using the letter f for the map
appearing in the above definition. However, in this book, I reserve function
for a scalar-valued map. A map with domain N is a called a sequence.

Somewhat confusingly, many mathematicians use the term ‘range’ for
what I have called here ‘target’; the same mathematicians use the term image
for what I have called here ‘range’.

Every map f : X → Y gives rise to an assignment on X, namely the
assignment (f(x) : x ∈ X). On the other hand, an assignment f on X gives
rise to many maps, one for each Y that contains ran f , by the prescription

f |Y : X → Y : x 7→ fx.

We call this the map into Y given by the assignment f .
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If X is empty, then Y X consists of exactly one element, namely the map
given by the empty assignment, and this even holds if Y is empty.

However, if Y is empty and X is not, then there can be no map from
X to Y , since any such map would have to associate with each x ∈ X some
y ∈ Y , yet there are no y ∈ Y to associate with.

“Wait a minute!”, you now say, “How did we manage when X was
empty?” Well, if X is empty, then there is no x ∈ X, hence the question
of what element of Y to associate with never comes up. Isn’t Mathematics
slick?

1.9 Which of the following lists of pairs describes a map from {o,u,i,a} to {t,h,s}?
A: ((u,s), (i,s), (a,t), (o,h), (i,s)); B: ((i,t), (a,s), (o,h), (i,s), (u,s)); C: ((a,s), (i,t), (u,h),
(a,s), (i,t)).

1.10 For each of the following MATLAB maps, determine their range, as maps on real
2-by-3 matrices: (a) A 7→ max(A); (b) A 7→ A_{:2}; (c) A 7→ diag(A); (d) A 7→ size(A); (e)
A 7→ length(A); (f) A 7→ cos(A); (g) A 7→ ones(A); (h) A 7→ sum(A).

1.11 The characteristic function χ
S
of the subset S of the set T is, by definition,

the function on T that is 1 on S and 0 otherwise:

χ
S
: T → {0, 1} : t 7→

{
1, if t ∈ S;
0, otherwise.

Let R and S be subsets of T . Prove that (a) χ
R∪S

= max(χ
R
, χ

S
); (b) χ

R∩S
=

min(χ
R
, χ

S
) = χ

R
χ
S
; (c) χ

S\R = (1− χ
R
)χ

S
; (d) R ⊂ S iff χ

R
≤ χ

S
.

1.12 Let f : T → U , and consider the map from subsets of U to subsets of T given
by the rule

R 7→ f−1R := {t ∈ T : f(t) ∈ R}.

Prove that this map commutes with the set operations of union, intersection and ‘take
away’, i.e., for any subsets R and S of U , (a) f−1(R∪S) = (f−1R)∪ (f−1S); (b) f−1(R∩
S) = (f−1R) ∩ (f−1S); (c) f−1(R\S) = (f−1R)\(f−1S).

1-1 and onto

In effect, a map is an assignment together with a target, with the target
necessarily containing the range of the assignment. A major reason for in-
troducing the concept of map (as distinct from the notion of assignment) is
in order to raise the following basic question:

Given the map f : X → Y and y ∈ Y , find x ∈ X for which f(x) = y,
i.e., solve the equation

(1.6) f(?) = y.

Existence occurs if this equation has a solution for every y ∈ Y , i.e.,
if ran f = tar f . Uniqueness occurs if there is at most one solution for
every y ∈ Y , i.e., if f(x) = f(z) implies that x = z, i.e., the assignment
(f(x) : x ∈ X) is 1-1.

Here are the corresponding map properties:
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(1.7) Definition: The map f : X → Y is onto in case ran f = Y .

(1.8) Definition: The map f : X → Y is 1-1 in case f(x) = f(y)
implies x = y.

Not surprisingly, these two map properties play a major role throughout
this book. (At last count, ‘1-1’ appears over 400 times in this book, and
‘onto’ over 270 times.) – There are other names in use for these properties:
An onto map is also called surjective or epimorph(ic), while a 1-1 map is
also called injective or monomorph(ic) or faithful.

You are, of course, familiar with maps in an atlas, or maps used for
travel. These endeavor to associate with each point in their domain (usually
a rectangle) some point on the earth’s surface in a “continuous” 1-1 manner.

Cardinality and the pigeonhole principle

Perhaps the simplest useful examples of maps are those derived from lists, i.e.,
maps from some n into some set Y . Here is the basic observation concerning
such maps being 1-1 or onto.

(1.9) Lemma If g : n→ Y is 1-1 and f : m→ Y is onto, then n ≤ m,
with equality if and only if g is also onto and f is also 1-1.

Proof: The list (f(1), . . . , f(m)) contains every element of Y , but
may also contain duplicates of some. Throw out all duplicates to arrive at
the list (h(1), . . . , h(q)) which still contains all elements of Y but each one
only once. In effect, we have ‘thinned’ f to a map h : q → Y that is still onto
but is also 1-1. In particular, q ≤ m, with equality if and only if there were
no duplicates, i.e., f is also 1-1.

Now remove from the list (h(1), . . . , h(q)) every entry of the list (g(1), . . . ,
g(n)). Since h is onto and 1-1, each of the n distinct entries g(j) does appear
in h’s list exactly once, hence the remaining list (k(1), . . . , k(r)) has length
r = q − n. Thus, n ≤ q, with equality, i.e., with r = 0, if and only if g is
onto. In any case, the concatenation (g(1), . . . , g(n), k(1), . . . , k(r)) provides
an ‘extension’ of the 1-1 map g to a map to Y that is still 1-1 but is also
onto.

Put the two arguments together to get that n ≤ q ≤ m, with equality if
and only if f is also 1-1 and g is also onto.
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Note the particular conclusion that if both g : n→ Y and f : m→ Y are
1-1 and onto, then necessarily n = m. This number is called the cardinality
of Y and, as noted earlier, is denoted

#Y.

Hence, if we know that #Y = n, i.e., that there is some invertible map from
n to Y , then we know that any map f : n→ Y is onto if and only if it is 1-1.
This is the

(1.10) Pigeonhole Principle: If f : n → Y with #Y = n, then f is
1-1 if and only if f is onto.

Any map from n to n that is 1-1 hence onto is called a permutation
of degree n since its list is a reordering of the first n integers. Thus (3, 2, 1)
or (3, 1, 2) are permutations of degree 3 while the map into 3 given by the
3-vector (3, 3, 1) is not a permutation, as it is neither 1-1 nor onto.

By the pigeonhole principle, in order to check whether an n-vector rep-
resents a permutation, we only have to check whether its range is n (which
would mean that it is onto, as a map into n), or we only have to check whether
all its values are different and in n (which would mean that it is a 1-1 map
into its domain, n).

The finiteness of n is essential here. For example, consider the right
shift

(1.11) r : N→ N : n 7→ n+ 1.

This maps different numbers to different numbers, i.e., is 1-1, but fails to be
onto since the number 1 is not in its range. On the other hand, the left shift

(1.12) l : N→ N : n 7→ max{n− 1, 1}

is onto, but fails to be 1-1 since it maps both 1 and 2 to 1.

In light of this example, it is all the more impressive that such a pi-
geonhole principle continues to hold for certain special maps f : X → Y
with both X and Y infinite. Specifically, according to (3.24)Corollary, if X
and Y are vector spaces of the same finite dimension and f : X → Y is a
linear map, then f is 1-1 if and only f is onto. This result is one of the high
points of basic linear algebra. A more down-to-earth formulation of it, as in
(3.26)Theorem, is the following: A linear system with as many equations as
unknowns has a solution for every right-hand side if and only if it has only
the trivial solution when the right-hand side is 0.
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1.13 Prove: If X and Y are finite sets, then #(Y X) = (#Y )#X .

1.14 Prove: Any g : n → Y with n > #Y cannot be 1-1.

1.15 Prove: Any f : m → Y with m < #Y cannot be onto.

1.16∗ Let g : n → Y be 1-1, and f : m → Y be onto. Prove that

(i) for some k ≥ n, g can be ‘extended’ to a map h : k → Y that is 1-1 and onto;

(ii) for some k ≤ m, f can be ‘thinned’ to a map h : k → Y that is onto and 1-1.

1.17∗ Prove: If T is finite and S ⊂ T , then S is finite, too. (Hint: consider the set
N of all n ∈ N ∪ {0} for which there is a 1-1 map g : n → S.)

1.18 Prove that S ⊂ T and #T < ∞ implies that #S ≤ #T , with equality if and
only if S = T .

1.19∗ Prove theChinese Remainder Theorem: For p ∈ Z and q ∈ N, let rem(p, q)
be the remainder of the division of p by q, i.e., the unique integer r ∈ Rq := {0, 1, . . . , q−1}
for which p − r is divisible by q. Then, for any k ∈ N, and any q ∈ Nk, r ∈ Zk with
ri ∈ Rqi , i = 1:k, and any two entries of q relatively prime, there exists a unique m ∈ Rq

with q :=
∏

i
qi for which rem(m, qi) = ri, all i. (Hint: Prove that the map f : Rq →

Rq1 × · · · ×Rqk : m 7→ (rem(m, qi) : i = 1:k) is 1-1, hence onto.)

Some examples

The next simplest maps after those given by lists are probably those that
come to you in the form of a list of pairs. For example, at the end of the
semester, I am forced to make up a grade map. The authorities send me the
domain of that map, namely the students in this class, in the form of a list,
and ask me to assign, to each student, a grade, thus making up a list of pairs
of the form

name | grade

At my university, the target of the grade map is the set

{A, AB, B, BC, C, D, F, I},
but there is no requirement to make this map onto. In fact, I could not meet
that requirement if there were fewer than 8 students in the class. Neither is
it required to make the grade map 1-1. In fact, it is not possible to make the
grade map 1-1 if the class has more than 8 students in it. But if the class
has exactly 8 students in it, then a grade map that is onto is automatically
also 1-1, and a grade map that is 1-1 is automatically also onto.

There are many maps in your life that are given as a list of pairs, such
as the list of dorm-room assignments or the price list in the cafeteria. The
dorm-room assignment list usually has the set of students wanting a dorm
room as its domain and the set of available dorm rooms as its target, is
typically not 1-1, but the authorities would like it to be onto. The price
list at the cafeteria has all the items for sale as its domain, and the set
N/100 := {m/100 : m ∈ N} of all positive reals with at most two digits after
the decimal point as its target. There is little sense in wondering whether
this map is 1-1 or onto.

1.20 Describe an interesting map (not already discussed in class) that you have made
use of in the last month or so (or, if nothing comes to mind, a map that someone like you
might have used recently). Be sure to include domain and target of your map in your
description and state whether or not it is 1-1, onto.
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Maps and their graphs

x

f(x)

X Y

Figure. One way to visualize the map f : X → Y : x 7→ f(x).

One successful mental image of a ‘map’ is to imagine both domain and
target as sets of some possibly indistinct shape, with curved arrows indicating
with which particular element in the target the map f associates a particu-
lar element in the domain. Another successful mental (and more successful
mathematical) image of a map f : X → Y is in terms of its graph, i.e., in
terms of the set of pairs

{(x, f(x)) : x ∈ X}.

In fact, the mathematically most satisfying definition of ‘map from X to Y ’
is: a subset of X × Y that, for each x ∈ X, contains exactly one pair (x, y).
In this view, a map is its graph.

Here, for example, is the (graph of the) grade map G for a graduate
course I taught recently. I abbreviated the students’ names, to protect the
innocent.

NA

•

SC

•

SG

•
AK

•

TK

•

AM

•

JP

•

DS

•

ST

•

TW

•

ZH

•A

AB

B

BC

C

D

F

I

Figure. The graph of the grade map
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You may be more familiar with the graphs of real functions, such as the
‘squaring’ map

()2 : [0 . . 2]→ [0 . . 4] : x 7→ x2,

whose graph is shown in the next figure. The arrows indicate the solution
process for the equation y = f(?). Reflection across the bisector drawn
interchanges X and Y , and changes the graph of f to the graph of f−1.

X = [0 . . 2] = dom f = tar f−1

Y = [0 . . 4] = tar f = dom f−1

X × Y

Y ×X

4

y = f(?)

0

0

?

2

Figure. The graph of the squaring map f := ()2 : [0 . . 2] → [0 . . 4] :
x 7→ x2 and of its inverse f−1 =

√
: [0 . . 4]→ [0 . . 2] : x 7→

√
x.

1.21 For each of the following subsets R of the cartesian product X × Y with X =
[0 . . 2] and Y = [0 . . 4], determine whether it is the graph of a map from X to Y and, if it
is, whether that map is 1-1 and/or onto or neither.

(a) R = {(x, y) : y = (x − 1/2)2}; (b) R = {(x, y) : x ≥ 1, y = (2x − 2)2}; (c)
R = {(x, y) : y = (2x− 2)2}; (d) R = {(x, y) : x = y}.

1.22 Same as previous problem, but with X and Y interchanged and, correspond-
ingly, R replaced by R−1 := {(y, x) ∈ Y ×X : (x, y) ∈ R}. Also, discuss any connections
you see between the answers in these two problems.
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Invertibility

The graph of a map f helps us solve the standard ‘computational’ problem
involving maps, namely the problem of finding an x ∈ X that solves the
equation

f(?) = y

for given f : X → Y and y ∈ Y . The solution set is the pre-image of {y}
under f , i.e., the set

f−1{y} = {x ∈ X : f(x) = y}.

For example, when looking at the graph of the above grade map G, we see
that G−1{AB} = {JP, ST}, while G−1{D} = {} (the empty set). In the first
case, we have two solutions, in the second case, we have none.

In effect, when looking for solutions to the equation f(?) = y, we are
looking at the graph of f with the roles of domain and target interchanged:
We are trying to associate with each y ∈ Y some x ∈ X in such a way that
f(x) = y. If f is onto, then there is at least one solution for every y ∈ Y ,
and conversely (existence). If f is 1-1, then there is at most one solution for
any y ∈ Y , and conversely (uniqueness). Ideally, there is, for each y ∈ Y ,
exactly one x ∈ X for which f(x) = y.

(1.13) Definition: The map f : X → Y is invertible := for every
y ∈ Y there exists exactly one x ∈ X for which f(x) = y.

(1.14) Let f : X → Y .

f is invertible if and only if f is 1-1 and onto.

f is invertible if and only if the inverse of its graph, i.e., the set

{(f(x), x) : x ∈ X} ⊂ Y ×X,

is the graph of a map from Y to X. This latter map is called the inverse
of f and is denoted by f−1.

Any 1-1 assignment f , taken as a map into its range, is invertible, since
it is both 1-1 and onto. The above grade map G fails on both counts to be
invertible, it is neither 1-1 nor onto. The squaring map ()2 : [0 . .2]→ [0 . .4] :
x 7→ x2, on the other hand, is invertible since it is both 1-1 and onto. The
figure on page 15 shows the graph of its inverse, obtained from the graph of
the squaring map by reversing the roles of domain and target. In effect, we
obtain the inverse of the graph of f by looking at the graph of f sideways
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and can often tell at a glance whether or not it is the graph of a map, i.e.,
whether f is 1-1 and onto.

A map may be ‘half’ invertible, i.e., it may be either 1-1 or onto, without
being both. For example, the right shift (1.11) is 1-1, but not onto, while the
left shift (1.12) is onto, but not 1-1. Only if domain and target happen to
have the same finite number of elements, then being 1-1 is guaranteed to be
the same as being onto, by the pigeonhole principle (see Problem 1.36).

(1.15) If f : X → Y , with #X = #Y <∞, then f 1-1 or onto implies
f 1-1 and onto, i.e., invertible.

In particular, for any finite X, any map f : X → X that is 1-1 or onto
is automatically invertible.

Map composition; left and right inverse

The notion of f being ‘half’ invertible is made precise by the notions of left
and right inverse. Their definition requires the identity map, often written

id

if its domain (which is also its target) is clear from the context. The full
definition is:

idX : X → X : x 7→ x.

In other words, the identity map is a particularly boring map, it leaves ev-
erything unchanged.

We also need map composition:

(1.16) Definition: The composition f ◦ g of two maps f : X → Y
and g : U →W ⊂ X is the map

f ◦ g : U → Y : u 7→ f(g(u)).

We write fg instead of f ◦ g whenever there is no danger of confusion.
Map composition is associative, i.e., whenever fg and gh are defined,
then

(fg)h = f ◦ (gh).

There is a corresponding definition for the composition x ◦ y of two
assignments, x and y, under the assumption that ran y ⊂ domx. Thus,

xy := x ◦ y = (xyi : i ∈ dom y)
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is an assignment whose domain is dom y and whose range is contained in
ranx.

As a simple example, if x is an n-vector and y is an m-vector with
rany ⊂ n = {1, . . . , n}, then

(1.17) xy := x ◦ y = (xy1 , . . . , xym).

In MATLAB, if x describes the n-vector x and y describes the m-vector y with
entries in n = {1, . . . , n}, then z=x(y) describes the m-vector z = xy = x ◦ y.

In the same way, if A ∈ IFm×n, and b is a k-list with entries from m =
{1, . . . ,m}, and c is an l-list with entries from n = {1, . . . , n}, then A(b, c) is a
k × l-matrix, namely the matrix D := A(b, c) ∈ IFk×l with

D(i, j) = A(b(i), c(j)), i ∈ k, j ∈ l.

In effect, the matrix D = A(b, c) is obtained by choosing from the matrix A

the rows b(1), b(2), . . . , b(k) and columns c(1), c(2), . . . , c(l) of A, in that order.

If all rows, in their natural order, are to be chosen, then use A(:,c). If all
columns, in their natural order, are to be chosen, then use A(b,:).

In particular, A(1,:) is the matrix having the first row of A as its sole row,
and A(:,end) is the matrix having the last column of A as its sole column. The
matrix A(1:2:end,:) is made up from all the odd rows of A. A(end:-1:1,:)
is the matrix obtained from A by reversing the order of the rows (as could also be
obtained by the command flipud(A)). A(:,2:2:end) is obtained by removing
from A all odd-numbered columns. If x is a one-row matrix, then x(ones(1,m),:)
and x(ones(m,1),:) both give the matrix having all its m rows equal to the single
row in x (as would the expression repmat(x,m,1)).

MATLAB permits the expression A(b,c) to appear on the left of the equality
sign: If A(b,c) and D are matrices of the same size, then the statement

A(b,c) = D;

changes, for each (i,j) ∈ dom D, the entry A(b(i),c(j)) of A to the value
of D(i,j). What if, e.g., b is not 1-1? MATLAB does the replacement for each
entry of b, from the first to the last. Hence, the last time is the one that sticks.
For example, if a=1:4, then the statement a([2,2,2])=[1,2,3] changes a to
[1,3,3,4]. On the other hand, if A appears on both sides of such an assignment,
then the one on the right is taken to be as it is at the outset of that assignment.
For example,

A([i,j],:) = A([j,i],:);

is a slick way to interchange the ith row of A with its jth.
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As a first use of map composition, here are surprisingly useful sufficient
conditions for a map f being onto or a map g being 1-1.

(1.18) If fg is onto, then f is onto; if fg is 1-1, then g is 1-1.

Proof: Since ran(fg) ⊂ ran f ⊂ tar f = tar fg, fg onto implies f
onto. Also, if g(y) = g(z), then (fg)(y) = (fg)(z), hence fg 1-1 implies
y = z, i.e., g is 1-1.

For example, the composition lr of the left shift (1.12) with the right
shift (1.11) is the identity, hence l is onto and r is 1-1 (as observed earlier).

(1.19) Definition: If f ∈ Y X and g ∈ XY and fg = id, then f (being
to the left of g) is a left inverse of g, and g is a right inverse of f . In
particular, any left inverse is onto and any right inverse is 1-1.

To help you remember which of f and g is onto and which is 1-1 in case
fg = id, keep in mind that being onto provides conclusions about elements
of the target of the map while being 1-1 provides conclusions about elements
in the domain of the map.

Now we consider the converse statements.

(1.20) If f : X → Y is 1-1, then f has a left inverse.

Proof: If f is 1-1 and x ∈ X is some element, then

g : Y → X : y 7→
{
f−1{y} if y ∈ ran f ;
x otherwise,

is well-defined since each y ∈ ran f is the image of exactly one element of X.
With g so defined, gf = id follows. (What if Y is empty?)

The corresponding statement: If f : X → Y is onto, then f has a
right inverse would have the following ‘proof’: Since f is onto, we can define
g : Y → X : y 7→ some point in f−1{y}. Regardless of how we pick that point
g(y) ∈ f−1{y}, the resulting map is a right inverse for f . – Some object to
this argument since it requires us to pick, for each y, a particular element
from that set f−1{y}. The belief that this can always be done is known as
“The Axiom of Choice”.
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(1.21) If f is an invertible map, then f−1 is both a right inverse and a
left inverse for f . Conversely, if g is a right inverse for f and h is a left
inverse for f , then f is invertible and h = f−1 = g.
Consequently, if f is invertible, then: (i) f−1 is also invertible, and
(f−1)−1 = f ; and, (ii) if also g is an invertible map, with tar g = dom f ,
then fg is invertible, and (fg)−1 = g−1f−1 (note the order reversal).

Proof: Let f : X → Y be invertible. Since, for every y ∈ Y , f−1(y)
solves the equation f(?) = y, we have ff−1 = idY , while, for any x ∈ X, x
is a solution of the equation f(?) = f(x), hence necessarily x = f−1(f(x)),
thus also f−1f = idX .

As to the converse, if f has both a left inverse h and a right inverse g,
then it must be both 1-1 and onto, hence invertible. Further, since hf = idX
and fg = idY , then (using the associativity of map composition),

h = h idY = h ◦ (fg) = (hf)g = idXg = g,

showing that h = g, hence h = f−1 = g.

As to the consequences, the identities ff−1 = idY and f−1f = idX
explicitly identify f as a right and left inverse for f−1, hence f must be
the inverse of f−1. Also, by map associativity, (fg)g−1f−1 = f idXf

−1 =
ff−1 = idY , etc. .

While fg = id implies gf = id in general only in case #dom f =
#tar f < ∞, it does imply that gf is as much of an identity map as it can
be: Indeed, if fg = id, then (gf)g = g ◦ (fg) = g id = g, showing that
(gf)(x) = x for every x ∈ ran g. There is no such hope for x ̸∈ ran g, since
such x cannot possibly be in ran gf = g(ran f) ⊂ ran g. However, since
(gf)(x) = x for all x ∈ ran g, we conclude that ran gf = ran g. This makes
gf the identity on its range, ran g. In particular, (gf) ◦ (gf) = gf , i.e., gf is
idempotent or, a projector.

(1.22) Proposition: If f : X → Y and fg = idY , then gf is a
projector, i.e., the identity on its range, and that range equals ran g.

For example, the composition lr of the left shift (1.12) with the right
shift (1.11) is the identity, hence rl must be the identity on ran r = {2, 3, . . .}
and, indeed, it is.
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If the n-vector c in MATLAB describes a permutation, i.e., if the map c: n→
n : j 7→ c(j) is 1-1 or onto, hence invertible, then the n-vector cinv giving its
inverse can be obtained with the commands

cinv = c; cinv(c) = 1:length(c);

The first command makes sure that cinv starts out as a vector of the same size
as c. With that, the second command changes cinv into one for which cinv(c)

= [1,2,...,length(c)]. In other words, cinv describes a left inverse for (the
map given by) c, hence the inverse (by the pigeonhole principle).

A second, more expensive, way to construct cinv is with the help of the
command sort, as follows:

[d, cinv] = sort(c);

For, whether or not c describes a permutation, this command produces, in the
n-vector d, the list of the items in c in nondecreasing order, and provides, in cinv,
the recipe for this re-ordering:

d(i)=c(cinv(i)), i= 1:n.

In particular, if c describes a permutation, then, necessarily, d = [1,2,3,...],
therefore c(cinv) = [1,2,...,length(c)], showing that cinv describes a
right inverse for (the map given by) c, hence the inverse (by the pigeonhole prin-
ciple).

Both of these methods extend, to the construction of a left, respectively a
right, inverse, in case the map given by c has only a left, respectively a right,
inverse.

1.23 Let f : 2 → 3 be given by the list (2, 3), and let g : 3 → 2 be the map given by
the list (2, 1, 2).

(a) Describe fg and gf (e.g., by giving their lists).

(b) Verify that fg is a projector, i.e., is the identity on its range.

1.24 For each of the following maps, state whether or not it is 1-1, onto, invertible.
Also, describe a right inverse or a left inverse or an inverse for it or else state why such
right inverse or left inverse or inverse does not exist.

The maps are specified in various ways, e.g., by giving their list and their target or
by giving both domain and target and a rule for constructing their values.

(a) a is the map to {1, 2, 3} given by the list (1, 2, 3).

(b) b is the map to {1, 2, 3, 4} given by the list (1, 2, 3).

(c) c is the map to {1, 2} given by the list (1, 2, 1).

(d) d : R2 → R : x 7→ 2x1 − 3x2.

(e) f : R2 → R2 : x 7→ (−x2, x1).

(f) g : R2 → R2 : x 7→ (x1 + 2, x2 − 3).

(g) h : R → R2 : y 7→ (y/2, 0).

1.25 Verify that, in the preceding problem, dh = id, and explain geometrically why
one would call hd a projector.
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1.26 Prove: If fg = fh for g, h : S → T and with f : T → U 1-1, then g = h.

1.27 Prove: If fh = gh for f, g : T → U and with h : S → T onto, then f = g.

1.28∗ Use the preceding two problems to prove the following converse of (1.22)Propo-
sition: If f : X → Y and gf is a projector, then f is onto and g is 1-1 iff fg = idY .

1.29 If both f and g are maps from n to n, then so are both fg and gf . In particular,
for any f ∈ nn, its power sequence

f0 := idn, f
1 := f, f2 := f ◦ f, f3 := f ◦ f2, . . .

is well defined. Further, since nn is finite, the sequence f0, f1, f2, . . . of powers must
eventually repeat itself. In other words, there must be a first r such that fr = fj for some
j < r. Let’s call the difference d := r − j between these two exponents the cycle length
of f .

(a) Find the cycle length for the map given by the list (2, 3, 4, 1, 1). (Feel free to use
MATLAB.)

(b) Also determine the cycle lengths for the following maps:

A:=(2,3,4,5,1); B:=(2,3,1,5,4); C:=(1,2,3,4,5);
D:=(2,5,2,2,1); E:=(2,5,2,5,2); F:=(2,5,2,2,5).

(c) Given all these examples (and any others you care to try), what is your guess as to
the special nature of the map fd in case the cycle length of f is d and f is invertible?
What if f is not invertible?

1.30 Finish appropriately the following MATLAB function

function b = ii(a)
% If ran(a) = N := {1,2,...,length(a)} , hence a describes
% the invertible map
% f:N --> N : j |--> a(j)
% then b describes the inverse of f , i.e., the map g:N --> N for which
% fg = id_N and gf = id_N .
% Otherwise, the message
% The input doesn’t describe an invertible map
% is printed and an empty b is returned.

1.31 Let fi : X → X for i ∈ n, hence g := f1 · · · fn is also a map from X to
X. Prove that g is invertible if, but not only if, each fi is invertible, and, in that case,

g−1 = f−1
n · · · f−1

1 . (Note the order reversal!)

1.32 Prove: If f : S → T is invertible, then f has exactly one left inverse. Is the
converse true?

1.33 Let g be a left inverse for f : S → T , and assume that #S > 1. Prove that g is
the unique left inverse for f iff g is 1-1. (Is the assumption that #S > 1 really needed?)

1.34 Let g be a right inverse for f . Prove that g is the unique right inverse for f iff
g is onto.

1.35 Prove: If f : S → T is invertible, then f has exactly one right inverse. Is the
converse true?

1.36∗

(i) Prove: If g : Z → X is invertible, then, for any f : X → Y , f is 1-1 (onto) if and
only if the map fg is 1-1 (onto).

(ii) Derive (1.15) from (1.10).

The inversion of maps

The notions of 1-1 and onto, and the corresponding notions of right and left
inverse, are basic to the discussion of the standard ‘computational’ problem
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already mentioned earlier: for f : X → Y and y ∈ Y , solve

(1.6) f(?) = y.

When we try to solve (1.6), we are really trying to find, for each y ∈ Y , some
x ∈ X for which f(x) = y, i.e., we are trying to come up with a right inverse
for f . Existence of a solution for every right side is the same as having f
onto, and is ensured by the existence of a right inverse for f . Existence of a
left inverse for f ensures uniqueness: If hf = id, then f(x) = f(y) implies
that x = h(f(x)) = h(f(y)) = y. Thus existence of a left inverse implies
that f is 1-1. But existence of a left inverse does not, in general, provide a
solution.

When f has its domain in Rn and and its target in Rm, then we can think
of solving (1.6) numerically. Under the best of circumstances, this still means
that we must proceed by approximation. The solution is found as the limit of
a sequence of solutions to linear equations, i.e., equations of the form A? = y,
with A a linear map. This is so because linear (algebraic) equations are the
only kind of equations we can actually solve exactly (ignoring roundoff).
This is one reason why Linear Algebra is so important. It provides the
mathematical structures, namely vector spaces and linear maps, needed to
deal efficiently with linear equations and, thereby, with other equations.

1.37 T/F

(a) 0 is a natural number.

(b) #{3, 3, 3} = 1.

(c) #(3, 3, 3) = 3.

(d) ({3, 1, 3, 2, 4} ∩ {3, 5, 4}) ∪ {3, 3} = {4, 3, 3, 3, 3}.
(e) If A,B are finite sets, then #(A ∪B) = #A+#B −#(A ∩B).

(f) #{} = 1.

(g) {3, 3, 1, 6}\{3, 1} = {3, 6}.
(h) If f : X → X for some finite X, then f is 1-1 if and only if f is onto.

(i) The map f : 3 → 3 given by the list (3, 1, 2) is invertible, and its inverse is given by
the list (2, 3, 1).

(j) The map f : 3 → 2 given by the list (1, 2, 1) has a right inverse.

(k) If U ⊂ tar f , then f maps f−1U onto U .

(l) The map f is invertible if and only if {(f(x), x) : x ∈ dom f} is the graph of a map.

(m) If f, g ∈ XX and h := fg is invertible, then both f and g are invertible.

(n) The matrix

[
0 0
0 1

]
is diagonal.

(o) The matrix

[
0 0 0
0 0 0

]
is upper triangular.
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Vector spaces, especially spaces of functions

Linear algebra is concerned with vector spaces. These are sets on which two
operations, vector addition and multiplication by a scalar, are defined in such
a way that they satisfy various laws. Here they are, for the record:

(2.1) Definition: To say that X is a linear space (of vectors), or a
vector space, over the commutative field (see (17.9)) IF (of scalars)
means that there are two maps, (i) X ×X → X : (x, y) 7→ x+ y called
(vector) addition; and (ii) IF × X → X : (α, x) 7→ αx =: xα called
scalar multiplication, which satisfy the following rules.

(a) X is a commutative group with respect to addition; i.e. (see
(17.8)), addition

(a.1) is associative: x+ (y + z) = (x+ y) + z;

(a.2) is commutative: x+ y = y + x;

(a.3) has neutral element: ∃0 ∀x, x+ 0 = x;

(a.4) has inverse: ∀x ∃y, x+ y = 0.

(s) scalar multiplication is

(s.1) associative: α(βx) = (αβ)x;

(s.2) field-addition distributive: (α+ β)x = αx+ βx;

(s.3) vector-addition distributive: α(x+ y) = αx+ αy;

(s.4) unitary: 1x = x.

Note that a vector space cannot be empty since, by condition (a.3), it must
contain the neutral element or zero vector, 0. For simplicity, I denote the

24
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zero vector with the same symbol used for the zero scalar. In the same spirit,
vector addition and scalar addition are both denoted by the plus sign. There
is, offhand, no sense in adding a scalar to a vector. It is standard to denote the
element y ∈ X for which x+y = 0 by −x since such y is uniquely determined
by the requirement that x + y = 0. Also, the short-hand y − x := y + (−x)
is standard. For reasons to become clear, I often write xα for αx.

While the scalars can come from some abstract field, we will only be
interested in the real scalars R and the complex scalars C. Also, from a
practical point of view, the most important linear spaces consist of functions,
i.e., of scalar-valued maps all on some common domain. This means that the
typical vector space we will deal with is (a subset of) the collection of all
maps IFT from some fixed domain T into the scalar field IF (either IF = R
or IF = C), with pointwise addition and multiplication by scalars. Here is
the definition:

(2.2) Definition of pointwise vector operations:

(a) The sum f + g of f, g ∈ IFT is the function

f + g : T → IF : t 7→ f(t) + g(t).

(s) The product αf of the scalar α ∈ IF with the function f ∈ IFT is
the function

αf : T → IF : t 7→ αf(t).

With respect to these operations, IFT is a vector space (over IF). In
particular, the function

0 : T → IF : t 7→ 0

is the neutral element, or zero vector, and, for f ∈ IFT ,

−f : T → IF : t 7→ −f(t)

is the additive inverse for f .

Note that it is not possible to add two functions unless they have the
same domain!

Standard examples include:

(i) T = n, in which case we get n-dimensional coordinate space,
customarily denoted IFn, whose elements (vectors) we call n-vectors.

(ii) T = m × n, in which case we get the space of m-by-n matrices,
customarily denoted IFm×n.
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(iii) T = R, IF = R, in which case we get the space of all real-valued
functions on the real line.

(iv) T = Rn, IF = R, in which case we get the space of all real-valued
functions of n real variables.

The most common way to get a vector space is as a linear subspace:

(2.3) Definition: A nonempty subset Y of a vector space X is a linear
subspace (of X) in case it is closed under addition and multiplication
by a scalar. This means that the two sets

Y + Y := {y + z : y, z ∈ Y } and IFY := {αy : α ∈ IF, y ∈ Y }

are subsets of Y . Equivalently, IFY + IFY ⊂ Y .

(2.4) Proposition: A subset Y of a vector space X is a vector space
(with respect to the same vector addition and multiplication by scalars)
if and only if Y is a linear subspace (of X).

For a proof, see the answer to Problem 2.3.

Standard examples of vector spaces obtained as linear subspaces include:

(i) The trivial space {0}, consisting of the zero vector alone; it’s a great
space for testing one’s understanding.

(ii) Π≤k := the set of all polynomials of degree ≤ k as a subset of IFF

(see page 42).

(iii) The set C([a. .b]) of all continuous functions on the interval [a. .b]

as a subset of IF[a..b].

(iv) The set of all real symmetric matrices of order n as a subset of Rn×n.

(v) The set of all real-valued functions on R that vanish on some fixed
set S.

(vi) The set BLξξξξξ ⊂ C([ξ1 . . ξℓ+1]) of all broken lines on [ξ1 . . ξℓ+1] with
(interior) breaks at ξ2 < · · · < ξℓ, meaning that each f ∈ BLξξξξξ is continuous
and agrees, on each interval [ξi . . ξi+1], with a straight line.

It is a good exercise to check that, according to the abstract definition of
a vector space, any linear subspace of a vector space is again a vector space.
Conversely, if a subset of a vector space is not closed under vector addition
or under multiplication by scalars, then it cannot be a vector space (with
respect to the given operations) since it violates the basic assumption that
the sum of any two elements and the product of any scalar with any element
is again an element of the space. (To be sure, the empty subset {} of a vector
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space is vacuously closed under the two vector operations but fails to be a
linear subspace since it fails to be nonempty.)

(2.5) Proposition: The sum, Y +Z := {y+ z : y ∈ Y, z ∈ Z}, and the
intersection, Y ∩Z, of two linear subspaces, Y and Z, of a vector space
are linear subspaces.

For a proof, see the answer to Problem 2.4.

We saw that pointwise addition and multiplication by a scalar makes the
collection IFT of all maps from some set T to the scalars a vector space. The
same argument shows that the collection XT of all maps from some set T into
a vector space X (over the scalar field IF) is a vector space under pointwise
addition and multiplication by scalars. This means, explicitly, that we define
the sum f + g of f, g ∈ XT by

f + g : T → X : t 7→ f(t) + g(t)

and define the product αf of f ∈ XT with the scalar α ∈ IF by

αf : T → X : t 7→ αf(t).

Thus, we can generate from one vector space X many different vector
spaces, namely all the linear subspaces of the vector space XT , with T an
arbitrary set.

2.1 For each of the following sets of real-valued assignments or maps, determine
whether or not they form a vector space (with respect to pointwise addition and mul-
tiplication by scalars), and give a reason for your answer. (a) {x ∈ R3 : x1 = 4}; (b)
{x ∈ R3 : x1 = x2}; (c) {x ∈ R3 : 0 ≤ xj , j = 1, 2, 3}; (d) {(0, 0, 0)}; (e) {x ∈ R3 : x ̸∈ R3};
(f) C([0 . .2]); (g) The collection of all 3×3 matrices with all diagonal entries equal to zero;
(h) {(x, 0) : x ∈ R} ∪ {(0, y) : y ∈ R}.

2.2∗ Prove that, for every x in the vector space X, 0x = 0 and (−1)x = −x.

2.3∗ Provide a proof for (2.4)Proposition.

2.4∗ Provide a proof for (2.5)Proposition.

2.5 Prove that the intersection of any collection of linear subspaces of a vector space
is a linear subspace.

2.6 Prove: The union of two linear subspaces is a linear subspace if and only if one
of them contains the other.

2.7 Prove: The finite union of linear subspaces is a linear subspace if and only if
one of them contains all the others. (Hint: reduce to the situation that no subspace is
contained in the union of the other subspaces and, assuming this leaves you with at least
two subspaces, take from each a point that is in none of the others and consider the straight
line through these two points.)
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Linear maps

(2.6) Definition: Let X,Y be vector spaces (over the same scalar field
IF). The map f : X → Y is called linear if it is

(a) additive, i.e.,

∀x, z ∈ X, f(x+ z) = f(x) + f(z);

and

(s) homogeneous, i.e.,

∀(α, x) ∈ IF×X, f(αx) = αf(x).

We denote the collection of all linear maps from X to Y by

L(X,Y ), and set L(X) := L(X,X).

Many books call a linear map a linear transformation or a linear
operator. It is customary to denote linear maps by capital letters. Further,
if A is a linear map and x ∈ domA, then it is customary to write Ax instead
of A(x).

Examples: (i) If X is a linear subspace of IFT , then, for every t ∈ T ,
the map

δt : X → IF : f 7→ f(t)

of evaluation at t is linear since the vector operations are pointwise.

(ii) The map D : C(1)(R) → C(R) : g 7→ Dg that associates with each
continuously differentiable function g its first derivative Dg is a linear map.

(iii) The map C([a . . b])→ R : g 7→
∫ b

a
g(t) dt is linear.

(iv) Let c := {a ∈ IFN : limn→∞ an exists}, i.e., c is the vector space of
all convergent sequences. Then the map c→ IF : a 7→ limn→∞ an is linear.

These examples show that the basic operations in Calculus are linear.
This is the reason why so many people outside Algebra, such as Analysts and
Applied Mathematicians, are so interested in Linear Algebra.

The simplest linear map on a vector space X to a vector space Y is the
so-called trivial map. It is the linear map that maps every element of X to
0; it is, itself, denoted by

0.

It is surprising how often this map serves as a suitable illustration or coun-
terexample.



Linear maps 29

(2.7) For any A ∈ L(X,Y ), ranA is a linear subspace of Y , and A0 = 0.

Indeed, since A is linear, Ax+Ay = A(x+ y) ∈ ranA, and αAx = A(αx) ∈
ranA, and A0 = A(α0) = αA0 for any α ∈ IF, hence A0 = 0. (The preceding
has been an example for how simplicity of notation can come back to bite
you; if, instead of simplicity, I had chosen to denote the zero vector of X
by 0X and the zero scalar in IF by 0F, I could have written, more concisely,
A(0X) = A(0F0X) = 0FA(0X) = 0Y to prove that A maps 0 ∈ X to 0 ∈ Y .)

Example: If a ∈ Rn, then†

(2.8) at : Rn → R : x 7→ atx := a1x1 + a2x2 + · · ·+ anxn

is a linear map of great practical importance. Indeed, any (real) linear alge-
braic equation in n unknowns has the form

at? = y

for some coefficient vector a ∈ Rn and some right side y ∈ R. Such
an equation has solutions for arbitrary y if and only if a ̸= 0. You may
have already learned that the general solution can always be written as the
sum of a particular solution and an arbitrary solution of the corresponding
homogeneous equation

at? = 0.

In particular, the map at cannot be 1-1 unless n = 1.

Assume that a ̸= 0. For n = 2, it is instructive to visualize the solution
set as a straight line, parallel to the straight line

nullat := {x ∈ R2 : atx = 0}

through the origin formed by all the solutions to the corresponding homo-
geneous problem, hence perpendicular to the coefficient vector a. Note that
the ‘nullspace’ nullat splits R2 into the two half-spaces

{x ∈ R2 : atx > 0}, {x ∈ R2 : atx < 0},

one of which contains a. This is shown in (2.9)Figure, for the particular
equation

2x1 + 3x2 = 6.

† The use of the superscript t in (2.8) is explained on page 37.
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x1

x2

2

3

a

atx < 0

0 < atx < 6

6 < atx

(2.9) Figure. One way to visualize all the parts of the equation atx = 6
with a = (2, 3).

By adding or composing two linear maps (if appropriate) or by multi-
plying a linear map by a scalar, we obtain further linear maps. Here are the
details.

The (pointwise) sum A + B of A,B ∈ L(X,Y ) and the product αA of
α ∈ IF with A ∈ L(X,Y ) are again in L(X,Y ), hence L(X,Y ) is closed
under (pointwise) addition and multiplication by a scalar, therefore a linear
subspace of the vector space Y X of all maps from X into the vector space Y .

(2.10) L(X,Y ) is a vector space under pointwise addition and multipli-
cation by a scalar.

Linearity is preserved not only under (pointwise) addition and multipli-
cation by a scalar, but also under map composition.

(2.11) The composition of two linear maps is again linear (if it is de-
fined).

Indeed, if A ∈ L(X,Y ) and B ∈ L(Y,Z), then BA maps X to Z and,
for any x, y ∈ X,

(BA)(x+ y) = B(A(x+ y)) = B(Ax+Ay)

= B(Ax) +B(Ay) = (BA)(x) + (BA)(y).
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Also, for any x ∈ X and any scalar α,

(BA)(αx) = B(A(αx)) = B(αAx) = αB(Ax) = α(BA)(x).

2.8 For each of the following maps, determine whether or not it is linear (give a
reason for your answer).

(a) Π<k → Z+ : p 7→ #{x : p(x) = 0} (i.e., the map that associates with each polynomial
of degree < k the number of its zeros).

(b) C([a . . b]) → R : f 7→ maxa≤x≤b f(x).

(c) F3×4 → F : A 7→ A2,2.

(d) L(X,Y ) → Y : A 7→ Ax, with x a fixed element of X (and, of course, X and Y vector
spaces).

(e) F[0..1] → F[a..b] : f 7→ f ◦ ϕ with ϕ : [a . . b] → [0 . . 1] invertible.

(f) Rm×n → Rn×m : A 7→ Ac (with Ac the (conjugate) transpose of the matrix A).

(g) R → R2 : x 7→ (x, sin(x)).

(h) Π → Π : p 7→ gp for some g ∈ Π, with gp : x 7→ g(x)p(x).

2.9∗ The linear image of a vector space is a vector space: Let f : X → T be a map
on some vector space X into some set T on which addition and multiplication by scalars
is defined in such a way that

(2.12) f(αx+ βy) = αf(x) + βf(y), α, β ∈ F, x, y ∈ X.

Prove that ran f is a vector space (with respect to the addition and multiplication as

restricted to ran f). (See Problem 3.25 for an important application.)

Linear maps from IFn (aka column maps)

As a ready source of many examples, we now give a complete description of
L(IFn, X). This description will make good use of the unorthodox notation
xα := αx for the product of the scalar α with the vector x introduced in
(2.1).

(2.13) For any sequence v1, v2, . . . , vn in the vector space X, the map

f : IFn → X : a 7→ v1a1 + v2a2 + · · ·+ vnan

is linear.

Proof: The proof is a boring but necessary verification.
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(a) additivity:

f(a+ b) = v1 (a+ b)1 + v2 (a+ b)2 + · · ·+ vn (a+ b)n

(definition of f)
= v1 (a1 + b1) + v2 (a2 + b2) + · · ·+ vn (an + bn)

(addition of n-vectors)
= v1a1 + v1b1 + v2a2 + v2b2 + · · · + vnan + vnbn

(multiplication by scalar distributes)
= v1a1 + v2a2 + · · ·+ vnan + v1b1 + v2b2 + · · ·+ vnbn

(vector addition commutes)
= f(a) + f(b)

(definition of f)

(s) homogeneity:

f(βa) = v1 (βa)1 + v2 (βa)2 + · · ·+ vn (βa)n

(definition of f)
= v1βa1 + v2βa2 + · · ·+ vnβan

(multiplication of scalar with n-vectors)
= β(v1a1 + v2a2 + · · ·+ vnan)

(multiplication by scalar distributes)
= βf(a)

(definition of f)

(2.14) Definition: The sum

v1a1 + v2a2 + · · ·+ vnan

is called the linear combination of the vectors v1, v2, . . . , vn with
weights a1, . . . , an. I will use the suggestive abbreviation

[v1, v2, . . . , vn]a := v1a1 + v2a2 + · · ·+ vnan,

hence use
[v1, v2, . . . , vn]

for the map V : IFn → X : a 7→ v1a1 + v2a2 + · · · + vnan. I call such a
map a column map, and call vj its jth column. Further, I denote its
number of columns by

#V.
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The most important special case of this occurs when also X is a coor-
dinate space, X = IFm say. In this case, each vj is an m-vector, vj say,
and

v1a1 + v2a2 + · · ·+ vnan = V a,

with V the m × n-matrix with columns v1,v2, . . . ,vn. This explains why I
chose to write the weights in the linear combination v1a1 + v2a2 + · · ·+ vnan
to the right of the vectors vj rather than to the left. For, it suggests that
working with the map [v1, v2, . . . , vn] is rather like working with a matrix
with columns v1,v2, . . . ,vn.

Note that MATLAB uses the notation [c1, c2, . . . , cn] for the matrix with
columns c1, c2, . . . , cn, as do some textbooks. This stresses the fact that it is
customary to think of the matrix C ∈ IFm×n with columns c1, c2, . . . , cn as the
linear map

[c1, c2, . . . , cn] : IF
n → IFm : x 7→ c1x1 + c2x2 + · · ·+ cnxn.



34 2 Vector spaces and linear maps

(2.15) Agreement: For any sequence v1,v2, . . . ,vn of m-vectors,

[v1,v2, . . . ,vn]

denotes both the m × n-matrix V with columns v1,v2, . . . ,vn and the
linear map

V : IFn → IFm : a 7→ [v1,v2, . . . ,vn]a = v1a1 + v2a2 + · · ·+ vnan.

Thus (see (2.17)Proposition below),

IFm×n = L(IFn, IFm).

Thus, a matrix V ∈ IFm×n is associated with two rather different maps:
(i) since it is an assignment with domain m × n and values in IF, we could
think of it as a map on m×n to IF; (ii) since it is the n-list of its columns, we
can think of it as the linear map from IFn to IFm that carries the n-vector a
to the m-vector V a = v1a1 + v2a2 + · · ·+ vnan. From now on, we will stick
to the second interpretation when we talk about the domain, the range, or
the target, of a matrix. Thus, for V ∈ IFm×n, domV = IFn and tarV = IFm,
and ranV ⊂ IFm. – If we want the first interpretation, we call V ∈ IFm×n a
(two-dimensional) array and write V ∈ IFm×n.

Next, we prove that there is nothing special about the linear maps of
the form [v1,v2, . . . ,vn] from IFn into the vector space X since every linear
map from IFn to X is necessarily of that form. The identity map

idn : IFn → IFn : a 7→ a

is of this form, i.e.,

idn = [e1, e2, . . . , en],

with ej the jth coordinate direction (vector), i.e.,

ej := (0, . . . , 0︸ ︷︷ ︸
j−1 zeros

, 1, 0, . . . , 0)

the vector (with the appropriate number of entries) all of whose entries are
0, except for the jth, which is 1. Written out in painful detail, this says that

∀a ∈ IFn, a = e1a1 + e2a2 + · · ·+ enan.
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Further,

(2.16) Proposition: If V = [v1, v2, . . . , vn] : IFn → X and f ∈
L(X,Y ), then fV = [f(v1), . . . , f(vn)].

Proof: If dom f = X and f is linear, then fV is linear and, for any
a ∈ IFn,

(fV )a = f(V a) = f(v1a1 + v2a2 + · · ·+ vnan)

= f(v1)a1 + f(v2)a2 + · · ·+ f(vn)an = [f(v1), . . . , f(vn)]a.

Consequently, for any f ∈ L(IFn, X),

f = f idn = f [e1, e2, . . . , en] = [f(e1), . . . , f(en)].

This proves:

(2.17) Proposition: The map f from IFn to the vector space X is
linear if and only if

f = [f(e1), f(e2), . . . , f(en)].

Therefore,

L(IFn, X) = {[v1, v2, . . . , vn] : v1, v2, . . . , vn ∈ X},

with the linear map Xn → L(IFn, X) : (v1, v2, . . . , vn) 7→ [v1, v2, . . . , vn]
invertible (see Problem 2.21), hence L(IFn, X) and Xn are isomorphic.
In symbols

L(IFn, X) ≃ Xn.

As a simple example, recall from (2.8) the map

at : Rn → R : x 7→ a1x1 + a2x2 + · · ·+ anxn = [a1, . . . , an]x,

and, in this case, atej = aj , all j. This confirms that at is linear and shows
that

(2.18) at = [a1, . . . , an] = [a]t.
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Notation: If V and W are both columns maps into the same vector
space, then [V,W ] denotes the column map in which first all the columns of
V are used and then all the columns of W . Also, I write

V ⊂W

to mean that V is obtained by omitting (zero or more) columns from W ; i.e.,
V =W ( : , c) for some sub-list c of 1:#W .

Finally, if W is a column map and M is a set, then I write

W ⊂ M

to mean that the columns of W are elements of M . For example:

(2.19) Proposition: A nonempty subset Z of the vector space Y is
a linear subspace (of Y ) if and only if, for all column maps W into Y ,
W ⊂ Z =⇒ ranW ⊂ Z.

In more traditional language, this proposition says that a nonempty
subset Z of a vector space Y is a linear subspace of Y iff it is closed under
formation of linear combinations. Indeed, since, for x, y ∈ Y and α ∈ IF, αy
and x + y are particular linear combinations of elements from Y , the ”if” is
clear. As to the ”only if”, it is clear by induction on #W , since the case
#W = 1 is covered by Z being closed under multiplication by scalars, while,
for #W > 1, we can write W = [U, V ] with both #U,#V < #W , hence, for
anyWc ∈ ranW , writing appropriately c = (a,b), we haveWc = Ua+V b ∈
Z by induction hypothesis.

The important (2.16)Proposition is the reason we define the product
of matrices the way we do, namely as

∀i, j, (AB)ij :=
∑
k

AikBkj .

For, if A ∈ IFm×n = L(IFn, IFm) and B = [b1, . . . ,br] ∈ IFn×r = L(IFr, IFn),
then AB ∈ L(IFr, IFm) = IFm×r, and

(2.20) AB = A[b1, . . . ,br] = [Ab1, . . . , Abr].

Notice that the product AB of two maps A and B makes sense if and only
if domA ⊃ tarB. For matrices A and B, this means that the number of
columns of A must equal the number of rows of B; we couldn’t apply A to
the columns of B otherwise.

In particular, the 1-column matrix [Ax] is the product of the matrix A
with the 1-column matrix [x], i.e.,

∀(A,x) ∈ IFm×n×IFn, A[x] = [Ax].
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For this reason, most books on elementary linear algebra and most users of
linear algebra identify the n-vector x with the n× 1-matrix [x], hence write
simply x for what I have denoted here by [x]. I will feel free from now on to
use the same identification. However, I will not be doctrinaire about it. In
particular, I will continue to specify a particular n-vector x by writing down
its entries in a list, like x = (x1, x2, . . .), since that uses much less space than
does the writing of

[x] =

x1x2
...

 .
It is consistent with the standard identification of the n-vector x with

the n × 1-matrix [x] to mean by xt the 1 × n-matrix [x]t. Further, with y
also an n-vector, one identifies the (1, 1)-matrix [x]t[y] = xty with the scalar∑

j

xjyj

which then also equals ytx. On the other hand, even when x and y are of
different lengths, say x ∈ IFn and y ∈ IFm with n ̸= m,

yxt := [y][x]t = (yixj : (i, j) ∈ m× n)

is a well-definedm×n-matrix (and identified with a scalar only ifm = n = 1).

However, I will not use the terms ‘column vector’ or ‘row vector’, as they
don’t make sense to me. Also, whenever I want to stress the fact that x or
xt is meant to be a matrix, I will write [x] and [x]t, respectively.

For example, what about the expression xytz in case x, y, and z are
vectors? It makes sense only if y and z are vectors of the same length, say
y, z ∈ IFn. In that case, it is [x][y]t[z], and this we can compute in two ways:
we can apply the matrix xyt to the vector z, or we can multiply the vector x
with the scalar ytz. Either way, we obtain the vector x(ytz) = (ytz)x, i.e.,
the (ytz)-multiple of x. However, while the product x(ytz) of x with (ytz)
makes sense both as a matrix product and as multiplication of the vector x
by the scalar ytz, the product (ytz)x only makes sense as a product of the
scalar ytz with the vector x.

(2.21) Example: Here is an example, of help later. Consider a so-
called elementary row operation on n-vectors, specifically the one that
adds α times the kth entry to the ith entry. Is this a linear map? What is a
formula for it?

We note that the kth entry of any n-vector x can be computed as ek
tx,

while adding β to the ith entry of x is accomplished by adding eiβ to x.
Hence, adding α times the kth entry of x to its ith entry replaces x by
x+ ei(αek

tx) = x+ αeiek
tx. This gives the handy formula

(2.22) Eei,ek
(α) := idn + αeiek

t
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for this elementary row operation (the use of ‘row’ here justified by the tra-
ditional view of an n-vector x as the n × 1-matrix [x]). Now, to check that
Eei,ek

(α) is linear, we observe that it is the sum of two maps, and the first
one, idn, is certainly linear, while the second is the composition of the three
maps,

ek
t : IFn → IF ≃ IF1 : z 7→ ek

tz, [ei] : IF
1 → IFn : β → eiβ,

α : IFn → IFn : z 7→ αz,

and each of these is linear (the last one because we assume IF to be a com-
mutative field).

Matrices of the form

(2.23) Ey,z(α) := id + αyzt

are called elementary. They are very useful since, if invertible, their inverse
has the same simple form; see (2.34)Proposition below.

2.10 (a) Compute the number of additions/multiplications needed to apply Eei,ek (α)
as given by (2.22) to one n-vector x and compare with the numbers needed to apply an
arbitrary matrix of order n to one n-vector. (b) How many nonzero entries does Eei,ek (α),
written out as a matrix, have? Is it worth the effort to write out Eei,ek (α) as an n × n-
matrix?

2.11 Use the fact that the jth column of the matrix A is the image of ej under the
linear map A to construct the matrices that carry out the specified action.

(i) The matrix A of order 2 that rotates the plane clockwise 90 degrees;

(ii) The matrix B that reflects Rn across the hyperplane {x ∈ Rn : xn = 0};
(iii) The matrix C that keeps the hyperplane {x ∈ Rn : xn = 0} pointwise fixed, and

maps en to −en;

(iv) The matrix D of order 2 that keeps the y-axis fixed and maps (1, 1) to (2, 1).

(v) The matrix A ∈ Fn×n that maps ej to eσ(j), j = 1:n, for some permutation σ of
degree n. Any such A is called a permutation matrix.

2.12∗ Use the fact that the jth column of the matrix A ∈ Fm×n is the image of ej
under A to derive the four matrices A2, AB, BA, and B2 for each of the given pair A
and B: (i) A = [e1,0], B = [0, e1]; (ii) A = [e2, e1], B = [e2,−e1]; (iii) A = [e2, e3, e1],
B = A2.

2.13∗ Prove that (eiej
t)(ekeh

t) = δjkeieh
t, with er ∈ Fn, r = i, j, k, h.

2.14 For each of the following pairs of matrices A, B, determine their products AB
and BA if possible, or else state why that cannot be done.

(a) A =

[
1 −1 1
1 1 1

]
, B = id2; (b) A =

[
2 1 4
0 1 2

]
, B = At; (c) A =

[
2 1 4
0 1 2
0 0 −1

]
,

B =

[−1 −1 2
0 2 −1
0 0 3

]
; (d) A =

[
2 + i 4− i
3− i 3 + i

]
, B =

[
2− i 3 + i 3i
3− i 4 + i 2

]
.

2.15 For any A,B ∈ L(X), the products AB and BA are also linear maps on X, as
are A2 := AA and B2 := BB. Give an example of A,B ∈ L(X) for which (A+ B)2 does
not equal A2 + 2AB +B2. (Hint: Keep it as simple as possible, by choosing X to be R2,
hence both A and B are 2-by-2 matrices.)

2.16 Give an example of matrices A and B for which both AB = 0 and BA = 0,
while neither A nor B is a zero matrix.
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2.17∗ Prove the formula[
A B
E F

] [
C G
D H

]
=

[
AC +BD AG+BH
EC + FH EG+ FH

]
for the product of two compatibly partitioned matrices, i.e, when the products AC and
FH are defined.

2.18∗ Let A ∈ Fm×n, x ∈ Fn, hence Ax is well-defined. Show that

Ax = A(::, f)xf +A(::, g)xg,

with f and g a partitioning of n in the sense that (f, g) is a permutation of degree n, i.e.,
both f and g are 1-1 and g contains all the elements of n not contained in f, and recall
from (1.17) that e.g., xf is the list x ◦ f = (xf1 , xf2 , . . .).

2.19∗ With the same setup as in Problem 2.18, and with B ∈ Fn×k, hence AB is
defined, prove that

AB = A(::, f)B(f, ::) +A(::, g)B(g, ::)

and relate this to Problem 2.17. For that, show that, with a a list into m and b a list into
k,

(AB)(a, b) = A(a, ::)B(::, b).

2.20 Prove that both C → R : z 7→ Re z and C → R : z 7→ Im z are linear maps when
we consider C as a vector space over the real scalar field.

2.21∗ Recall from (2.17)Proposition that two vector spaces X and Y over the same

scalar field are isomorphic if L(X,Y ) contains an invertible map, and this is indicated by

writing X ≃ Y . Prove the claim made in the last display of (2.17)Proposition.

Linear maps from IFT

We can, in the same way, establish that, for any finite set T , any linear
map from the more general coordinate space IFT into a vector space X is
necessarily of the form

IFT → X : a 7→ [vt : t ∈ T ]a :=
∑
t∈T

vtat

for some assignment t 7→ vt with domain T and with values in X.

This is a convenient notation when there is no natural way to order the
elements of T . This even makes good sense for an infinite T in which case
the maps necessarily have the domain

(2.24) IFT
0 := {a ∈ IFT : #{t ∈ T : at ̸= 0} <∞}.

A special case occurs with T ⊂ X and the choice vt = t, all t ∈ T , in
which case the following notation is convenient:

(2.25) [T ] : IFT
0 → X : a 7→

∑
t∈T

tat.
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The linear equation A? = y, and ranA and nullA

We are ready to recognize and use the fact that the general system

(2.26)

a11x1 + a12x2 + · · ·+ a1nxn = y1

a21x1 + a22x2 + · · ·+ a2nxn = y2

...

am1x1 + am2x2 + · · ·+ amnxn = ym

of m linear equations in the n unknowns x1, . . . , xn is equivalent to the vector
equation

Ax = y,

provided

A :=


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , x := (x1, x2, . . . , xn), y := (y1, y2, . . . , ym).

Here, equivalence means that the entries x1, . . . , xn of the n-vector x solve
the system of linear equations (2.26) if and only if x solves the vector equation
A? = y. This equivalence is not only a notational convenience. Switching
from (2.26) to A? = y is the conceptual shift that started Linear Algebra. It
shifts the focus, from the scalars x1, . . . , xn, to the vector x formed by them,
and to the map A given by the coefficients in (2.26), its range and nullspace
(about to be defined), and this makes for simplicity, clarity, and generality.

To stress the generality, we now give a preliminary discussion of the
equation

A? = y

in case A is a linear map, from the vector space X to the vector space Y say,
with y some element of Y .

Existence of a solution for every y ∈ Y is equivalent to having A be
onto, i.e., to having ranA = Y . The check whether A is onto is made easier
to answer if we happen to know an onto column map [v1, . . . , vm] = V ∈
L(IFm, Y ). For, then we only have to check that the finitely many columns,
v1, . . . , vm, of V are in ranA. Indeed, if some are not in ranA, then, surely,
A is not onto. However, if they all are in ranA, then also ranV ⊂ ranA
by (2.7) and (2.19)Proposition, hence Y = ranV ⊂ ranA ⊂ tarA = Y , i.e.,
ranA = Y , i.e., A is onto.

(2.27) Proposition: If Y is the range of the column map V , then
A ∈ L(X,Y ) is onto if and only if the finitely many columns of V are in
ranA.
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Uniqueness of a solution for every y ∈ Y is equivalent to having A be
1-1, i.e., to have Ax = Az imply that x = z. For a linear map A : X → Y ,
we have Ax = Az if and only if A(x − z) = 0. In other words, if y = Ax,
then

(2.28) A−1{y} = x+ {z ∈ X : Az = 0}.

In particular, A is 1-1 if and only if {z ∈ X : Az = 0} = {0}. Therefore, to
check whether a linear map is 1-1, we only have to check whether it is 1-1
‘at’ one particular point, e.g., ‘at’ 0. For this reason, the set A−1{0} = {z ∈
X : Az = 0} of all elements of X mapped by A to 0 is singled out.

(2.29) Definition: The set

nullA := {z ∈ domA : Az = 0}

is called the nullspace or kernel of the linear map A.

(2.30) A linear map is 1-1 if and only if its nullspace is trivial, i.e.,
contains only the zero vector.
The nullspace of a linear map is a linear subspace (of its target).

Indeed, if A is a linear map and Z := nullA, then A(Z + Z) = A(Z) +
A(Z) = {0}+ {0} = {0} and A(IFZ) = IFA(Z) = IF{0} = {0}.

Almost all linear subspaces you will meet will be of the form ranA or
nullA for some linear map A. These two ways of specifying a linear subspace
are very different in character.

If we are told that our linear subspace Z of X is of the form nullA, for
a certain linear map A on X, then we know, offhand, exactly one element
of Z for sure, namely the element 0 which lies in every linear subspace. On
the other hand, it is easy to test whether a given x ∈ X lies in Z = nullA:
simply compute Ax and check whether it is the zero vector.

If we are told that our linear subspace Z of X is of the form ranA for
some linear map A from some U into X, then we can ‘write down’ explicitly
every element of ranA: they are all of the form Au for some u ∈ domA.
On the other hand, it is much harder to test whether a given x ∈ X lies
in Z = ranA: Now we have to check whether the equation A? = x has a
solution (in U).
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As a simple example, the vector space Π≤k of all polynomials of degree
≤ k is usually specified as the range of the column map

[()0, ()1, . . . , ()k] : Rk+1 → RR,

with
()j : R→ R : t 7→ tj

a convenient (though nonstandard!) notation for the monomial of degree
j, i.e., as the collection of all real-valued functions that are of the form

t 7→ a0 + a1t+ · · ·+ akt
k

for some coefficient-vector a. On the other hand, Π≤k can also be defined as
nullDk+1, i.e., as the collection of all real-valued functions that are (k + 1)-
times continuously differentiable and have their (k+1)st derivative identically
zero.

(2.31) Remark: The nullspace nullA of the linear map A : X → Y
consists exactly of the solutions to the homogeneous equation

A? = 0.

The linear equation A? = y is readily associated with a homogeneous linear
equation, namely the equation

[A, y]? = 0,

with
[A, y] : X × IF : (z, α) 7→ Az + yα.

If Ax = y, then (x,−1) is a nontrivial element of null[A, y]. Conversely, if
(z, α) ∈ null[A, y] and α ̸= 0, then z/(−α) is a solution to A? = y. Hence, for
the construction of solutions to linear equations, it is sufficient to know how
to solve homogeneous linear equations, i.e., how to construct the nullspace of
a linear map.

2.22 What can you conclude about the linear system A? = y if all the elements of
null[A, y] are of the form [z, α] with α = 0?

2.23 For each of the following three systems of linear equations, determine A and y
of the equivalent vector equation A? = y.

(a)
2x1 − 3x2 = 4
4x1 + 2x2 = −6

; (b)
2u1 − 3u2 = 4
4u1 + 2u2 = −6

; (c)
−4c = 16

2a + 3b = 9
.

2.24 For each of the following A and y, write out a system of linear equations
equivalent to the vector equations A? = y.

(a) A =

[
2 3
6 4
π −2

]
, y = (9,−

√
3, 1); (b) A =

[
1 2 3 4
4 3 2 1

]
, y = (10, 10);

(c) A = [ ] ∈ R0×3, y = () ∈ R0.

2.25∗ Prove: (i) for any A,B ∈ L(X), nullA ∩ nullB ⊂ null(A + B). (ii) for any

A,B ∈ L(X) with AB = BA, nullA+ nullB ⊂ null(AB).
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Inverses

We have agreed to think of the matrix A ∈ IFm×n as the column map
[A::1, . . . , A::n], i.e., as the linear map

IFn → IFm : a 7→ Aa :=
∑
j

A::jaj .

For this reason, it is also customary to refer to ranA of a matrix A as the
column space of that matrix, while the range ranAt of its transpose is
known as its row space. Further, we have found (see (2.20)) that the matrix
product AB is also the composition A ◦B, i.e.,

(A ◦B)a = A(B(a)) = (AB)a =
∑
j

(AB)::jaj .

In these terms, the identity map idn on IFn corresponds to the identity
matrix [e1, e2, . . . , en], hence the name for the latter.

(2.32) Proposition: The inverse of a linear map is again a linear map.

Proof: Let A ∈ L(X,Y ) be invertible and y, z ∈ Y . By additivity
of A, A(A−1y+A−1z) = A(A−1y)+A(A−1z) = y+ z. Hence, applying A−1

to both sides, we get A−1y+A−1z = A−1(y+ z), thus A−1 is additive. Also,
from A(αA−1y) = αA(A−1y) = αy, we conclude that αA−1y = A−1(αy),
hence A−1 is homogeneous.

Thus, if A ∈ IFn×n is invertible (as a linear map from IFn to IFn), then
also its inverse is a linear map from IFn to IFn, hence a square matrix of
order n. We call it the inverse matrix for A, and denote it by A−1. Being
the inverse for A, it is both a right and a left inverse for A, i.e., it satisfies

A−1A = idn = AA−1.

More generally, we would call A ∈ IFm×n invertible if there were B ∈
IFn×m so that

AB = idm and BA = idn.

However, we will soon prove (cf. (3.24)Corollary) that this can only happen
when m = n.

This is related to the pigeonhole principle for square matrices (3.26)The-
orem, i.e., to the fact that a linear map from IFn to IFn is 1-1 if and only
if it is onto. This implies that if A,B ∈ IFn×n and, e.g., AB = idn, hence
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A is onto, then A must also be 1-1, hence invertible, and therefore its right
inverse must be its inverse, therefore we must also have BA = idn. In short:

(2.33) Amazing Fact: If A,B ∈ IFn×n and AB = idn, then also
BA = idn.

To me, this continues to be one of the most remarkable results in basic
Linear Algebra. Its proof uses nothing more than the identification of ma-
trices with linear maps (between coordinate spaces) and the realization (see
(3.13)Theorem) that if V is a 1-1 column map into the range of the column
map W , then #V ≤ #W .

In preparation for the chapter on Elimination, and as an exercise in
invertible matrices, we verify the following useful fact about elementary ma-
trices which is also useful for the proof of its generalization, the Sherman-
Morrison formula (see Problem 2.35).

(2.34) Proposition: For y, z ∈ IFn and α ∈ IF, the elementary matrix

Ey,z(α) = idn + αyzt

is invertible if and only if 1 + αzty ̸= 0, and, in that case

(2.35) Ey,z(α)
−1 = Ey,z(

−α
1 + αzty

).

Proof: We compute Ey,z(α)Ey,z(β) for arbitrary α and β. Since

αyzt βyzt = αβ (zty) yzt,

we conclude that

Ey,z(α)Ey,z(β) = ( idn + αyzt)( idn + βyzt) = idn + (α+ β + αβ(zty))yzt.

In particular, since the scalar factor (α+β+αβ(zty)) is symmetric in α and
β, we conclude that

Ey,z(β)Ey,z(α) = Ey,z(α)Ey,z(β).

Further, if 1 + αzty ̸= 0, then the choice

β :=
−α

1 + αzty

will give α+β+αβ(zty) = 0, hence Ey,z(β)Ey,z(α) = Ey,z(α)Ey,z(β) = idn.
This proves that Ey,z(α) is invertible, with its inverse given by (2.35).

Conversely, assume that 1 + αzty = 0. Then y ̸= 0, yet

Ey,z(α)y = y + α(zty)y = 0,

showing that Ey,z(α) is not 1-1 in this case, hence not invertible.
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2.26 Prove: If two matrices commute (i.e., AB = BA), then they are square matri-
ces, of the same order.

2.27 Give a noninvertible 2-by-2 matrix without any zero entries.

2.28 Prove that the matrix A :=

[
1 2
4 −1

]
satisfies the equation A2 = 9 id2. Use

this to show that A is invertible, and to write down the matrix A−1.

2.29 Prove: The matrix A :=

[
a b
c d

]
is invertible if and only if ad ̸= bc, in which

case

[
d −b
−c a

]
/(ad− bc) is its inverse.

2.30 Consider the map f : C → R2×2 : z = a+ ib 7→
[
a −b
b a

]
. Show that f is a 1-1

linear map when we think of C as a vector space over the real scalar field.

2.31 Let A,B ∈ L(X). Show that (AB)2 = A2B2 can hold without necessarily
having AB = BA. Show also that (AB)2 = A2B2 implies that AB = BA in case both A
and B are invertible.

2.32 Give an example of matrices A and B, for which both AB and BA are defined
and for which AB = id, but neither A nor B is invertible.

2.33 Prove: If A and C are invertible matrices, and B has as many rows as does A
and as many columns as does C, then also [A,B; 0, C] is invertible and

[A,B; 0, C]−1 =

[
A B
0 C

]−1

=

[
A−1 −A−1BC−1

0 C−1

]
.

2.34∗ A square matrix A is called strictly diagonally dominant if, for all i,
|Aii| >

∑
j ̸=i

|Aij |. Prove: a strictly diagonally dominant matrix is invertible. (Hint:

Prove the contrapositive: if 0 ̸= x ∈ nullA, then, for some i, |Aii| ≤
∑

j ̸=i
|Aij |.)

2.35∗ Use (2.34)Proposition to prove the Sherman-Morrison Formula: If A ∈
Fn×n is invertible and y, z ∈ Fn are such that α := 1 + ztA−1y ̸= 0, then A + yzt is
invertible, and

(A+ yzt)−1 = A−1 − α−1A−1yztA−1.

(Hint: A+ yzt = A( id + (A−1y)zt).)

2.36 Prove the Woodbury generalization of the Sherman-Morrison Formula: If A
and id +DtA−1C are invertible, then so is A+ CDt, and

(A+ CDt)−1 = A−1 −A−1C( id +DtA−1C)−1DtA−1.

2.37 T/F

(a) If A ∈ L(X,Y ), then the set of solutions of A? = y is a linear subspace of X.

(b) Any column map having a 0 column fails to be 1-1.

(c) If the column map V is not 1-1, then one of its columns is 0.

(d) If Y1 and Y2 are linear subspaces of the vector space X, then so is Y1 ∪ Y2.

(e) If Y is a subset of some vector space X, x, y, z are particular elements of X, and x
and 2y − 3x are in Y , but 3y − 2x or y are not, then Y cannot be a linear subspace.

(f) If A,B ∈ L(X,Y ) are both invertible, then so is A+B.

(g) If AB = 0 for A,B ∈ Fn×n, then B = 0.

(h) If A and B are matrices with AB = idm and BA = idn, then B = A−1.

(i) If A =

[
B C
0 0

]
with both A and B square matrices and 0 standing for zero matrices

of the appropriate size, then An =

[
Bn Bn−1C
0 0

]
for all n.
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(j) If A ∈ Rm×n and AtA = 0, then A = 0.

(k) If the matrix product AB is defined, then (AB)t = AtBt.

(l) If A is an invertible matrix, then so is At, and (At)−1 = (A−1)t.

(m)

[
1 0 0
0 1 1
0 0 1

]
is an elementary matrix.

(n) If the scalar field F were not commutative, then the map Fn → Fn : x 7→ αx, of
multiplication by the scalar α, would not be linear.



3 The dimension of a vector space

Bases

The only vector spaces in which we can carry out calculations are the coor-
dinate spaces IFn. To calculate with other vector spaces, we have to relate
them first to some coordinate space. This is true even when X is a proper
subspace of IFn, e.g., the nullspace of some matrix.

For example, we do not really compute with polynomials, we usually
compute with the coefficients of the polynomial. Precisely (see (3.38)Propo-
sition), one sets up the invertible linear map

IFn → Π<n : a 7→ a1 + a2t+ a3t
2 + · · ·+ ant

n−1

where I have, temporarily, followed the (ancient and sometimes confusing)
custom of describing the monomials by the list of symbols ( , t, t2, t3, . . .)
rather than by the nonstandard symbols ()j , j = 0, 1, 2, 3, . . . introduced
earlier. One adds polynomials by adding their coefficients, or evaluates poly-
nomials from their coefficients, etc. . You may be so used to that, that you
haven’t even noticed until now that you do not work with the polynomials
themselves, but only with their coefficients.

It is therefore a practically important goal to provide ways of represent-
ing the elements of a given vector space X by n-vectors. We do this by using
linear maps from some IFn that have X as their range, i.e., we look for se-
quences v1, v2, . . . , vn in X for which the linear map [v1, v2, . . . , vn] : IF

n → X
is onto. If there is such a map for some n, then we callX finitely generated.

Among such onto maps V ∈ L(IFn, X), those that are also 1-1, hence
invertible, are surely the most desirable ones since, for such V , there is, for
any x ∈ X, exactly one a ∈ IFn with x = V a. Any invertible column map to
X is, by definition, a basis for X.

47
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Since idn ∈ L(IF
n) is trivially invertible, it is a basis for IFn. It is called

the natural basis for IFn.

Here is a small difficulty with this (and any other) definition of basis:
What is the basis of the trivial space, i.e., the vector space that consists
of the zero vector alone? It is a perfectly well-behaved vector space (though
a bit limited – except as a challenge to textbook authors when it comes to
discussing its basis).

We deal with it here by considering V ∈ L(IFn, X) even when n = 0.
Since IFn consists of lists of n items (each item an element from IF), the
peculiar space IF0 must consist of lists of no items, i.e., of empty lists. There
is only one empty list (of scalars), hence IF0 has just one element, the empty
list, ( ), and this element is necessarily the neutral element (or, zero vector)
for this space, i.e., 0 = (). Correspondingly, there is exactly one linear map
from IF0 into X, namely the map IF0 → X : () 7→ 0. Since this is a linear
map from IF0, we call it the column map into X with no columns or the
empty column map, and denote it by [ ]. Thus,

(3.1) [ ] : IF0 → X : () = 0 7→ 0.

Note that [ ] is 1-1. Note also that the range of [ ] consists of the trivial sub-
space, {0}. In particular, the column map [ ] is onto {0}, hence is invertible,
as map from IF0 to {0}. It follows that [ ] is a basis for {0}. Isn’t Mathematics
wonderful?! – As it turns out, the column map [ ] will also be very helpful
below.

Here are some standard terms related to bases of a vector space:

Definition: The range of V := [v1, v2, . . . , vn] is called the span of the
sequence v1, v2, . . . , vn:

span(v1, v2, . . . , vn) := ranV.

An element x of X is said to be linearly dependent on v1, v2, . . . , vn
in case x ∈ ranV , i.e., in case x is a linear combination of the vj .
Otherwise x is said to be linearly independent of v1, v2, . . . , vn.

The sequence v1, v2, . . . , vn is said to be linearly independent in
case V is 1-1, i.e., in case V a = 0 implies a = 0 (i.e., the only way to
write the zero vector as a linear combination of the vj is to choose all
the weights equal to 0).

The sequence v1, v2, . . . , vn is said to be spanning for X in case
V is onto, i.e., in case span(v1, v2, . . . , vn) = X.
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The sequence v1, v2, . . . , vn is said to be a basis for X in case V is
invertible, i.e., 1-1 and onto.

If V is invertible, then V −1x is an n-vector, called the coordinate
vector for x with respect to the basis v1, v2, . . . , vn.

You may wonder why there are all these terms in use for the sequence
v1, v2, . . . , vn, particularly when the corresponding terms for the map V =
[v1, v2, . . . , vn] are so much shorter and to the point. I don’t know the an-
swer. However, bear in mind that the terms commonly used are those for
sequences. An even greater puzzle is the fact that many textbooks present
bases as sets rather than sequences. At least, that is what they say. But,
not surprisingly, whenever there is some action involving a basis, the basis is
written {v1, . . . , vn}, i.e., as a sequence in everything but in name. It is for
you to ask such authors whether {3, 3} is a basis for R1 = R. They will say
that it is not even though it is since, after all, 3 = 3, hence {3, 3} = {3}.

A major use of the basis concept is the following which generalizes the
way we earlier constructed arbitrary linear maps from IFn.

(3.2) Proposition: Let V = [v1, . . . , vn] be a basis for the vector space
X, and let Y be an arbitrary vector space. Any map f : {v1, . . . , vn} →
Y has exactly one extension to a linear map A from X to Y . In other
words, we can choose the values of a linear map on the columns of a basis
arbitrarily and, once chosen, this pins down the linear map everywhere.

Proof: The map A := [f(v1), . . . , f(vn)]V
−1 is linear, from X to Y ,

and carries vj to f(vj) since V
−1vj = ej , all j. This shows existence. Further,

if also B ∈ L(X,Y ) with Bvj = f(vj), all j, then BV = [f(v1), . . . , f(vn)] =
AV , therefore B = A (since V is invertible).

3.1 Prove that the linear map S := [en, en−1, . . . , e1] ∈ L(Fn) reverses the order of
the entries of an n-vector, i.e., Sx = (xn, xn−1, . . . , x1), hence is its own inverse.

3.2 Describe what the n × n-matrix A =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 0

 does to all the

vectors ej , i.e., give a simple formula for Aej . Deduce from your formula that ranAn =
{0}, hence that An = 0.

3.3 Prove: A ∈ L(X) commutes with every B ∈ L(X) if and only if A = α idX , i.e.,
A is a scalar multiple of the identity.

3.4 Let X × Y be the product space of the vector spaces X and Y . The map f :
X×Y → F is bilinear if it is linear in each slot, i.e., if the map f(·, y) : X 7→ F : x 7→ f(x, y)
is linear for every y ∈ Y , and the map f(x, ·) : Y → F : y 7→ f(x, y) is linear for every
x ∈ X. (This use of · is known as placeholder notation.)
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(i) Prove that, for every A ∈ Fm×n, the map fA : Fm × Fn : (x,y) 7→ ytAx is bilinear.

(ii) Prove that, for every bilinear f : Fm × Fn → F, there exists exactly one A ∈ Fm×n

with fA = f .

(iii) Prove that the map A 7→ fA is an invertible linear map on Fm×n to the vector space
BL(Fm,Fn) of all bilinear maps on Fm × Fn under pointwise vector operations.

3.5 MATLAB’s command yy = interp1(x,y,xx,’spline’) returns the value(s) at xx of
a certain function f that matches the data given by x, y, in the sense that f(x(i)) = y(i)
for i=1:n, with n the length of both x and y (and assuming that the entries of x are
pairwise distinct). (If you wanted to look at f on the interval [a . . b], you might choose xx
= linspace(a,b,N+1); with N some suitably large number, and then plot(xx,yy).)

(a) Generate some numerical evidence for the claim that (up to roundoff) the map y 7→ f
provided by this command is linear.

(b) Assuming that the map is linear, deduce from the above description of the map that
it must be 1-1, hence a basis for its range.

(c) Still assuming that the map y 7→ f provided by that command is indeed linear, hence
a column map, provide a plot of each of its columns, as functions on the interval
[0 . . 3], for the specific choice 0:3 for x.

(d) (quite open-ended) Determine as much as you can about the elements of the range
of this column map.

(e) Is the map still linear if you replace ’spline’ by ’cubic’?

Construction of a basis

Next, we consider the construction of a basis. This can be done either by
extending a 1-1 column map V to a basis, or by thinning an onto column
map W to a basis. For this, remember that, for two column maps V and
W into some vector space X, we agreed to mean by V ⊂ W that V can be
obtained from W by thinning, i.e., by omitting zero or more columns from
W , and W can be obtained from V by extending, i.e., by inserting zero or
more columns.

Thinning an onto map to a basis is based on the following observation.

(3.3) Proposition: The column map W = [w1, w2, . . . , wn] fails to
be 1-1 if and only if, for some j, wj ∈ ran[wi : i ̸= j], in which case
ranW = ran[wi : i ̸= j].

Proof: If W is not 1-1, then there is some nontrivial n-vector a in
its nullspace, and then

(3.4) [wi : i ̸= j]an\j =
∑
i ̸=j

wiai = −ajwj

for every j ∈ n. Since a ̸= 0, there is some j for which aj ̸= 0, hence we can
divide both sides of (3.4) by −aj to get that wj ∈ ran[wi : i ̸= j]. Conversely,
if wj ∈ ran[wi : i ̸= j], i.e., if wj = [wi : i < j]b + [wi : i > j]c, then the
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n-vector a := (b,−1, c) is a nontrivial vector in nullW , i.e., W fails to be
1-1.

Finally, if wj = [wi : i ̸= j]b, then

∀a ∈ IFn, Wa = [wi : i ̸= j]ai ̸=j + aj [wi : i ̸= j]b ∈ ran[wi : i ̸= j],

hence ranW ⊆ ran[wi : i ̸= j] ⊆ ranW .

In thinning out an onto column map, it turns out to be more convenient
to focus on columns that are in the span of the columns to their left.

(3.5) Definition: We say that the jth column of the column map
V = [v1, v2, . . . , vn] is free in case vj ∈ ran[vi : i < j]. Otherwise, we
call the jth column bound.

For example, since ran [ ] = {0}, the first column of a column map is
free if and only if it is 0. The practical determination of the bound and free
columns is taken up in the next chapter, in the discussion of elimination, the
algorithm that gave rise to this terminology.

The proof of (3.3)Proposition also proves the following three propositions
if we add the observation that every nonzero n-vector has a rightmost nonzero
entry.

(3.6) Proposition: The kth column of the column map V is free if and
only there exists x ∈ nullV with xk its rightmost nonzero entry.

(3.7) Proposition: A column map fails to be 1-1 if and only if it has
free columns.

(3.8) Proposition: If U is the map obtained from V = [v1, v2, . . . , vn]
by deleting a free column, then ranU = ranV .
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The last two propositions have the following

(3.9) Corollary: Any column map can be thinned to a basis for its
range.

Indeed, if U is the column map obtained from V by removing all free
columns, then ranU = ranV by (3.8)Proposition, while, by (3.7)Proposition,
U is 1-1.

Now note that the classification of a column as free or bound depends
entirely on the columns to its left. In fact, by (3.8)Proposition, it depends
only on the bound columns to its left. Hence, removal of a free column will not
alter the classification of the remaining columns. In particular, the order in
which we remove free columns to thin an onto map V to a basis is immaterial.
The resulting basis for ranV will consist of the bound columns of V (in their
original order). This proves the following strengthening of (3.9)Corollary.

(3.10) The bound columns of a column map form a basis for its range.

(3.11) Corollary: Every 1-1 column map into a finitely generated
vector space can be extended to a basis for that space.

Indeed, if V is a 1-1 column map into X = ranW for some column map
W , then also ran[V,W ] = X, and since V is 1-1, all of its columns are bound
in [V,W ], hence, by (3.10), for some U ⊂W , [V,U ] is a basis for X.

A more careful argument along these lines gives the following.

(3.12) Steinitz Exchange: If V is a 1-1 column map into the range
of a column map W , then there exists a column map U ⊂ W with
#U = #W −#V for which ran[V,U ] = ranW .

Proof: By induction on #V : If #V = 0, then the conclusion follows
from (3.9)Corollary. In the contrary case, let v be the last column of V , i.e.,
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V =: [V1, v]. Then, by induction, there is U1 ⊂ W with #U1 = #W −#V1
so that ran[V1, U1] = ranW . Since v ∈ ranW = ran[V1, U1], it follows
from (3.3)Proposition that [V1, v, U1] has a nontrivial nullspace, hence, by
(3.7)Proposition, one of its columns must be free, yet [V1, v] is 1-1, hence a
free column must occur in U1 and, dropping one such, we obtain from U1

the column map U ⊂ U1 ⊂ W with #U = #U1 − 1 = #W − (#V1 + 1) =
#W − #V and ran[V,U ] = ranW by (3.7)Proposition, thus advancing the
induction.

(3.13) Theorem: If V and W are column maps into the vector space
X and V is 1-1 and W is onto, then #V ≤ #W .

Proof: By (3.12), there exists U ⊂ W with 0 ≤ #U = #W −#V .

3.6∗ Prove: If V is maximally 1-1 into X, meaning that [V,w] fails to be 1-1 for
every w ∈ X, then V is a basis for X.

3.7∗ Prove: If W is minimally onto X, meaning that no V ⊂ W (other than W

itself) is onto X, then W is a basis for X.

Dimension

Since two bases of a vector space are both 1-1 and onto, (3.13)Theorem
implies the following.

(3.14) Lemma: Any two bases for a vector space have the same number
of columns.

This number of columns in any basis for X is denoted

dimX

and is called the dimension of X.

Since idn is a basis for IFn and has n columns, we conclude that the n-
dimensional coordinate space has, indeed, dimension n. In effect, IFn is the
prototypical vector space of dimension n. Any n-dimensional vector space X
is connected to IFn by invertible linear maps, the bases for X.

Note that the trivial vector space, {0}, has dimension 0 since its (unique)
basis has no columns.
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(3.15) Example: The dimension of Π≤k(Rd). The space Π≤k(Rd)
of d-variate polynomials of degree ≤ k is, by definition, the range of the
column map

V := [()ααααα : |ααααα| ≤ k] : IF{ααααα:|ααααα|≤k} → (Rd → R) : a 7→
∑
|ααααα|≤k

()αααααaααααα,

with
()ααααα : Rd → R : t 7→ tααααα := tα1

1 · · · t
αd

d

a nonstandard notation for the ααααα-power function, with ααααα ∈ Zd
+, i.e., ααααα any

d-vector with nonnegative integer entries, and with |ααααα| :=
∑

j αj .

When d = 1, then V can be seen to be 1-1, hence a basis for Π≤k(R),
by considering the ‘data map’

Q : Π≤k → Rk+1 : p 7→ (p(0), Dp(0), D2p(0)/2, . . . , Dkp(0)/k!),

for which we have QV = id, hence V is 1-1.

An analogous argument, involving the ‘data map’

p 7→ (Dαααααp(0)/ααααα! : ααααα ∈ Zd
+, |ααααα| ≤ k),

with ααααα! := α1! · · ·αd!, shows that

dimΠ≤k(Rd) = #{ααααα ∈ Zd
+ : |ααααα| ≤ k},

and the latter number can be shown (see Problem 3.9) to equal
(
k+d
d

)
.

3.8 Prove that the space Π<3(R2) of bivariate polynomials of total degree < 3 has
dimension 6.

3.9∗ Verify that #{ααααα ∈ Zd
+ : |ααααα| ≤ k} =

(
k+d
d

)
=
(
k+d
k

)
. (Hint:

(
s
t

)
is the number

of t-subsets of an s-set.)

3.10 Prove that a vector space of dimension n has subspaces of dimension j for each

j = 0, 1, . . . , n.

The dimension of IFT

Recall from (2.2) that IFT is the set of all scalar-valued maps on the set T ,
with the set T , offhand, arbitrary.

The best known instance is n-dimensional coordinate space

IFn := IFn,

with T = n := {1, 2, . . . , n}. The vector space IFm×n of all (m× n)-matrices
is another instance; here T = m× n := {(i, j) : i ∈ m, j ∈ n}.
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(3.16) Proposition: If T is a finite set, then dim IFT = #T .

Proof: Since T is finite, #T =: n say, we can order its elements, i.e.,
there is an invertible map s : n→ T (in fact, there are n! = 1 · 2 · · ·n such).
This induces the map

V : IFn → IFT : f 7→ f ◦ s−1

which is linear (since, in both spaces, the vector operations are pointwise),
and is invertible since it has

IFT → IFn : g 7→ g ◦ s
as its inverse. Hence, V is a basis for IFT (a natural basis).

Note how we managed this without even exhibiting the columns of V .
To be sure, the jth column V is the function vj : T → IF : sk 7→ δkj that
maps sj to 1 and maps any other t ∈ T to 0.

(3.17) Corollary: dim IFm×n = mn.

Proof: In this case, IFm×n = IFT with T = m × n := {(i, j) : i ∈
m; j ∈ n}, hence #T = mn.

3.11∗ Prove that [eiej
t : ei ∈ Fm, i = 1:m; ej ∈ Fn, j = 1:n] is a basis for

L(Fn,Fm).

3.12 Prove: The dimension of the vector space of all upper triangular matrices of

order n is (n+ 1)n/2.

Some uses of the dimension concept

Here is a major use of the dimension concept as it relates to vector spaces.

(3.18) Proposition: If X and Y are vector spaces with X ⊂ Y and
dimY <∞, then dimX ≤ dimY , with equality iff X = Y .

Proof: Since there is some 1-1 column map into X (e.g., the unique
linear map from IF0 into X), while dimY is an upper bound on the number
of columns in any 1-1 column map into X ⊂ Y (by (3.11)Corollary), there
exists a maximally 1-1 column map V into X. By Problem 3.6, any such V is
necessarily a basis for X, hence X is finitely generated. By (3.11)Corollary,
we can extend V to a basis [V,W ] for Y . Hence, dimX ≤ dimY with equality
iff W = [ ], i.e., iff X = Y .



56 3 The dimension of a vector space

(3.19) Corollary: If #T ̸<∞, then IFT is not finite-dimensional.

Proof: For every finite S ⊂ T , IFT contains the linear subspace

{f ∈ IFT : f(t) = 0, all t ̸∈ S}

of dimension equal to dim IFS = #S by (3.16)Proposition. If #T ̸< ∞,
then T contains finite subsets S of arbitrarily large size, hence IFT contains
linear subspaces of arbitrarily large dimension, hence cannot itself be finite-
dimensional, by (3.18)Proposition.

Note the following important (nontrivial) part of (3.18)Proposition:

(3.20) Corollary: Any linear subspace of a finite-dimensional vector
space is finite-dimensional.

(3.21) Proposition: Let X and Y be vector spaces over IF, and assume
that X is finite-dimensional. Then dimX = dimY if and only if there
exists an invertible A ∈ L(X,Y ), i.e., iff X and Y are isomorphic.

Proof: Let n := dimX. Since n < ∞, there exists an invertible
V ∈ L(IFn, X) (i.e., a basis for X). If now A ∈ L(X,Y ) is invertible, then
AV is an invertible linear map from IFn to Y , hence dimY = n = dimX.
Conversely, if dimY = dimX, then there exists an invertible W ∈ L(IFn, Y );
but then WV −1 is an invertible linear map from X to Y .

(3.22) Corollary: dimL(X,Y ) = dimX · dimY .

Proof: Assuming that n := dimX and m := dimY are finite, we
can represent every A ∈ L(X,Y ) as a matrix Â := W−1AV ∈ IFm×n, with
V a basis for X and W a basis for Y . This sets up a map

R : L(X,Y )→ IFm×n : A 7→ Â =W−1AV,

and this map is linear and invertible (indeed, its inverse is the map IFm×n →
L(X,Y ) : B 7→ WBV −1). Consequently, by (3.21)Proposition, L(X,Y ) and
IFm×n have the same dimension while, by (3.17)Proposition, dim IFm×n =
mn = dimX · dimY .
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The dimension concept is usually applied to linear maps by way of the
following formula.

(3.23) Dimension Formula: For any linear map A with finite-dimens-
ional domain,

dimdomA = dim ranA+ dimnullA.

Proof: Since domA is finite-dimensional, so is nullA (by (3.20)
Corollary), hence nullA has a basis, V ∈ L(IFn, nullA) say. By (3.11)Corol-
lary, we can extend this to a basis [V,U ] for domA. Let r := #U . Then,
[V,U ] is invertible and dimdomA− dimnullA = (n+ r)− n = r.

It remains to prove that dim ranA = r. For this, we prove that AU :
IFr → ranA is invertible.

Since A[V,U ] = [AV,AU ] maps onto ranA and AV = 0, already AU
must map onto ranA, i.e., AU is onto.

Moreover, AU is 1-1: For, if AUa = 0, then Ua ∈ nullA, hence, since
V maps onto nullA, there is some b so that Ua = V b. This implies that
[V,U ](b,−a) = 0 and, since [V,U ] is 1-1, this shows that, in particular,
a = 0.

3.13 Prove: If the product AB of the two linear maps A and B is defined, then
dim ran(AB) ≤ min{dim ranA, dim ranB}.

3.14 Prove: If the product AB of the two linear maps A and B is defined, then
dim ran(AB) = dim ranB − dim(nullA ∩ ranB).

3.15 Give an example, of two square matrices A and B, that shows that dim ran(AB)

need not equal dim ran(BA) when both AB and BA are defined.

(3.24) Corollary: Let A ∈ L(X,Y ).
(i) If dimX < dimY , then A cannot be onto.
(ii) If dimX > dimY , then A cannot be 1-1.
(iii) If dimX = dimY <∞, then A is onto if and only if A is 1-1. (This
implies (2.33)!)

Proof: (i) dim ranA ≤ dimdomA = dimX < dimY = dim tarA,
hence ranA ̸= tarA.

(ii) dimnullA = dimdomA−dim ranA = dimX−dim ranA ≥ dimX−
dimY > 0, hence nullA ̸= {0}.

(iii) If dimX = dimY , then dim tarA = dimdomA = dim ranA +
dimnullA, hence A is onto (i.e., tarA = ranA) if and only if dimnullA = 0,
i.e., A is 1-1.
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For the special choice X = IFn, Y = IFm, (3.24)Corollary provides the
following important matrix theorems.

(3.25) Theorem: Any matrix with more columns than rows has a
nontrivial nullspace.

(3.26) Theorem (Pigeonhole Principle For Square Matrices): A
square matrix is 1-1 if and only if it is onto.

For the next general result concerning the dimension concept, recall from
(2.5)Proposition that both the sum

Y + Z := {y + z : y ∈ Y, z ∈ Z}

and the intersection Y ∩Z of two linear subspaces is again a linear subspace.

(3.27) Proposition: If Y and Z are linear subspaces of the finite-
dimensional vector space X, then

(3.28) dim(Y + Z) = dimY + dimZ − dim(Y ∩ Z).

Proof: Consider the column map A := [U,W ] with U a basis for Y
and W a basis for Z. Since dimdomA = #U +#W = dimY + dimZ and
ranA = Y +Z, the formula (3.28) follows from the (3.23)Dimension Formula,
once we show that dimnullA = dim(Y ∩ Z).

For this, consider the map Y ∩ Z → nullA : x 7→ (U−1x,−W−1x). The
map is into nullA, linear, and 1-1, and is onto since it is a left inverse for
the linear map nullA → Y ∩ Z : (a,b) 7→ Ua(= −Wb). Therefore, by
(3.21)Proposition, dim(Y ∩ Z) = dimnullA.

Here are three corollaries of this basic proposition of use in the sequel.

(3.29) Corollary: If [V,W ] is 1-1, then ranV ∩ ranW is trivial.
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Indeed, then dim(ranV +ranW ) = #V +#W = dim ranV +dim ranW .

(3.30) Corollary: If dimY +dimZ > dimX for some linear subspaces
Y and Z of the finite-dimensional vector space X, then Y ∩ Z is a
nontrivial linear subspace, i.e., Y ∩ Z contains nonzero elements.

Indeed, dim(Y + Z) ≤ dimX since Y + Z is a linear subspace of X.

(3.31) Corollary: If Y and Z are linear subspaces of the finite-dimens-
ional vector space X, and Y ∩ Z = {0}, then

dimY + dimZ = dim(Y + Z) ≤ dimX,

with equality if and only if X = Y +Z, in which case dimZ = dimX −
dimY =: codimY is called the codimension of Y (in X).

3.16 For each of the following linear maps, determine its range and its nullspace.
Make as much use of the (3.23)Dimension Formula as possible. (You may, if need be,
use the fact that, by (3.38)Proposition, Vk := [()0, ()1, . . . , ()k] is a basis for Π≤k.) (a)
D : Π≤k → Π<k : p 7→ Dp, with Dp the first derivative of p. (b) I : Π<k → Π≤k :

p 7→
∫ ·
0
p(s) ds, i.e., Ip is the primitive or antiderivative of p that vanishes at 0, i.e.,

(Ip)(t) =
∫ t

0
p(s) ds. (c) A : Π≤k → Π≤k : p 7→ Dp+ p.

3.17 Prove that V := [()0, ()1, ()2−1, 4()3−3()1, 8()4−8()2+1] is a basis for Π<5.

3.18 Prove: For any finite-dimensional linear subspace Y of the domain of a linear
map A, dimA(Y ) ≤ dimY .

3.19∗ Prove: If V and W are 1-1 column maps into the vector space X, then ranV
and ranW have a nontrivial intersection if and only if [V,W ] is not 1-1.

3.20 Call (Y0, . . . , Yr) a proper chain in the vector space X if each Yj is a subspace
and Y0 ⊆′ Y1 ⊆′ · · · ⊆′ Yr. Prove that, for any such proper chain, r ≤ dimX, with equality

if and only if dimYj = j, j = 0:(dimX).

3.21 Prove: For any A ∈ L(X,Y ) and any linear subspace Z of X, dimA(Z) =
dimZ − dim(Z ∩ (nullA)).

3.22 The defect of a linear map is the dimension of its nullspace: defect(A) :=
dimnullA. (a) Prove that defect(B) ≤ defect(AB) ≤ defect(A) + defect(B). (b) Prove: If
dimdomB = dimdomA, then also defect(A) ≤ defect(AB). (c) Give an example of linear
maps A and B for which AB is defined and for which defect(A) > defect(AB).

3.23 Let A ∈ L(X,Y ), B ∈ L(X,Z), with Y finite-dimensional. Prove: There exists
C ∈ L(Z, Y ) with A = CB if and only if nullB ⊂ nullA.

3.24 Prove: Assuming that the product ABC of three linear maps is defined,
dim ran(AB) + dim ran(BC) ≤ dim ranB + dim ran(ABC).

3.25∗ Factor space: Let Y be a linear subspace of the vector space X and consider
the collection

X/Y := {x+ Y : x ∈ X}
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of subsets of X, with
x+ Y := {x}+ Y = {x+ y : y ∈ Y }.

(i) Prove that the map
f : X → X/Y : x 7→ x+ Y

is linear with respect to the addition

M +N := {m+ n : m ∈ M,n ∈ N}

and the multiplication by a scalar

αM :=

{
{αm : m ∈ M}, if α ̸= 0;
Y, if α = 0,

and has Y as its nullspace.

(ii) Prove that, with these vector operations, X/Y is a linear space. (X/Y is called a
factor space.)

(iii) Prove that dimX/Y = codimY in case X is finite-dimensional.

Direct sums

A very useful coarsening of the basis concept concerns the sum of subspaces.

Let Y1, . . . , Yr be linear subspaces of the vector space X, let Vj be a
column map onto Yj , all j, and consider the column map

V := [V1, . . . , Vr].

To be sure, we could have also started with some arbitrary column map V
into X, arbitrarily grouped its columns to obtain V = [V1, . . . , Vr], and then
defined Yj := ranVj , all j.

Either way, any a ∈ domV is of the form (a1, . . . ,ar) with aj ∈ domVj ,
all j. Hence

ranV = {V1a1 + · · ·+ Vrar : aj ∈ domVj , j ∈ r}
= {y1 + · · ·+ yr : yj ∈ Yj , j ∈ r} =: Y1 + · · ·+ Yr,

the sum of the subspaces Y1, . . . , Yr.

Think of this sum, as you may, as the range of the map

(3.32) A : Y1 × · · · × Yr → X : (y1, . . . , yr) 7→ y1 + · · ·+ yr.

Having this map A onto says that every x ∈ X can be written in the
form y1 + · · · + yr with yj ∈ Yj , all j. In other words, X is the sum of the
Yj . In symbols,

X = Y1 + · · ·+ Yr.

Having A also 1-1 says that there is exactly one way to write each x ∈ X as
such a sum. In this case, we write

X = Y1 +̇ · · · +̇Yr,
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and say that X is the direct sum of the subspaces Yj . Note the dot atop
the plus sign, to indicate the special nature of this sum. Some books would
use instead the encircled plus sign, ⊕, but we reserve that sign for an even
more special direct sum in which the summands Yj are ‘orthogonal’ to each
other; see Chapter 6, on inner product spaces.

(3.33) Proposition: Let Vj be a basis for the linear subspace Yj of the
vector space X, j ∈ r, and set V := [V1, . . . , Vr]. Then, the following
are equivalent.

(i) X = Y1 +̇ · · · +̇Yr.

(ii) V is a basis for X.

(iii) X = Y1 + · · ·+ Yr and dimX ≥ dimY1 + · · ·+ dimYr.

(iv) For each j, Yj∩Y\j = {0}, with Y\j := Y1+· · ·+Yj−1+Yj+1+· · ·+Yr,
and dimX ≤ dimY1 + · · ·+ dimYr.

Proof: Since domV = domV1 × · · · × domVr, and Vj is a basis for
Yj , all j, the linear map

C : domV → Y1 × · · · × Yr : a = (a1, . . . ,ar) 7→ (V1a1, . . . , Vrar)

is invertible and V = AC, with A as given in (3.32). Hence, V is invertible
if and only if A is invertible. This proves that (i) and (ii) are equivalent.

Also, (ii) implies (iii). As to (iii) implying (ii), the first assumption of
(iii) says that V is ontoX, and the second assumption says that dimdomV =
#V ≤ dimX, hence V is minimally onto and therefore a basis for X.

As to (ii) implying (iv), the first claim of (iv) is a special case of
(3.29)Corollary, and the second claim is immediate.

Finally, as to (iv) implying (ii), assume that 0 = V a =
∑

j Vjaj . Then,
for any j, y := Vjaj = −

∑
i ̸=j Viai ∈ Yj ∩ Y\j , hence y = 0 by the first

assumption and, since Vj is a basis for Yj , hence 1-1, this implies that aj = 0.
In other words, V is 1-1, while, by the second assumption, #V =

∑
j dimYj ≥

dimX, hence V is maximally 1-1, therefore a basis for X.

(3.34) Corollary: If V is a basis for X, then, for any grouping V =:
[V1, . . . , Vr] of the columns of V , X is the direct sum of the linear sub-
spaces ranVj , j ∈ r.

One particular grouping is, of course, Vj = [vj ], all j, in which case each
Yj := ranVj is a one-dimensional linear subspace, i.e., a straight line through
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the origin, and we see X = ranV as the direct sum of these straight lines,
each of which we are accustomed to think of as a coordinate axis.

This is illustrated in (3.35)Figure for the special case ranV = R2, hence
V has just two columns. We see each x ∈ R2 written as the sum x = y1+y2,
with yj = ajvj ∈ Yj = ran[vj ] the Yj-component of x (and, of course,
a = (a1, a2) the coordinate vector of x with respect to the basis V ).

v1

x

y1

y2

v2

ran[v1]

ran[v2]

(3.35) Figure. A basis provides a coordinate system.

The direct sum construct is set up in just the same way, except that
the Yj may be planes or even higher-dimensional subspaces rather than just
straight lines.

3.26 When X is the direct sum of Y and Z, then Z is said to complement Y or to
be a complement of Y . With Y and Z linear subspaces of the finite-dimensional vector
space X, prove the following assertions concerning complements.

(i) Y has a complement.

(ii) If both Z and Z1 complement Y , then dimZ = dimZ1 = codimY . In particular,
codimY = dimX − dimY .

(iii) codim(Y + Z) = codimY + codimZ − codim(Y ∩ Z).

(iv) If Y has only one complement, then Y = {0} or Y = X.

(v) If codimY > dimZ, then Y + Z ̸= X.

(vi) If dimY > codimZ, then Y ∩ Z ̸= {0}.
3.27 Let (d1, . . . , dr) be a sequence of natural numbers, and letX be an n-dimensional

vector space. There exists a direct sum decomposition

X = Y1 +̇ · · · +̇Yr

with dimYj = dj , all j, if and only if
∑

j
dj = n.

3.28∗ Prove: If the vector space X is the direct sum of subspaces Xi, i ∈ r, with
each Xi the direct sum of subspaces Xij , j ∈ ri, then X is the direct sum of Xij , j ∈ ri,
i ∈ r.

3.29 Let d be any scalar-valued map, defined on the collection of all linear subspaces
of a finite-dimensional vector space X, that satisfies the following two conditions:
(i) Y ∩ Z = {0} =⇒ d(Y + Z) = d(Y ) + d(Z); (ii) dimY = 1 =⇒ d(Y ) = 1.
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Prove that d(Y ) = dimY for every linear subspace Y of X. Try to prove that, even
without the assumption (ii), d(Y ) = αdimY for some scalar α and all linear subspaces Y
of X.

3.30 Prove that the cartesian product Y1 × · · · × Yr of vector spaces, all over the
same scalar field F, becomes a vector space under pointwise or slotwise addition and
multiplication by a scalar.

This vector space is called the product space with factors Y1, . . . , Yr.

The only matrices whose invertibility can be ascertained at a glance

Here is an application of the pigeonhole principle for square matrices and
the fact that, by (3.7)Proposition, a column map is not 1-1 if and only if it
has a free column. The application concerns the invertibility of triangular
matrices.

(3.36) Proposition: A square triangular matrix is invertible if and
only if all its diagonal entries are nonzero.

Proof: Assume that the square matrix A is upper triangular, mean-
ing that i > j =⇒ Aij = 0. E.g.,

A =



∗ ∗ · · · ∗ ∗ · · · ∗ ∗
∗ · · · ∗ ∗ · · · ∗ ∗

. . .
...

...
...

...
...

∗ ∗ · · · ∗ ∗
Akk · · · ∗ ∗

· · · ∗ ∗
. . .

...
...

∗ ∗
∗


,

with only the possibly nonzero entries indicated.

If all its diagonal elements are nonzero, then none of its columns can be
free since, for each k, every element of ranA( : , 1:(k−1)) has a zero kth entry
while the kth entry of the kth column is nonzero, by assumption. Therefore,
by (3.7)Proposition, A is 1-1, hence invertible by the pigeonhole principle for
square matrices.

If, on the other hand, some diagonal element is zero, say Akk = 0, then
ranA( : , 1:k) ⊂ ran[e1, . . . , ek−1], a space of dimension k− 1, hence A( : , 1:k)
must fail to be 1-1 by (3.24)Corollary(ii), therefore A( : , 1:k) must have a free
column, hence A is not invertible.

Now notice that, with

S := [en, en−1, . . . , e1]
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the linear map that reverses the order of the entries of an n-vector, hence is
its own inverse, left and right multiplication by the invertible matrix S turns
a lower triangular matrix A into an upper triangle matrix, whose diagonal
entries are nonzero iff the diagonal entries of A are nonzero:

S

 3
∗ 2
∗ ∗ 1

S = S

 3
2 ∗

1 ∗ ∗

 =

 1 ∗ ∗
2 ∗

3

 .
Since SAS is invertible if and only if A is invertible, this proves that a lower
triangular matrix is invertible if and only if all its diagonal entries are nonzero.

Note that the same result holds concerning square matrices A that are
triangular with respect to the secondary diagonal, (An1, An−1,2, . . . , A1n),
as right or left multiplication by S turns these into upper triangular matrices
and its secondary diagonal entries into diagonal entries.

Polynomial interpolation

If V ∈ L(IFn, X) and Q ∈ L(X, IFn), then QV is a linear map from IFn to
IFn, i.e., a square matrix, of order n. If QV is 1-1 or onto, then (3.26)The-
orem tells us that QV is invertible. In particular, V is 1-1 and Q is onto,
and so, for every y ∈ IFn, there exists exactly one p ∈ ranV for which
Qp = y. This is the essence of interpolation, to be pursued further in the
discussion of the inverse of a basis, in Chapter 5. Here, we make use of the
preceding (3.36)Proposition in a discussion of the most important example
of interpolation.

(3.37) Example: Polynomial Interpolation Take X = RR, V =
[()0, ()1, . . . , ()k−1], hence ranV equals Π<k, the collection of all polynomials
of degree < k. Further, take Q : X → Rk : f 7→ (f(τ1), . . . , f(τk)) for some
fixed sequence (τ1, . . . , τk) of pairwise distinct points. Then the equation

QV ? = Qf

asks for the (power) coefficients of a polynomial of degree < k that agrees
with the function f at the k distinct points τ1, . . . , τk.

We investigate whether QV is 1-1 or onto, hence invertible. For this,
consider the matrix QW , with the columns of W := [w0, . . . , wk−1] the so-
called Newton polynomials

wj(t) := (t− τ1) · · · (t− τj), j = 0, 1, . . . ,

(with w0, as the empty product, equal to ()0). Observe that (QW )ij =
(Qwj−1)(τi) =

∏
0<h<j(τi − τh) = 0 if and only if i < j. Therefore, QW is
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square and lower triangular with nonzero diagonal entries, hence invertible
by (3.36)Proposition, while wj−1 is a polynomial of degree j − 1 < k, hence
wj−1 = V cj for some k-vector cj . It follows that the invertible matrix QW
equals

QW = [Qw0, . . . , Qwk−1] = [QV c1, . . . , QV ck] = (QV )[c1, . . . , ck].

In particular, QV is onto, hence invertible, hence also V is 1-1, therefore
invertible as a linear map from Rk to its range, Π<k. We have proved:

(3.38) Proposition: For every f : R → R and every k distinct points
τ1, . . . , τk in R, there is exactly one choice of coefficient vector a for
which the polynomial [()0, . . . , ()k−1]a of degree < k agrees with f at
these τj .

In particular, (i) the column map [()0, . . . , ()k−1] : Rk → Π<k is invert-
ible, and (ii) any polynomial of degree < k with more than k−1 distinct
zeros must be 0. (Do not confuse this simple result with the Funda-
mental Theorem of Algebra which asserts that every nonconstant
polynomial with complex coefficients has a zero.)

3.31∗ Prove that W := [w0, . . . , wk−1] is a basis for Π<k even if we drop the re-
quirement that the τi are pairwise distinct.

3.32 Assume that (τ1, . . . , τ2k+1) is nondecreasing. Prove that W = [w0, . . . , wk]
with wj : t 7→ (t− τj+1) · · · (t− τj+k) is a basis for Π≤k if and only if τk < τk+1.

3.33 (a) Construct the unique element of ran[()0, ()2, ()4] that agrees with ()1 at the
three points 0, 1, 2.

(b) Could (a) have been carried out if the pointset had been -1, 0, 1 (instead of 0, 1,
2)?

3.34 Let τ1 ̸= τ2. Prove that, for an arbitrary a ∈ R4, there exists exactly one cubic
polynomial p for which

(p(τ1), Dp(τ1), p(τ2), Dp(τ2)) = a.

(Hint: Try W := [()0, (· − τ1), (· − τ1)2, (· − τ1)2(· − τ2)].)

3.35 T/F

(a) If one of the columns of a column map is 0, then the map cannot be 1-1.

(b) If the column map V into Rn is 1-1, then V has at most n columns.

(c) If the column map V into Rn is onto, then V has at most n columns.

(d) If a column map fails to be 1-1, then it has a zero column.

(e) If a vector space has only one basis, then it must be the trivial space.

(f) If a column of a matrix A is free, then it cannot be part of a basis for ranA.



4 Elimination, or: The determination of

null A and ran A

Elimination and Backsubstitution

Elimination has as its goal an efficient description of the solution set for the
homogeneous linear system A? = 0, i.e., of the nullspace of the matrix A. It
identifies the free and bound columns of A, thereby (see (3.10)) also providing
a basis for ranA. Elimination is based on the following observation:

(4.1) Lemma: If B is obtained from A by subtracting some multiple
of some row of A from some other row of A, then nullB = nullA.

Proof: Assume, more specifically, that B is obtained from A by sub-
tracting α times row k from row i, for some k ̸= i. Then, by (2.21)Example,

B = Eei,ek
(−α)A,

with Eei,ek
(−α) = idm − αeiekt. Consequently, nullB ⊃ nullA, and this

holds even if i = k.

However, since i ̸= k, we have ek
tei = 0, hence, for any α, 1+α(ek

tei) =
1 ̸= 0. Therefore, by (2.34), also

Eei,ek
(α)B = A,

hence also nullB ⊂ nullA.

66



Elimination and Backsubstitution 67

One solves the homogeneous linear system A? = 0 by elimination. This
is an inductive process, and it results in a classification of the unknowns as free
or bound. A bound unknown has associated with it a pivot row or pivot
equation which determines this unknown uniquely once all later unknowns
are determined. Any unknown without a pivot equation is a free unknown;
its value can be chosen arbitrarily. We will show (see (4.7)) that (not sur-
prisingly) the jth column of A is bound (free) in the sense of (3.5)Definition
exactly when the jth unknown is bound (free). The classification proceeds
inductively, from the first to the last unknown or column, i.e., for k = 1, 2, . . .,
with the kth step as follows.

At the beginning of the kth elimination step, we have in hand a matrix

B, called the work-array, which is row-equivalent† to our initial matrix
A in the sense that nullB = nullA. Further, we have already classified
each of the first k − 1 unknowns as either bound or free, with each bound
unknown associated with a particular row of B, its pivot row, and this row
having a nonzero entry at the position of its associated bound unknown and
zero entries for all previous unknowns. All other rows of B do not involve the
unknowns already classified, i.e., they have nonzero entries only for unknowns
not yet classified. Note that, with the choice B := A, this description also
fits the situation at the beginning of the first step. We now classify the kth
unknown and, correspondingly, change B, as follows:

bound case: We call the kth unknown bound (some would say basic)
in case we can find some row Bh:: not yet used as pivot row for which Bhk ̸= 0.
We pick one such row and call it the pivot row for the kth unknown. Further,
we use it to eliminate the kth unknown from all the rows Bi:: not yet used
as pivot rows by the calculation

Bi:: ← Bi:: −
Bik

Bhk
Bh:: .

free case: In the contrary case, we call the kth unknown free (some
would say nonbasic). No action is required in this case, since none of the
rows not yet used as a pivot row involves the kth unknown.

By (4.1)Lemma, the changes (if any) made in B will not change nullB. This
finishes the kth elimination step, with B now fitting the above description at
the beginning of the (k + 1)st step.

An informal description of this process involves two buckets, one con-
taining the pivot equations found so far, the other the remaining equations.
At the outset, all equations are in the second bucket. At the kth step, we look
in the second bucket for an equation involving the kth unknown explicitly
and, if there are such, we deposit one such in the first bucket as the pivot

† This terminology derives from the fact that two real matrices have the
same nullspace iff they have the same row space; see Problem 6.16.
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equation for the kth unknown but not before we have used it to eliminate
the kth unknown from all the other equations still in that second bucket.
This does not change the joint nullspace of all the equations, i.e., the set of
all n-vectors satisfying all the equations in both buckets. The process ends
if all equations, if any, in the second bucket are trivial, meaning that they
involve none of the unknowns explicitly, hence the joint nullspace of all the
equations in the two buckets equals the joint nullspace of the equations in
the first bucket.

For future reference, here is a formal description of the entire algorithm.
This description relies on an n-vector p to keep track of which row, if any,
is used as pivot row for each of the unknowns. If row h is the pivot row
for the kth unknown, then pk = h after the kth elimination step. Since p

is initialized to have all its entries equal to 0, this means that, at any time,
the rows h not yet used as pivot rows are exactly those for which h is not an
entry of p.

(4.2) Elimination Algorithm:

input: A ∈ IFm×n.
B ← A, p← (0, . . . , 0) ∈ Zn.
for k = 1:n, do:

for some h ∈ m\ ran p with Bhk ̸= 0, do:
pk ← h
for all i ∈ m\ ran p, do:

Bi:: ← Bi:: −
Bik

Bhk
Bh::

enddo
enddo

enddo
output: B, p, and, possibly, free← find(p==0), bound← find(p>0).

Note that nothing is done at the kth step if there is no h ̸∈ ran p with
Bhk ̸= 0, i.e., if Bhk = 0 for all h ̸∈ ran p. In particular, pk will remain 0 in
that case.

A numerical example: We start with

(4.3) A :=


0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7
0 1 0 1 3 2 −1 4

 , p = (0, 0, 0, 0, 0, 0, 0, 0).

The first unknown is free. We take the second row as pivot row for the
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second unknown and eliminate it from the remaining rows, to get

B =


0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 1 0 −1 1
0 0 0 0 1 0 −1 1

 , p = (0, 2, 0, 0, 0, 0, 0, 0).

Thus the third unknown is free as is the fourth, but the fifth is not, since
there are nonzero entries in the fifth column of some row not yet used as
pivot row, e.g., the first row. We choose the first row as pivot row for the
fifth unknown and use it to eliminate this unknown from the remaining rows
not yet used, i.e., from rows 3 and 4. This gives

B =


0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 −1 1

 , p = (0, 2, 0, 0, 1, 0, 0, 0).

The sixth unknown is free, but there are nonzero entries in the seventh column
of the remaining rows not yet used, so the seventh unknown is bound, with,
e.g., the fourth row as its pivot row. We use that row to eliminate the seventh
unknown from the remaining row not yet used. This gives

(4.4) B =


0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1

 , p = (0, 2, 0, 0, 1, 0, 4, 0).

With that, all rows not yet used are trivial, hence unusable as pivot rows.
In particular, the eighth unknown is free, hence we have already in hand the
final array.

Altogether, bound = (2, 5, 7) (= find(p>0)) and free = (1, 3, 4, 6, 8) (=
find(p==0)).

After the n steps of this elimination process (which started with B = A),
we have in hand a matrix B with nullB = nullA and with each unknown
classified as bound or free. The two increasing sequences, bound and free,
containing the indices of the bound and free unknowns respectively, will be
much used in the sequel. Each bound unknown has associated with it a
particular row of B, its pivot row. All rows of B not yet used as a pivot row
(if any) are entirely zero.

Neat minds would reorder the rows of B, listing first the pivot rows
in the order of their corresponding bound unknowns, followed by the rows
not yet used as pivot rows and, in this way, obtain a row echelon form
for A, i.e., a matrix in which the first nonzero entry (if any) in a row is to
the right of the first nonzero entry in the preceding row. In any case, in
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determining x ∈ nullB, we only have to pay attention to the pivot rows.
This means that we can determine a particular element x of nullB = nullA
by backsubstitution, i.e., from its last entry to its first as follows:

For k = n, n−1, . . . , 1, if the kth unknown is bound, i.e., k ∈ ran bound,
determine xk from its pivot equation, recognizable by the fact that its row
in B is the only one that has its first or leftmost nonzero entry in the kth
column, hence provides a formula for xk in terms of xk+1, . . . , xn; else, pick
xk arbitrarily (as then the kth unknown is free, i.e., k ∈ ran free).

A numerical example, continued: We try out backsubstitution on
the earlier numerical example, using the final version of the work-array B as
recorded in (4.4), with n = 8, and recalling that free = [1, 3, 4, 6, 8].

The last unknown is free, hence we leave its value open to choice, by
using the symbol z8 for its value, i.e., set x8 = z8.

The seventh unknown is bound, with the fourth row its pivot row, giving
us −x7 + x8 = 0, or x7 = z8.

The sixth unknown is free, hence we set x6 = z6 for some value z6 freely
choosable.

The fifth unknown is bound, with the first row its pivot row, giving us
x5 = 0.

The fourth and third unknown are both free, hence we set x4 = z4 and
x3 = z3 for some values z3 and z4 freely choosable.

The second unknown is bound, with the second row its pivot row, giving
us x2 + x4 + 2x5 + 2x6 + 3x8 = 0, or, substituting in the values of xj , j > 2,
already determined, x2 + z4 + 2z6 + 3z8 = 0, hence x2 = −z4 − 2z6 − 3z8.

The first unknown is free, hence we set x1 = z1 for some value z1 freely
choosable.

Thus the general solution of B? = 0, i.e., the general element of nullB =
nullA with A the matrix that started off the numerical example, is

(4.5)

(z1,−z4 − 2z6 − 3z8, z3, z4, 0, z6, z8, z8)

= z1e1 + z3e3 + z4(−e2 + e4) + z6(−2e2 + e6)

+ z8(−3e2 + e7 + e8) .

In other words, nullA = ranV with

V := [e1, e3,−e2 + e4,−2e2 + e6,−3e2 + e7 + e8]

1-1 since, e.g., V (free, : ) = id5, hence V is a basis for nullA.
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Here is a more formal description of backsubstitution, for future refer-
ence.

(4.6) Backsubstitution Algorithm:

input: B ∈ IFm×n and p (both as output from (4.2)), z ∈ IFn.
x← z
for k = n:−1:1, do:

if pk ̸= 0, then xk ← −
(∑

j>k Bpk,jxj

)
/Bpk,k endif

enddo
output: x, which is the unique solution of A? = 0 satisfying xi = zi for
all i with pi = 0.

Notice that, as in the example, the value of every free unknown is arbi-
trary and that, once these values are chosen, then the bound unknowns are
uniquely determined by the requirement that we are seeking an element of
nullB = nullA. In other words, the linear map

nullA→ IFfree : x 7→ xfree

is 1-1 and onto, hence invertible. Therefore, dimnullA = #free, by (3.21).

By the (3.23)Dimension Formula, this implies that dim ranA = #bound,
and this is no accident since, by (3.10), the bound columns of A are a basis
for ranA while the following observation asserts that A( : , bound) comprises
the bound columns of A.

(4.7) Observation: The kth unknown of A? = 0 is free(bound) if and
only if the kth column of A is free(bound).

Proof: It is sufficient to prove that the kth column of A is free
if and only if the kth unknown of A? = 0 is free. For that, recall from
(3.6)Proposition that the kth column of A is free if and only if there exists
x ∈ nullA with xk its rightmost nonzero entry.

Now observe that, for any k, if the kth entry, xk, of an x ∈ nullB =
nullA is nonzero, then either (a) the kth unknown is free; or else (b) the kth
unknown is bound, but then necessarily xj ̸= 0 for some j > k. It follows
that xk can be the rightmost nonzero entry of such an x only if the kth
unknown is free. Conversely, if the kth unknown is free, and x is the element
of nullB = nullA computed by setting xk = 1 and setting all other free
unknowns equal to 0, then xk is necessarily the rightmost nonzero entry of x
(since all free entries to the right of it were chosen to be zero, thus preventing
any bound entry to the right of it from being nonzero).
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This simple observation gives a characterization of the sequence free

entirely in terms of the nullspace of the matrix A we started with. This
implies that the classification into free and bound unknowns or columns is
independent of the choice of pivot rows made during elimination. More than
that, since, for any 1-1 matrix M with m columns, null(MA) = nullA, it
implies that, for any such matrix MA, we get exactly the same sequences
free and bound as we would get for A. This is the major reason for the
uniqueness of a more disciplined echelon form, the ‘really reduced row echelon
form’, to be discussed in the next section.

(4.8) Corollary: For every matrix A,

(i) the kth column of A is free if and only if it is a weighted sum of the
columns strictly to the left of it, i.e., A::k ∈ ranA( : , 1:k−1);

(ii) A( : , 1:k) is 1-1 if and only if all its columns are bound (in A( : , 1:k),
hence in A);

(iii) nullA is nontrivial if and only if A has free columns.

4.1∗ Determine the bound and free columns for each of the following matrices A.

(a) 0 ∈ Rm×n; (b) [e1, . . . , en] ∈ Rn×n; (c) [e1,0, e2,0] ∈ R6×4; (d)

[
2 2 5 6
1 1 −2 2

]
;

(e)

[
0 2 1 4
0 0 2 6
1 0 −3 2

]
; (f) [x][x]t, with x = (1, 2, 3, 4).

4.2 Use (4.8)Corollary (iii) for a quick proof of (3.25)Theorem.

4.3∗ Prove: (1) a column of a matrix is free regardless of where it appears in the
matrix if and only if it is free as a first column, i.e., is a zero column; (2) free columns
have no influence on whether a nonzero column is free or bound; (3) a column of a matrix
is bound regardless of where it appears in the matrix if and only if it is bound as a last
column.

4.4 (4.8)Corollary assures you that y ∈ ranA if and only if the last column of [A,y]
is free. Use this fact to determine, for each of the following y and A, whether or not
y ∈ ranA.

(a) y = (π, 1 − π), A =

[
1 −2
−1 2

]
; (b) y = e2, A =

[
1 2 −1
2 3 −4
3 4 −8

]
; (c) y = e2,

A =

[
1 2 −1
2 3 −4
3 4 −7

]
.

4.5 Prove (4.1)Lemma directly, i.e., without using (2.34)Proposition. (Hint: Prove
that nullB ⊃ nullA. Then prove that also A is obtainable from B by the same kind of
step, hence also nullA ⊃ nullB.)

4.6∗ The previous homework uses the idea that the inverse of a map undoes what
the map does. Use this idea for a proof of (2.34)Proposition.

4.7 Prove: If M and A are matrices for which MA is defined and, furthermore, M
is 1-1, then MA? = 0 has exactly the same free and bound unknowns as does A? = 0.

4.8 Assuming the matrix A has exactly α bound columns and the matrix B has
exactly β bound columns and both have the same number of rows, how many bound
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columns does the matrix [A,B] have (a) at least? (b) at most? (c) How, if at all, would
your answers to (a), (b) change if I told you that A has m rows?

4.9∗ Use (3.29)Corollary and elimination to determine for each of the matrices

given whether ranA and nullA have nontrivial intersection: (a) A :=

[
1 2
2 4

]
; (b) A :=[

−2 −1
4 2

]
.

The really reduced row echelon form and other reduced forms

The construction of the really reduced row echelon form takes elimination
four steps further, none of which changes the nullspace, since each of the first
three steps amounts to changing the work-arrayB to EB, with E an evidently
invertible matrix, hence nullEB ⊂ nullB = nullE−1EB ⊂ nullEB, while
the fourth step amounts to leaving off any row entirely zero:

(i) When the hth pivot row is found, and it is not the hth row, then
it is exchanged with the current hth row to make it the hth row. (This
keeps things neat; all the rows not yet used as pivot rows lie below all the
rows already picked as pivot rows.) This doesn’t change the nullspace of
the work-array since the set of equations is unchanged. More formally, each
such exchange changes the work-array B to EB with E the linear map that
exchanges the ith entry with the jth which is invertible since it is its own
inverse.

(ii) Each pivot row is divided by its pivot element, i.e., by its left-
most nonzero entry. (This helps with the elimination of the correspond-
ing unknown from other rows: if Bhk is the pivot element in question (i.e.,
boundh = k, i.e., xk is the hth bound unknown), then, after this normal-
ization, one merely subtracts Bik times Bh:: from Bi:: to eliminate the kth
unknown from row i.) This doesn’t change the nullspace of the work-array
since multiplication of the new pivot row by the (former) pivot element re-
verses the action.

The work-array B at this point is said to have been obtained from A by
Gauss elimination with partial (row) pivoting. Use of the next step
completes what is known as Gauss-Jordan elimination.

(iii) One eliminates each bound unknown from all rows (other than its
pivot row), i.e., also from pivot rows belonging to earlier bound unknowns,
and not just from the rows not yet used as pivot rows. For real efficiency,
though, this additional step should be carried out after elimination is com-
pleted; it starts with the elimination of the last bound unknown, proceeds to
the second-last bound unknown, etc., and ends with the second bound un-
known (the first bound unknown was eliminated from all other rows already).

The resulting matrix B is called the reduced row echelon form for
A, and this is written:

B = rref(A).

However, it turns out to be very neat to add the following final step:
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(iv) Remove all rows that are entirely zero, thus getting the matrix

R := B(1:#bound, : ) =: rrref(A)

which I call the really reduced row echelon form of A.

Here is a formal description (in which we talk about the rrref for A even
though we prove its uniqueness only later; see (4.21)):

(4.9) Definition: We say that R is the really reduced row echelon

form for A ∈ IFm×n and write

R = rrref(A),

in case R ∈ IFr×n for some r and there is a strictly increasing r-sequence
bound (provided by the MATLAB function rref along with rref(A)) so that
the following is true:

1. R is a row echelon form for A: This means that (i) nullR =
nullA; and (ii) for each k = boundi, Ri:: is the pivot row for the kth
unknown, i.e., Ri:: is the unique row in R for which Rik is the first (or,
leftmost) nonzero entry.

2. R is really reduced or normalized, in the sense thatR( : , bound)
is the identity matrix, i.e., for each i, the pivot element Ri,boundi equals
1 and is the only nonzero entry in its column, and R has only these
r = #bound rows.

A numerical example, continued: For the matrix A given in (4.3)
of the earlier numerical example, the rref and the rrref look like this:

(4.10)


0 1 0 1 0 2 0 3
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0

 ,
 0 1 0 1 0 2 0 3
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1

 .

Recall (or observe directly) that, for this example, bound = (2, 5, 7) and
free = (1, 3, 4, 6, 8).
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Finally, for most purposes, it is sufficient to have a b-form for A.

(4.11) Definition: We say that R is the really reduced row echelon

form for A ∈ IFm×n with respect to the index sequence b and
write

R = rrrefb(A),

in case R ∈ IFr×n for some r and satisfies the following two conditions:

(4.12)(i) nullR = nullA;

(4.12)(ii) R( : , b) = id.

We will also call such R more briefly a b-form for A. For
example, rrrefA is a bound-form for A.

A matrix A may have a b-form for many different b and, as we shall see,
only the two conditions (4.12)(i-ii) really matter when we are interested in
a basis for nullA or ranA. Moreover, we have, in effect, a b-form for A in
hand well before we get to rrref(A). For, there is no need to reorder the
rows of the work-array; we drop every row entirely zero, then eliminate each
bound unknown from all rows but its pivot row, being sure first to divide
each pivot row by its pivot element, and then, with R the resulting array,
have in hand a b-form for A, with b the permutation of bound=find(p>0)
for which R( : , b) = id.

For the example worked out earlier, at the stage recorded in (4.4), we
would drop the third row, divide the now third row by its pivot element, −1,
and eliminate the fifth unknown from the second row, and note that, for the
resulting matrix

0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1

 →
 0 0 0 0 1 0 0 0
0 1 0 1 0 2 0 3
0 0 0 0 0 0 1 −1

 =: R,

the permutation b:=(5,2,7) of bound = (2,5,7) gives R( : , b) = id.

A numerical example, modified: We start again with

A :=


0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7
0 1 0 1 3 2 −1 4

 , p = (0, 0, 0, 0, 0, 0, 0, 0).

But, this time, we do elimination free-style, choosing the unknown to be
eliminated and the corresponding pivot row capriciously. This produces the
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following, quite different, sequence of work-arrays B with the same nullspace
as A:

Using row 3 to eliminate the 7th unknown from all the other rows (after
dividing it by its 7th entry) gives

B =


0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 −2 0 −2 −5 −4 1 −7
0 −1 0 −1 −2 −2 0 −3

 , p = (0, 0, 0, 0, 0, 0, 3, 0).

Using row 2 to eliminate the 8th unknown from all the other rows (after
dividing it by its 8th entry) gives

B =


0 0 0 0 1 0 0 0
0 1/3 0 1/3 2/3 2/3 0 1
0 1/3 0 1/3 −1/3 2/3 1 0
0 0 0 0 0 0 0 0

 , p = (0, 0, 0, 0, 0, 0, 3, 2).

Dropping the last row since it is entirely zero, then using the first row
to eliminate the 5th unknown from all the other rows gives

(4.13) B =

 0 0 0 0 1 0 0 0
0 1/3 0 1/3 0 2/3 0 1
0 1/3 0 1/3 0 2/3 1 0

 , p = (0, 0, 0, 0, 1, 0, 3, 2).

This last version of B is a b-form for A with b = (5, 8, 7), since B( : , b) = id3
and we reached B from A by a sequence of invertible row operations and by
dropping a zero row, hence nullB = nullA.

Note that, in the ‘capricious’ elimination practiced in the preceding ex-
ample, the set of unknowns ending up with a pivot row is, by the very capri-
ciousness of my choices, quite different from the set of bound unknowns
obtained with the elimination algorithm earlier. Therefore, also the set of
unknowns ending up without a pivot row is quite different from the set of
free unknowns obtained with the elimination algorithm earlier (although the
two sets have a nontrivial intersection). Yet, as will be clear eventually, it is
no accident that the number of unknowns with a pivot row is the same as
was obtained by the elimination algorithm earlier, i.e., #b = #bound, since
we already know by (3.10) that A( : , bound) is a basis for ranA while, more
generally, A( : , b) is a basis ranA, by (4.21)Proposition yet to be proved.

4.10 For each of the matrices A in Problem 4.1, determine its rrref.

4.11∗ Use elimination from right to left, i.e., starting at the last unknown, to get a

b-form for the matrices in Problem 4.1(d) and (e).
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The basis for nullA obtained from a b-form

We construct in this section, from a b-form R for A, a basis for nullA.

In recognition of the special case R = rrref(A), we use f for a sequence
complementary to b in the sense that it contains all the indices in n that
are not in b.

In MATLAB, one would obtain f from n and b by the commands f = 1:n;

f(b) = [];

In the discussion, we use the following notation introduced in (1.17): If
x is an n-vector and p is a list of length r with range in n, then xp is the
r-vector

xp = (xpi : i ∈ r).

Further, if p is 1-1 into n, and q is complementary to p in the sense that it
is also 1-1 into n and has in its range all the elements of n not in the range
of p, then (see Problem 2.18), for any B ∈ IFm×n,

Bx =
n∑

j=1

B::jxj =
∑
j∈p

B::jxj +
∑
j∈q

B::jxj = B( : , p)xp +B( : , q)xq.

With this, by property (4.12)(i),

x ∈ nullA ⇐⇒ 0 = Rx = R( : , b)xb + R( : , f)xf .

Since R( : , b) = id by property (4.12)(ii), we conclude that

x ∈ nullA ⇐⇒ xb = −R( : , f)xf.

We can write this even more succinctly in matrix form as follows:

nullA = ranC,

with C the (n×#f)-matrix whose ‘f-rows’ form an identity matrix, and the
columns of whose ‘b-rows’ form the ‘f-columns’ of −R:

(4.14) C(f, : ) = id, C(b, : ) = −R( : , f).

Note that C is 1-1 since, by (4.14), Ca = 0 implies, in particular, that
a = (Ca)f = 0. Hence, C is a basis for nullA.

E.g., for the A of the earlier numerical example (4.3), we obtained

R = rrref(A) =

 0 1 0 1 0 2 0 3
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1


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in (4.10), with b= (2, 5, 7) and f= (1, 3, 4, 6, 8), hence

C =



1 0 0 0 0
0 0 −1 −2 −3
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1



=



1 0 0 0 0
0 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

0 0 0 1 0
0 0 0 0 0

0 0 0 0 1


+



0 0 0 0 0

−0 −0 −1 −2 −3
0 0 0 0 0

0 0 0 0 0

−0 −0 −0 −0 −0
0 0 0 0 0

−0 −0 −0 −0 −(−1)
0 0 0 0 0


.

It is comforting to discover in this example in the columns of the matrix
C the vectors that appear in the description (4.5) of the general element of
nullA worked out earlier.

Using instead the b-form for this A from (4.13),

R = rrrefb(A) =

 0 0 0 0 1 0 0 0
0 1/3 0 1/3 0 2/3 0 1
0 1/3 0 1/3 0 2/3 1 0

 ,
hence b= (5, 8, 7) and f= (1, 2, 3, 4, 6), gives the quite different matrix

C =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
−0 −0 −0 −0 −0
0 0 0 0 1
0 −1/3 0 −1/3 −2/3
0 −1/3 0 −1/3 −2/3


.

Finally, when R = rrref(A), hence f = free, then the resulting C is
‘upper triangular’ in the sense that then

(4.15) i > freej =⇒ Cij = 0.

4.12 Determine a basis for the nullspace of A :=

[
2 3
2 3

]
and use it to describe the

solution set of the system A? = (6, 6). Draw a picture indicating both the solution set and
nullA.
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4.13 For each of the matrices A in Problem 4.1, give a basis for nullA.

4.14∗ Use elimination to determine a necessary and sufficient condition on the scalars

α and β for which the matrix A :=

[
α 2 β
0 2 2
2 1 2

]
is not 1-1.

The factorization A = A( : , b)rrrefb(A)

It turns out that any b-form for A is also a factor of A in the following sense.

(4.16) Proposition: If A has a b-form, then

(4.17) A = A( : , b)rrrefb(A).

Proof: Recall from Problem 2.19 that, for A ∈ IFm×n and B ∈ IFn×k

and (p, q) a permutation of degree n,

AB = A( : , p)B(p, : ) +A( : , q)B(q, : ).

With this, observe that, with R := rrrefb(A) and with C given by (4.14),
hence AC = 0, we have

0 = AC = A( : , b)C(b, : ) +A( : , f)C(f, : )

= A( : , b)(−R( : , f)) +A( : , f)

showing that A( : , b)R( : , f) = A( : , f), while A( : , b)R( : , b) = A( : , b) since
R( : , b) = id by (4.12)(ii). Since n = ran b ∪ ran f, this proves that
A( : , b)R( : , j) = A( : , j) for all j ∈ n, hence proves (4.17).

In particular, for b = bound,

(4.18) A = A( : , bound) rrref(A).

This says that we can view the task of constructing R := rrref(A) as find-
ing the sequence bound indicating the bound columns of A, hence then know
R( : , bound) = id, and then finding each of the remaining (free) columns of
R as the solution of the linear system A( : , bound)? = v, with v the corre-
sponding (free) column of A.

Why should this linear system have solutions and, if it does, why should
there be a unique solution? These questions are answered in the next section.

4.15 Verify that (4.17) holds for the two b-forms worked out in Problem 4.11.

4.16 Prove: If M is such that MA = rrref(A) =: R, and bound is the increasing
sequence of indices of bound columns of A, then M is a left inverse for A( : , bound).
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The basis for ranA obtained from a b-form

Let R := rrrefb(A), hence R satisfies (4.12)(i–ii). Then we know from (4.17)
that A = A( : , b)R. This factorization implies that ranA ⊂ ranA( : , b), while
certainly ranA( : , b) ⊂ ranA. Hence

ranA = ranA( : , b),

i.e., A( : , b) is onto ranA. Also, A( : , b) is 1-1: For, if A( : , b)a = 0, then
the n-vector x with xb = a and with xf = 0 is in nullA = nullR, hence 0 =
Rx = R( : , b)a+R( : , f)0 = a (since R is a b-form, therefore R( : , b) = id).
Consequently, A( : , b) is a basis for ranA.

Conversely, if, for some b, A( : , b) is a basis for ranA, then

R := A( : , b)−1A

is well-defined, and nullR = nullA and R( : , b) = id, showing that R is the
unique b-form for A, i.e.,

(4.19) rrrefb(A) = A( : , b)−1A.

“Wait a moment!”, you now say,“Didn’t we learn the pigeon hole prin-
ciple for linear maps and, in particular, for matrices, according to which an
invertible matrix is necessarily square? So, what is meant by A( : , b)−1 when
A( : , b) is not square?”

(4.20) Definition. If the matrix V ∈ IFm×n is 1-1, hence a basis for its
range, we denote by V −1 ∈ L(ranV, IFn) the inverse of V as an element
of L(IFn, ranV ).

To be sure, this V −1 is a matrix only when V is square, as then ranV =
IFn, hence V −1 is the matrix of order n inverse to V . Yet, since we know
this, we will not be confused by the notation to think, in the contrary case,
that V −1 is an inverse matrix. Still, how one might construct V −1 in the
contrary case needs to be discussed. This is the subject of the next chapter,
which is devoted to the construction of the inverse of a basis, in general.

(4.21) Proposition: For any sequence b, a matrix A has a b-form if
and only if its submatrix A( : , b) is a 1-1 map onto ranA, in which case
the b-form is the solution to the equation A( : , b)? = A, hence unique.
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It follows that, for any matrix A, rrref(A) is uniquely determined by
A since it is a bound-form for A, hence, by (4.21)Proposition, the unique
bound-form for A while we know from (4.7) that the sequence bound depends
only on nullA.

Further, since rref(A) differs from rrref(A) only by those additional
#At −#bound zero rows, it follows that each A also has a unique rref.

4.17 For each of the matrices A in Problem 4.1, give a basis for ranA.

4.18 Let A be the n×n matrix [0, e1, . . . , en−1] (with ej denoting the jth coordinate
direction (vector), of the appropriate length). (a) What is its rref? (b) Which are its
bound(free) columns? (c) Give a basis for nullA and a basis for ranA.

4.19 Let A be the 6×3-matrix [e3, e2, e1]. (a) What is its rref? (b) Use (a) to prove
that A is 1-1. (c) Construct a left inverse for A. (d) (off the wall:) Give a matrix P for
which nullP = ranA.

4.20 Let B := At, with A the matrix in the previous problem. (a) What is its rref?
(b) Use (a) to prove that B is onto. (c) Construct a right inverse for B.

4.21∗ Use the rref to prove that ranU = ranV , with

U :=

[
1 2 3
2 4 6
−1 1 3

]
, V :=

[
1 2
2 4
−4 −5

]
.

(Hints: Proving two sets to be equal usually involves showing that each is a subset of the
other. In this case, applying elimination to [V, U ] as well as to [U, V ] should provide all
the information you need.)

4.22∗ Show by an example that when A has a b-form, the matrix A( : , b) need not
be invertible (even though it is a 1-1 map onto ranA).

4.23 Show that the matrix A has a b-form if and only if A( : , b) is a maximally 1-1

submatrix of A, i.e., (i) A( : , b) is 1-1 and (ii) for any j ∈ 1:#A, [A( : , b), A::j ] is not 1-1.

The rrref(A) and the solving of A? = y

(4.8)Corollary(i) is exactly what we need when considering the linear system

(4.22) A? = y

for given A ∈ IFm×n and given y ∈ IFm. For, here we are hoping to write
y as a linear combination of the columns of A, and (4.8) tells us that this is
possible exactly when the last unknown in the homogeneous system

(4.23) [A,y]? = 0

is free. Further, the factorization (4.18), applied to the augmented matrix
[A,y], tells us how to write y as a linear combination of the columns of A in
case that can be done. For, with R = rrref([A,y]), it tells us that

y = [A,y]( : , bound)R( : , n+ 1),

and this gives us y in terms of the columns of A precisely when n + 1 ̸∈
ran bound, i.e., when the (n+ 1)st unknown is free, hence [A,y]( : , bound) =
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A( : , bound).

(4.24) Proposition: For A ∈ IFm×n and y ∈ IFm, the equation

A? = y

has a solution if and only if the last column of [A,y] is free, in which
case the last column of rrref([A,y]) provides the unique solution to

A( : , bound)? = y.

More generally, if R = rrref([A,B]) for some arbitrary matrix B ∈ IFm×s

and all the unknowns corresponding to columns of B are free, then, by (4.18),
applied to [A,B] rather than A, we have

B = A( : , bound)R( : , n+ (1:s)).

4.24 Prove that rrref( idn) = idn.

A numerical example, continued: Recall our earlier example in
which we used elimination to convert a given matrix to its rrref, as follows:

0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7
0 1 0 1 3 2 −1 4

 →


0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1


→

 0 1 0 1 0 2 0 3
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1

 ,
hence bound = (2, 5, 7), free = (1, 3, 4, 6, 8). Now, the elimination algorithm
is entirely unaware of how we got the initial matrix. In particular, we are
free to interpret in various ways the array on the left as being of the form
[A,B]. As soon as we specify the number of columns, in A or B, we know A
and B exactly.

First, choose B to be a one-column matrix. Then, since the last unknown
is free, we conclude that

(6, 3, 7, 4) = A( : , bound)R::8 =


2 5 0
1 2 0
2 5 −1
1 3 −1

 (3, 0,−1).
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If we choose B to be a three-column matrix instead, then the linear
system A? = B is unsolvable since now one of the columns of B (the second
one) corresponds to a bound unknown. What about the other two columns of
this B? The first one corresponds to a free unknown, hence is a weighted sum
of the columns to the left of it, hence is in ranA. But the last one fails to be
in ranA since its unknown is free only because of the presence of the seventh
column, and this seventh column is not a weighted sum of the columns to
the left of it, hence neither is the eighth column. Indeed, the corresponding
column of R has its last entry nonzero, showing that the bound3-column of
A is needed to write the last column of A as a weighted sum of columns to
the left of it.

4.25 Use elimination to show that

[
2 −1 0
1 2 1
0 2 −1

]
is 1-1 and onto.

4.26 Use elimination to settle the following assertions, concerning the linear system
A? = y, with the (square) matrix A and the right side y given by

[A,y] :=

[
1 −2 3 1
2 k 6 6
−1 3 k − 3 0

]
.

(a) If k = 0, then the system has an infinite number of solutions. (b) For another specific
value of k, which you must find, the system has no solutions. (c) For all other values of k,
the system has a unique solution.

(To be sure, there probably is some preliminary work to do, after which it is straight-

forward to answer all three questions.)

Constructing the inverse of a matrix by elimination

If A ∈ IFn×n is invertible, then the first n columns of [A, idn] are necessarily
bound and the remaining n columns are necessarily free. Therefore, if R :=
rrref([A, idn]), then R = [ idn, ?] and, with (4.18), necessarily [A, idn] =
AR = [A idn, A?], hence ? = A−1, i.e., R = [ idn, A

−1].

Practical note: Although MATLAB provides the function inv(A) to generate
the inverse of A, there is usually no reason to compute the inverse of a matrix, nor
would you solve the linear system A? = y in practice by computing rref([A,y]) or
by computing inv(A)*y. Rather, in MATLAB you would compute the solution of
A? =y as A\y. For this, MATLAB also uses elimination, but in a more sophisticated
form, to keep rounding error effects as small as possible. In effect, the choice of
pivot rows is more elaborate than we discussed above.

4.27 Prove: If the product AB of two square matrices A and B is invertible, then so
are both matrices.

4.28 Here are three questions that can be settled without doing any arithmetic.
Please do so.

(i) Can both of the following equalities be right?[
−5 2
3 −1

][
1 2
3 5

]
= id2 =

[
1 2
3 5

] [
−4 2
3 5

]
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(ii) How does one find the coordinates of e1 ∈ R2 with respect to the vector sequence
(1, 3), (2, 5) (i.e., numbers α, β for which e1 = (1, 3)α+ (2, 5)β), given that

AV :=

[
−5 2
3 −1

][
1 2
3 5

]
= id2 ?

(iii) How does one conclude at a glance that the following equation must be wrong?[−5 2
3 −1
0 1

][
1 2 1
3 5 0

]
= id3 ?

4.29 For each of the following matrices A, use elimination (to the extent necessary)
to (a) determine whether it is invertible and, if it is, to (b) construct the inverse.

(a)

[
1 2 3
2 3 4

]
; (b)

[
1 2
2 3
3 4

]
; (c)

[
1 2 3
2 3 4
3 4 5

]
; (d)

[
1 2 3
2 3 4
3 4 4

]
; (e)

[
1 1 1
1 2 4
1 3 8

]
;

(f) [e1 − e3, e2, e3 + e4, e4] ∈ R4×4.

4.30 Prove that A ∈ Fn is invertible iff rrref(A) = idn.

4.31∗ One way to solve Laplace’s equation, ∆f := D2
1f +D2

2f = y on some domain

G in R2 with f = g on the boundary of G numerically is to choose a regular grid T =
{(ih, jh) : i ∈ I, j ∈ J} of points, with I and J chosen so that (ih, jh) is either strictly

inside G or else is next to one such, and then to try to compute u ∈ RT so that

(u(t+ (h, 0)) + u(t− (h, 0)) + u(t+ (0, h)) + u(t− (0, h)))/4− u(t) = y(t)

for all t ∈ TG, with TG the set of points of T strictly inside G, while, for the other points
in T , u(t) is determined from the given boundary values g in a linear manner, e.g., by
interpolation, i.e., formally, u(t) = Ltg for all t ∈ T\TG for some scalar valued linear
maps Lt.

Prove that the resulting linear system Au = y for the ‘vector’ u = (u(t) : t ∈ T )
(containing one equation for each t ∈ T ) has exactly one solution. (Hint: if u(t) =
maxu(T ) for some t inside G for a solution u of the corresponding homogeneous system
A? = 0, then, u(t) being the average of its four neighbors, those neighbors must have the
same value.)

4.32 Let L ∈ Rn×n be the lower triangular matrix with all diagonal entries equal
to 1 and all the strictly lower triangular entries equal to −1, and let n > 1. Prove that
(L−1)n1 = 2n−2.

4.33∗ (a) Verify that elimination of the first unknown from the second row of the

matrix A =

[
a b
c d

]
produces the row-equivalent matrix B :=

[
a b
0 d− c(1/a)b

]
under

the assumption that a ̸= 0.

(b) Generalize this formula to the case of a block matrix, i.e., when a, b, c, d are
matrices of compatible sizes (with a and d square) and, correspondingly, 1/a is interpreted
as the matrix a−1, assuming, of course, that a is invertible.

(c) The matrix d− ca−1b in (b) is called the Schur complement of the submatrix
a in A and is denoted A/a (not to be confused with the result of MATLAB’s right division
operator). Prove that, if A is also invertible, then the Schur complement A/a of the
invertible submatrix a of A is invertible, and its inverse equals the corresponding block of
A−1.

(d) Prove that the Schur complement is unique, i.e., if

[
X 0
Y id

][
a b
c d

]
=

[
a′ b′

0 d′

]
then d′ = d− ca−1b.
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Elimination in vector spaces

In the discussion of the fact (3.10) that the bound columns ofW ∈ L(IFm, X)
form a basis for ranW , we left unanswered the unspoken question of just how
one would tell which columns of W are bound.

The answer is immediate in case X ⊂ IFr for some r, for then W is
just an r ×m-matrix, and elimination does the trick since it is designed to
determine the bound columns of a matrix. It works just as well when X is,
more generally, a subset of IFT for some set T , as long as T is finite, since we
can then apply elimination to the ‘matrix’

(4.25) δTW := (wj(t) : (t, j) ∈ T ×m)

whose rows are indexed by the (finitely many) elements of T .

Elimination even works when T is not finite, since looking for a pivot row
in the matrix (4.25) with infinitely many rows is only a practical difficulty.
If τi is the row ‘index’ of the pivot row for the ith bound column of W ,
i = 1:r, then we know that W has the same nullspace as the (finite-rowed)
matrix (wj(τi) : i = 1:r, j = 1:m). This proves, for arbitrary T , the following
important

(4.26) Proposition: For any W ∈ L(IFm, IFT ), there exists a sequence
(τ1, . . . , τr) in T , with r equal to the number of bound columns in W , so
that nullW is equal to the nullspace of the matrix (wj(τi) : i = 1:r, j =
1:m).

In particular, W is 1-1 if and only if the matrix (wj(τi) : i, j = 1:m)
is invertible for some sequence (τ1, . . . , τm) in T .

If T is not finite, then we may not be able to determine in finite time
whether or not a given column is bound since we may have to look at infinitely
many rows not yet used as pivot rows. The only efficient way around this is
to have W given to us in the form

W = UA,

with U some 1-1 column map, hence A a matrix. Under these circumstances,
the kth column of W is free if and only if the kth column of A is free, and
the latter we can determine by elimination applied to A.

Indeed, if U is 1-1, then both W and A have the same nullspace, hence,
by (3.6)Proposition, the kth column of W is bound if and only if the kth
column of A is bound.

As an example, consider W = [w1, w2, w3, w4], with wj : R → R : t 7→
sin(t− j), j = 1, 2, 3, 4. Hence, by the addition formula,

W = UA, with U := [sin, cos], and
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A :=

[
cos(−1) cos(−2) cos(−3) cos(−4)
sin(−1) sin(−2) sin(−3) sin(−4)

]
,

and we see at once that U is 1-1 ( e.g. from the fact that QU = id2, with
Q : f 7→ (f(π/2), f(0))). We also see at once that the first two columns of
A are bound (e.g., since cos(1) cos(2) < 0 while sin(1) sin(2) > 0), hence the
remaining columns of A must be free (since there are no rows left to bind
them). Consequently, the first two columns of W are bound, while the last
two columns are free.

Note that, necessarily, U is a basis for ranW since W = UA implies
that ranW ⊂ ranU , hence having two columns of W bound implies that
2 ≤ dim ranW ≤ dim ranU ≤ #U = 2, and so U is 1-1 onto ranW .

In general, it may be hard to find such a handy factorization W = UA
for givenW ∈ L(IFm, X). In that case, we may have to discretize our problem
by finding somehow some Q ∈ L(X, IFn) that is 1-1 on ranW . With such
a ‘data map’ Q in hand, we know that nullW equals the nullspace of the
matrix QW . In particular, the kth column of W is bound if and only if the
kth column of the matrix QW is bound, and elimination applied to QW will
ferret out all those columns.

The need for suitable ‘data maps’ here in the general case is one of many
reasons why we now turn to the study of this second way of connecting our
vector space X to some coordinate space, namely via linear maps from X to
IFn.

4.34 For each of the following column maps V = [v1, . . . , vr] into the vector space
Π<5 of all real polynomials of degree < 5, determine whether or not it is 1-1 and/or onto.

(a) [()3 − ()1 + 1, ()2 + 2()1 + 1, ()1 − 1]; (b) [()4 − ()1, ()3 + 2, ()2 + ()1 − 1, ()1 + 1];
(c) [1 + ()4, ()4 + ()3, ()3 + ()2, ()2 + ()1, ()1 + 1].

4.35 For each of the specific column maps V = [fj : j = 0:r] given below (with
fj certain real-valued functions on the real line), determine which columns are bound and
which are free. Use this information to determine (i) a basis for ranV ; and (ii) the smallest
n so that fn ∈ ran[f0, f1, . . . , fn−1].

(a) r = 6, and fj : t 7→ (t− j)2, all j.

(b) r = 4 and fj : t 7→ sin(t− j), all j.

(c) r = 4 and fj : t 7→ exp(t − j), all j. (If you know enough about the exponential
function, then you need not carry out any calculation on this problem.)

4.36 T/F

(a)

[
1 0 1
0 2 0
0 0 0

]
is in row echelon form.

(b) If all unknowns in the linear system A? = 0 are free, then A = 0;

(c) If all unknowns in the linear system A? = 0 are bound, then A is invertible.

(d) If some unknowns in the linear system A? = 0 are free, then A cannot be invertible.

(e) The inverse of an upper triangular matrix is lower triangular.

(f) A linear system of n equations in n+ 1 unknowns always has solutions.

(g) Any square matrix in row echelon form is upper triangular.

(h) If A and B are square matrices of the same order, then AB? = 0 has the same number
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of bound unknowns as does BA? = 0.

(i) If A and B are square matrices of the same order, and AB is invertible, then also
BA is invertible.

(j) If nullA = nullB, then A? = 0 and B? = 0 have the same free and bound unknowns.
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Linear maps into IFn (aka row maps)

There are two ways to connect a given vector space X with the coordinate
space IFn in a linear way, namely by a linear map from IFn to X, and by a
linear map to IFn from X. By now, you are thoroughly familiar with the first
kind, the column maps. It is time to learn something about the other kind.

A very important example of such a map is the inverse of a basis V :
IFn → X for the vector space X. This inverse is also known as the coordi-
nate map for that basis because it provides, for each x ∈ X, its coordinates
with respect to the basis, i.e., the n-vector a := V −1x for which x = V a.
In effect, every invertible linear map from X to IFn is a coordinate map,
namely the coordinate map for its inverse. However, (nearly) every linear
map from X to IFn, invertible or not, is of interest, as a means of extracting
numerical information from the elements of X. For, we can, offhand, only
compute with numbers, hence can ‘compute’ with elements of an abstract
vector space only in terms of numerical data about them.

Any linear map from the vector space X to IFn is necessarily of the form

f : X → IFn : x 7→ (fi(x) : i = 1:n),

with each fi := ei
t ◦ f the composition of two linear maps, hence linear,

therefore a linear functional on X, i.e., a scalar-valued linear map on X.

5.1 For each of the following maps, determine whether or not it is a linear functional.
(a) Π≤k → R : p 7→ deg p; (b) R3 → R : x 7→ 3x1 − 2x3; (c) C([a . . b]) → R : f 7→
maxa≤t≤b f(t); (d) C([a. .b]) → R : f 7→

∫ b

a
f(s)w(s) ds, with w ∈ C([a. .b]); (e) C(2)(R) →

R : f 7→ a(t)D2f(t) + b(t)Df(t) + c(t)f(t), for some functions a, b, c defined on [a . . b] and

some t ∈ [a . . b]. (f) C(2)(R) → C(R) : f 7→ aD2f + bDf + cf , for some a, b, c ∈ C(R).

Here are some standard examples of linear functionals. Assume that X
is a space of functions, hence X is a linear subspace of IFT for some set T .

88
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Then, for each t ∈ T ,
δt : X → IF : x 7→ x(t)

is a linear functional on X, the linear functional of evaluation at t. For any
n-sequence (s1, . . . , sn) in T ,

X → IFn : f 7→ (f(s1), . . . , f(sn))

is a standard linear map from X to IFn.

If, more concretely, X is a linear subspace of C(n−1)[a. .b] and s ∈ [a. .b],
then

X → IFn : f 7→ (f(s), Df(s), . . . , Dn−1f(s))

is another standard linear map from such X to IFn.

Finally, if X = IFm, then any linear map from X to IFn is necessarily
a matrix. But it is convenient to write this matrix in the form At for some
A ∈ IFm×n, as such At acts on X = IFm via the rule

X 7→ IFn : x 7→ Atx = (A( : , j)tx : j = 1:n).

Because of this last example, we will call all linear maps from a vector
space to a coordinate space row maps, and use the notation

(5.1) Λt : X → IFn : x 7→ (λix : i = 1:n) =: [λ1, . . . , λn]
tx,

calling the linear functional λi the ith row of this map. We will also call
such maps data maps since they extract numerical information from the
elements of X. There is no hope of doing any practical work with the vector
space X unless we have a ready supply of such data maps on X. For, by and
large, we can only compute with numbers.

(5.2) Proposition: If Λt = [λ1, λ2, . . . , λn]
t : X → IFn and B ∈

L(U,X), then ΛtB = [λ1B, . . . , λnB]t.

This raises the question what, in this setting, the map [λ1, λ2, . . . , λn]
might be. Well, it is a column map whose columns are linear functionals on
X, hence it is a column map into the space L(X, IF) of all linear functionals
on X. This space is the dual of X, in symbols

X ′ := L(X, IF),

to be further discussed in Chapter 9.
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A formula for the coordinate map

Let V ∈ L(IFn, X) be a basis for the vector space X. How do we find the
coordinates

(5.3) a = V −1x

for given x ∈ X?

Offhand, we solve the (linear) equation V ? = x for a. Since V is a basis,
we know that this equation has exactly one solution. But that is not the
same thing as having a concrete formula for a in terms of x.

If X = IFn, then V −1 is a matrix; in this case, (5.3) is an explicit
formula. However, even if X ⊂ IFn but X ̸= IFn, then (5.3) is merely a
formal expression.

(5.4) Example: If V is a basis for some linear subspace X of IFn, then
we can obtain a formula for V −1 via elimination as follows.

Act as if V were invertible, i.e., apply elimination to [V, idn]. Let r :=
#V . Since V is 1-1, the first r columns in [V, idn] are bound, hence we
are able to produce, via elimination, a row-equivalent matrix R for which
R(q, 1:r) = idr, for some r-sequence q. Since we obtain R from [V, idn] by
(invertible) row operations, we know that R = M [V, idn] = [MV,M ] for
some invertible matrix M . In particular,

idr = R(q, 1:r) = (MV )(q, : ) =M(q, : )V,

showing M(q, : ) = R(q, r + (1:n)) to be a left inverse for V , hence equal to
V −1 when restricted to ranV .

Suppose, in particular, that we carry elimination all the way through, to
obtain R = rref([V, idn]) =:M [V, idn] = [MV,M ] for some invertible matrix
M ∈ IFn×n (as must happen since [V, idn] is onto). Then, R( : , bound) =
idn with bound indicating the bound columns of [V, idn], therefore, q :=
bound1:r = 1:r, hence M(q, : )V = idr, i.e., M(q, : ) is a left inverse for V ,
and M(q, b) = 0, with r + b the bound columns of [V, idn] other than the
columns of V . Hence, with r + f the free columns of [V, idn] and for this
choice of M , we get

V −1x =M(q, : )x =M(q, f)xf, x ∈ X = ranV.

In effect, we have replaced here the equation V ? = x by the equivalent
equation

V (f, : )? = xf

whose coefficient matrix is invertible. In particular, #f = #V ; see Prob-
lem 5.3.
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5.2 For each of the following bases V of the linear subspace ranV of Fn, give a
matrix U for which Ux gives the coordinates of x ∈ ranV with respect to the basis V .
How would you check your answer?

(a) V =

[
2
2

]
; (b) V = [e2, e1, e3] ∈ R3×3; (c) V =

[
1 2
2 4
0 6

]
; (d) V =

 1 0
0 0
−1 1
2 −2

.
5.3∗ Prove the claim at the end of (5.4)Example.

The reduction in (5.4)Example, of the abstract linear equation V ? = x
to a uniquely solvable square linear system, also works in the general setting.

To obtain a concrete expression, we discretize the abstract equation
V ? = x by considering instead the numerical equation

ΛtV ? = Λtx

for some suitable data map Λt ∈ L(Y, IFn) defined on some vector space
Y ⊃ X. Here, ‘suitable’ means that the matrix ΛtV is invertible, for then
the unique solution of this equation must be the sought-for coordinate vector
for x ∈ X with respect to the basis V , i.e.,

a = V −1x = (ΛtV )−1Λtx.

In (5.4)Example, we simply chose the linear map y 7→ yf as our Λt,
i.e., Λt = idn(f, : ) = [ej : j ∈ f]t, with f chosen, in effect, to ensure that
ΛtV = V (f, : ) is invertible. We indeed obtained there V −1 as

x 7→M(q, f)xf = V (f, : )−1xf = (ΛtV )−1Λtx.

How would one find a ‘suitable’ data map in general? That depends
on the particular circumstances. For example, if V ∈ L(IFn, Y ) and Λt ∈
L(Y, IFn), and we somehow know that Λt maps X := ranV = V (IFn) onto
IFn, then we know that ΛtV maps IFn onto IFn, hence, being a square matrix,
ΛtV must be invertible. Conversely, if ΛtV is invertible, then V must be 1-1,
hence provides a basis for its range, and Λt must map ranV onto IFn.

(5.5) Proposition: If the linear map V : IFn → X ⊂ Y is onto, and
Λt ∈ L(Y, IFn) is such that their (square) Gramian matrix, ΛtV , is
1-1 or onto, hence invertible, then V is a basis for X, and its inverse is

V −1 : X → IFn : x 7→ (ΛtV )−1Λtx.

(5.6) Proposition: The inverse Mt =: [µ1, . . . , µn]
t of any basis V of

the n-dimensional vector space X provides the basis M := [µ1, . . . , µn]
for the dual space X ′, called the basis dual to V .
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Indeed, let Mt := V −1 and consider, for a ∈ IFn and x ∈ X, (Ma)x =∑
i aiµix = atMtx, hence (Ma)V = at(MtV ) = at, showing that the linear

map M : IFn → X ′ = L(X, IF) : a 7→ [µ1, . . . , µn]a is 1-1. Since, by (3.22), its
target, X ′ = L(X, IF), has dimension n, it follows, by (3.24)Corollary, that
M is also onto X ′, hence a basis for X ′.

5.4∗ Prove: For every nonzero x in the finite-dimensional vector space X, there exists
λ ∈ X′ with λx ̸= 0.

Change of basis

To be sure, under the assumptions of (5.5)Proposition, we also know that
Λt maps X onto IFn, hence, since both X and IFn are of the same finite
dimension, the restriction of Λt to X must be invertible as a linear map to
IFn. Consequently, there must be an invertible W ∈ L(IFn, X), i.e., a basis
W for X, with ΛtW = idn.

Hence, the right side in our numerical equation ΛtV ? = Λtx is the
coordinate vector for x ∈ X with respect to this basis W for X. In other
words, our great scheme for computing the coordinates of x ∈ X with respect
to the basis V for X requires us to know the coordinates of x with respect to
some basis for X. In other words, the entire calculation is just a change of
basis, with ΛtV = W−1V the socalled transition matrix that carries the
V -coordinates of x to the W -coordinates of x.

However, this in no way diminishes its importance. For, we really have
no choice in this matter. We cannot compute without having numbers to
start with. Also, we often have ready access to the coordinate vector Λtx
without having in hand the corresponding basis W . At the same time, we
may much prefer to know the coordinates of x with respect to a different
basis.

For example, we know from (3.38)Proposition that, with (τ1, . . . , τk)
any sequence of pairwise distinct real numbers, the linear map Λt : p 7→
(p(τ1), . . . , p(τk)) is 1-1 on the k-dimensional space Π<k, hence provides the
coordinates of p ∈ Π<k with respect to a certain basis W of Π<k, namely the
socalled Lagrange basis whose columns can be verified to be the so-called
Lagrange fundamental polynomials

(5.7) ℓj : t 7→
∏
h̸=j

t− τh
τj − τh

, j = 1:k.

However, you can imagine that it is a challenge to differentiate or inte-
grate a polynomial written in terms of this basis. Much better for that
to have the coordinates of the polynomial with respect to the power basis
V = [()0, . . . , ()k−1].

5.5 What are the coordinates of p ∈ Π≤k with respect to the Lagrange basis for Π<k

for the points τ1, . . . , τk?

5.6 Find the value at 0 of the quadratic polynomial p, for which p(−1) = p(1) = 3
and Dp(1) = 6.
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5.7 Find a formula for p(0) in terms of p(−1), p(1) and Dp(1), assuming that p is a
quadratic polynomial.

5.8 Find the coordinates for the polynomial q(t) = 3 − 4t+ 2t2 with respect to the
basis W := [()0, ()0 + ()1, ()0 + ()1 + ()2] of the space of quadratic polynomials. (Hint:
you are given the coordinates for q wrto V := [()0, ()1, ()2] = W (W−1V ) and can easily
determine (W−1V )−1 = V −1W .)

5.9∗ Let v1, . . . , vn be a sequence of (n − 1)-times continuously differentiable func-
tions, all defined on the interval [a . . b]. For x ∈ [a . . b], the matrix

W (v1, . . . , vn;x) := (Di−1vj(x) : i, j = 1:n)

is called the Wronski matrix at x for the sequence (vj : j = 1:n).

Prove that V := [v1, . . . , vn] is 1-1 in case, for some x ∈ [a . . b], W (v1, . . . , vn;x) is in-

vertible. (Hint: Consider the Gram matrix ΛtV with Λtf := (f(x), f ′(x), . . . , Dn−1f(x)).)

Interpolation and linear projectors

As the discussion of polynomial interpolation on pages 64ff already intimates,
our formula in (5.5) for the inverse of a basis V ∈ L(IFn, X) can be much
more than that. It is useful for interpolation in the following way. Assuming
that ΛtV is invertible, it follows that, for any y ∈ Y , x = V (ΛtV )−1Λty is
the unique element in X that agrees with y at Λt in the sense that

Λtx = Λty.

To recall the specifics of polynomial interpolation from pages 64ff, if
X = Π<k and Λt : g 7→ (g(τi) : i = 1:k), with τ1 < · · · < τk, then, by
(3.38)Proposition, for arbitrary g : R→ R, there is exactly one polynomial p
of degree < k for which p(τi) = g(τi), i = 1:k.

One can readily imagine other examples.

Example: In Hermite interpolation, one specifies not only values
but also derivatives. For example, in two-point Hermite interpolation from
Π<k, one picks two points, t ̸= u, and two nonnegative integers r and s with
r + 1 + s+ 1 = k, and defines

Λt : g 7→ (g(t), Dg(t), . . . , Drg(t), g(u), Dg(u), . . . , Dsg(u)).

Now the requirement that Λtp = Λtg amounts to looking for p ∈ Π<k that
agrees with g in the sense that p and g have the same derivative values of
order 0, 1, . . . , r at t and the same derivative values of order 0, 1, . . . , s at u.
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Example: Recall from Calculus the bivariate Taylor series

g(s, t) = g(0) +Dsg(0) s+Dtg(0) t +

+
(
Ds

2g(0)s2 +DsDtg(0)st+DtDsg(0)ts+Dt
2g(0)t2

)
/2 + h.o.t.

In particular, for any smooth function g,

p : (s, t) 7→ g(0) +Dsg(0) s+Dtg(0) t +

+
(
Ds

2g(0)s2 + 2DsDtg(0)st+Dt
2g(0)t2

)
/2

is the unique quadratic polynomial that matean hes the information about g
given by the data map

Λt : g 7→ (g(0), Dsg(0), Dtg(0), Ds
2g(0), DsDtg(0), Dt

2g(0)).

Example: When dealing with Fourier series, one uses the data map

Λt : g 7→ (

∫ 2π

0

g(t) cis(jt) dt : j = 0:N),

with cis standing for ‘cosine or sine’. One looks for a trigonometric poly-
nomial

p = [cis(j·) : j = 0:N ]a

that satisfies Λtp = Λtg, and finds it in the truncated Fourier series for
g.

Directly from (5.5)Proposition, we obtain (under the assumptions of that
proposition) the following pretty formula

(5.8) x = Py := V (ΛtV )−1Λty

for the interpolant x ∈ X to given y ∈ Y with respect to the data map Λt.
The linear map P := V (ΛtV )−1Λt so defined on Y is very special:

(5.9) Proposition: Let the linear map V : IFn → Y be onto X ⊂ Y ,
and let Λt ∈ L(Y, IFn) be such that their Gramian matrix, ΛtV , is
invertible. Then V is 1-1 and Λt is onto, and P := V (ΛtV )−1Λt is a
linear map on Y with the following properties:

(i) P is the identity on X = ranV .

(ii) ranP = ranV = X.

(iii) P is a projector or idempotent, i.e., PP = P , hence P ( id−P ) =
0.

(iv) nullP = null Λt = ran( id − P ).
(v) Y is the direct sum of ranP and nullP , i.e., Y = ranP +̇ nullP .
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Proof: (i) PV = V (ΛtV )−1Λt V = V id = V , hence P (V a) = V a
for all a ∈ IFn.

(ii) Since P = V A for some A, we have that ranP ⊂ ranV , while
PV = V implies that ranP ⊃ ranV .

(iii) By (i) and (ii), P is the identity on its range, hence, in particular,
PP = P , or, equivalently, P ( id − P ) = 0.

(iv) The fact that P = AΛt for some A implies that nullP ⊃ null Λt,
while also

ΛtP = Λt V (ΛtV )−1Λt = idnΛ
t = Λt,

hence also nullP ⊂ null Λt. As to nullP = ran( id−P ), note that x ∈ nullP
implies that x = x − Px = ( id − P )x ∈ ran( id − P ), while, conversely,
nullP ⊃ ran( id − P ) since, by (iii), P ( id − P ) = 0.

(v) For any y ∈ Y , y = Py + ( id − P )y ∈ ranP + nullP , by (iv),
hence Y = ranP + nullP . If also y = x + z for some x ∈ ranP and some
z ∈ nullP , then, by (i) and (iv), Py = P (x + z) = Px + Pz = x, therefore
also z = y − x = y − Py = ( id − P )y, showing such a decomposition to be
unique.

5.10 Prove: If P ∈ L(X) is an invertible linear projector, then P = id.

5.11∗ Prove: If P ∈ L(X), then the following are equivalent: (i) P is the identity
on ranP ; (ii) P 2 = P ; (iii) P ( id − P ) = 0; (iv) nullP = ran( id − P ), and if any of these
hold, then X = ranP +̇ nullP .

5.12∗ Prove: If P,Q ∈ L(X) are linear projectors and ranP ⊂ ranQ and nullP ⊂
nullQ, then P = Q.

5.13∗ Let P ∈ L(X). (i) Prove that P is a projector if and only if R := id − 2P
is involutory or self-inverse (meaning that RR = id). (This would be wrong if our
field of scalars had characteristic 2, i.e., if 1 + 1 = 0.) (ii) For the linear projector P of
(5.10)Example, work out the corresponding map R, and add to (5.11)Figure the point Ry.

5.14 Consider the linear map Q given on X = RR by Qf(t) = (f(t) + f(−t))/2.
Prove that Q is a linear projector. Also, give a succinct description of its range and its
nullspace. (Hint: consider the map F : X → X defined by (Ff)(t) = −f(t).)

(5.10) Example: We specialize the general situation of (5.9)Proposi-
tion to the case V : R1 → X ⊂ R2, so we can draw a figure like (5.11)Figure.

Take Y = R2, and let v ∈ R2\{0}, hence X := ranV with V := [v]
is 1-dimensional. The general linear map Λt : R2 → R1 is of the form [w]t

for some w ∈ R2, and the requirement that ΛtV be invertible reduces to the
requirement that [w]t[v] = wtv ̸= 0.

With V = [v] and Λt = [w]t so chosen, the linear projector P becomes

P :=
vwt

wtv
: y 7→ v

wty

wtv
.

We verify directly that

PP =
vwt

wtv

vwt

wtv
=

vwtvwt

(wtv) (wtv)
=

vwt

wtv
= P,
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i.e., that P is a linear projector. Its range equals ran[v], i.e., the straight line
through the origin in the direction of v. Its nullspace equals null[w]t and
this is necessarily also 1-dimensional, by (3.23)Dimension Formula, hence is
the straight line through the origin perpendicular to w. The two lines have
only the origin in common since y ∈ ranP ∩ nullP implies that y = vα for
some scalar α, therefore 0 = wty = wtvα and this implies that α = 0 since
wtv ̸= 0 by assumption.

.

v

y

Py

( id − P )y

w

ranP = ran[v]

nullP = w⊥ = null[w]t

(5.11) Figure. The direct sum decomposition provided by the lin-
ear projector P : R2 → R2 : y 7→ v(wty/wtw). Compare this to
(3.35)Figure.

We can locate the two summands in the split

y = Py + ( id − P )y

graphically (see (5.11)Figure): To find Py, draw the line through y parallel
to nullP ; its unique intersection with ranP = ran[v] is Py. The process of
locating ( id − P )y is the same, with the roles of ranP and nullP reversed:
Now draw the line through y parallel to ranP ; its unique intersection with
nullP is the element ( id − P )y.

This shows graphically that, for each y, Py is the unique element of
ranP for which wtPy = wty, i.e., the unique point in the intersection of
ranP and y + null[w]t.

It is useful to note that, for any linear projector P , also ( id − P ) is a
linear projector (since ( id − P )( id − P ) = id − P − P + PP = id − P ),
and that any direct sum decomposition Y = X +̇Z of a finite-dimensional Y
necessarily has X = ranP and Z = nullP for some linear projector P . The
following is a more general such claim, of use later.
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(5.12) Proposition: Let X1, . . . , Xr be linear subspaces of the finite-
dimensional vector space Y . Then the following are equivalent.

(i) Y is the direct sum of the Xj , i.e., Y = X1 +̇ · · · +̇Xr.

(ii) There exist Pj ∈ L(Y ) with ranPj = Xj so that

(5.13) idY = P1 + · · ·+ Pr

and

(5.14) PjPk =
{
Pj = Pk if j = k;
0 otherwise.

In particular, each Pj is a linear projector.

Also, the conditions in (ii) uniquely determine the Pj .

Proof: Let Vj be a basis for Xj , all j. By (3.33)Proposition, (i) is
equivalent to having V := [V1, . . . , Vr] be a basis for Y .

‘(i) =⇒ (ii)’: By assumption, V is a basis for Y . Let V −1 =: Λt =:
[Λ1, . . . ,Λr]

t be its inverse, grouped correspondingly. Then

iddimY = ΛtV = [Λ1, . . . ,Λr]
t[V1, . . . , Vr] = (Λi

tVj : i, j = 1:r),

i.e.,

Λi
tVj =

{
id if i = j;
0 otherwise.

Hence, the linear maps

Pj := VjΛj
t, j = 1:r,

satisfy (5.14), and ranPj = Xj , for all j. But also

idY = V Λt = [V1, . . . , Vr][Λ1, . . . ,Λr]
t =

∑
j

VjΛj
t,

showing (5.13).

‘(ii) =⇒ (i)’: By assumption, ranPj = ranVj , all j. Therefore, by
assumption (5.14),

(5.15) PjVi =
{
Vj if j = i;
0 otherwise.

Therefore, 0 = V a =
∑

i Viai implies, for any particular j, that 0 = Pj0 =
PjV a =

∑
i PjViai = PjVjaj = Vjaj , hence aj = 0 (since Vj is 1-1). It

follows that V is 1-1. On the other hand, the assumption (5.13) implies that
V is onto. Hence, V is a basis for Y .

Finally, to prove the uniqueness of the Pj satisfying (ii), notice that
(5.15) pins down Pj on all the columns of V . Since (ii) implies that V is a
basis for Y , this therefore determines Pj uniquely (by (3.2)Proposition).
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Returning to the issue of interpolation, this gives the following

(5.16) Corollary: If V ∈ L(IFn, Y ) is 1-1, and Λt ∈ L(Y, IFn) is such
that ranV ∩ null Λt = {0}, then P := V (ΛtV )−1Λt is well-defined; it is
the unique linear projector P with

(5.17) ranP = ranV, nullP = null Λt.

In particular, then Λt is onto, and

(5.18) Y = ranV +̇ null Λt.

For an arbitrary abstract vector space, it may be very hard to come
up with suitable concrete data maps. For that reason, we now consider a
particular kind of vector space for which it is very easy to provide suitable
data maps, namely the inner product spaces.
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Definition and examples

Inner product spaces are vector spaces with an additional operation, the inner
product. Here is the definition.

(6.1) Definition: An inner product space is a vector space Y (over
the field IF = R or C) and an inner product, meaning a map

⟨ , ⟩ : Y × Y → IF : (x, y) 7→ ⟨x, y⟩

that is

(a) positive definite, i.e., ∥x∥2 := ⟨x, x⟩ ≥ 0, with equality iff x = 0;

(b) linear in its first argument, i.e., ⟨·, y⟩ ∈ L(Y, IF);
(c) hermitian, or skew-symmetric, i.e., ⟨y, x⟩ = ⟨x, y⟩.

You already know an inner product space, namely n-dimensional Eu-
clidean space, i.e., the space IFn of n-vectors with the inner product

⟨x,y⟩ := ytx =
∑
j

xjyj =: ycx,

though you may know it under the name scalar product or dot product.
In particular, (b) and (c) are evident in this case. As to (a), observe that,
for any complex number z = u+ iv,

zz = (u− iv)(u+ iv) = u2 + v2 = |z|2 ≥ 0,

99
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with equality if and only if u = 0 = v, i.e., z = 0. Hence, for any x ∈ IFn,

⟨x,x⟩ = xtx = |x1|2 + · · ·+ |xn|2 ≥ 0,

with equality iff all the xj are zero, i.e., x = 0.

Of course, if the scalar field is R, we can forget about taking complex
conjugates since then x = x. But if IF = C, then it is essential that we
define ⟨x,y⟩ as ycx = ytx rather than as ytx since we would not get positive
definiteness otherwise. Indeed, if z is a complex number, then there is no
reason to think that z2 is nonnegative, and the following calculation

(1, i)t(1, i) = 12 + (i)2 = 1− 1 = 0

shows that, for a complex x, xtx can be zero without x being zero.

So, why not simply stick with IF = R? Work on eigenvalues requires
consideration of complex scalars (since it relies on zeros of polynomials, and
a polynomial may have complex zeros even if all its coefficients are real).
For this reason, we have taken the trouble all along to take into account the
possibility that IF might be C. It is a minor nuisance at this point, but will
save time later.

Another example of an inner product space of great practical interest

is the space Y =
◦
C of all continuous 2π-periodic functions, with the inner

product

⟨f, g⟩ :=
∫ 2π

0

f(t)g(t) dt.

Of course, we can also think of the space C([a . . b]) as an inner product
space, with respect to the inner product

⟨f, g⟩ :=
∫ b

a

f(t)g(t) dt.

Often, it is even useful to consider on C([a . . b]) the more general inner
product

⟨f, g⟩ :=
∫ b

a

f(t)g(t)w(t) dt

with w some positive function on [a. .b], and there are analogous inner product
spaces consisting of functions of several variables.

In order to stress the fact that a general inner product space Y behaves
just like IFn with the standard inner product, I will use the notation

∀y ∈ Y , yc : Y → IF : x 7→ ⟨x, y⟩,
for the linear functional provided, according to (6.1)(b), by the inner product,
hence will feel free to write ycx rather than ⟨x, y⟩ for the inner product of x
with y. Correspondingly, you can read the rest of this chapter as if we were
just talking about the familiar space of n-vectors with the dot product, yet
be certain that, when the time comes, you will have in hand very useful facts

about an arbitrary inner product space, for example the space
◦
C.
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The conjugate transpose

Here is the promised ready supply of data maps available for an inner product
space.

Any column map W = [w1, . . . , wn] ∈ L(IFn, Y ) into an inner product
space Y provides the corresponding data map

(6.2) W c : Y 7→ IFn : x 7→ (wj
cx : j = 1:n),

called the conjugate transpose or Hermitian of W .

The terminology comes from the special case Y = IFm. In that case,
W ∈ IFm×n, and then W c is, indeed, just the conjugate transpose of the
matrix W since then wj =W::j =: wj , hence

wj
cx =W::j

cx =
∑
k

Wkjxk =
∑
k

(W c)jkxk = (W cx)j .

With that, if W ∈ L(IFn, Y ) and A ∈ IFn×m, then, as

WA = [
∑
k

wkAkj : j = 1:n],

it follows that, for j = 1:n,

((WA)cx)j = (
∑
k

wkAkj)
cx =

∑
k

(Ac)jkwk
cx = (Ac(W cx))j .

This proves

(6.3) Observation: If W ∈ L(IFn, Y ) and A ∈ IFn×m, then WA ∈
L(IFm, Y ) and (WA)c = AcW c.

More than that, the conjugate transpose of a column map is a special
case of the conjugate transpose Ac of a linear map A from an inner product
space X to an inner product space Y defined as follows.

(6.4) Definition: Let X and Y be inner product spaces (over the same
field IF) with inner products ⟨, ⟩X and ⟨, ⟩Y , respectively. The conjugate
transpose of A ∈ L(X,Y ) is the unique map Ac : Y → X (necessarily
linear) for which

(6.5) ∀(x, y) ∈ X×Y , ⟨x,Acy⟩X = ⟨Ax, y⟩Y .
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Indeed, if also ⟨x, z⟩X = ⟨Ax, y⟩Y for all x ∈ X, then ⟨x, z −Acy⟩X = 0
for all x ∈ X, including x = z − Acy, hence, by the definiteness of the inner
product, z − Acy = 0, showing that Acy is uniquely determined by (6.5).
Since, for arbitrary x ∈ X, y, z ∈ Y and α ∈ IF, ⟨Ax, y + αz⟩Y = ⟨Ax, y⟩Y +
α⟨Ax, z⟩Y = ⟨x,Acy⟩X + α⟨x,Acz⟩X = ⟨x,Acy + αAcz⟩X , therefore, by the
uniqueness,

Ac(y + αz) = Acy + αAcz,

i.e., Ac is a linear map. Also, the conjugate transpose of an n-column map
into Y is, indeed, the conjugate transpose in the sense of (6.4) (withX = IFn),
and

(6.6) (BA)c = AcBc

in case BA makes sense, hence, in particular,

(6.7) A−c := (A−1)c = (Ac)−1.

The only fly in the ointment is the fact that, for some A ∈ L(X,Y ), there
may not be any map Ac : Y → X satisfying (6.5) unless X is ‘complete’, a
condition that is beyond the scope of this book. However, if both X and Y
are finite-dimensional inner-product spaces, then, with V and W bases for X
and Y , respectively, we can write any A ∈ L(X,Y ) as A = WÂV −1 (using

the matrix Â :=W−1AV ), hence, with (6.6), have available the formula

Ac = (WÂV −1)c = V −cÂcW c

for the conjugate transpose of A, – another nice illustration of the power of
the basis concept.

With that, we are ready for the essential fact about the conjugate trans-
pose needed now.

(6.8) Lemma: If the range of the 1-1 column map V is contained in
the range of some column map W , then W cV is 1-1, hence W c is 1-1 on
ranV .

Proof: Assume that W cV a = 0 and let b := V a. Then b ∈ ranV ⊂
ranW , hence we must have b =Wc for some vector c. Therefore, using (6.3),

0 = cc0 = ccW cV a = (Wc)cV a = bcb.

By the definiteness of the inner product, this implies that b = 0, i.e., V a = 0,
therefore that a = 0, since V is assumed to be 1-1.
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By taking now, in particular, W = V , it follows that, for any basis
V of the linear subspace X of the inner product space Y , the linear map
(V cV )−1V c is well-defined, hence provides a formula for V −1.

In MATLAB, the conjugate transpose of a matrix A is obtained as A’, hence
the corresponding formula is inv(V’*V)*V’. It is, in effect, used there to carry
out the operation V\ for a matrix V that is merely 1-1.

6.1 Prove (6.6) and (6.7).

6.2 Prove that, for any inner product space X, and any x ∈ X, [x]c = xc and that,

for any A ∈ L(X,Y ), with Y an inner product space for which Ac exists, [Ax]c = xcAc.

Orthogonal projectors and closest points

Continuing with V a basis for the linear subspace X of the inner product
space Y , we recognize that, with the choice Λt = V c, we have in hand a
special case of the situation described in (5.16)Corollary. We conclude that
the linear projector

PV := V (V cV )−1V c

is well-defined. Moreover, by (5.9), nullPV = nullV c = {y ∈ Y : V cy = 0}.
Since x ∈ ranPV = ranV is necessarily of the form x = V a, it follows that,
for any x ∈ ranPV and any y ∈ nullPV ,

xcy = (V a)cy = ac(V cy) = 0.

In other words, ranPV and nullPV = ran( id − PV ) are perpendicular or
orthogonal to each other, in the sense of the following definition.

(6.9) Definition: We say that the elements u, v of the inner product
space Y are orthogonal or perpendicular to each other, and write
this

u ⊥ v,

in case ⟨u, v⟩ = 0.

More generally, for any F,G ⊂ Y , we write F ⊥ G to mean that,
∀(f, g) ∈ F×G, f ⊥ g.

The orthogonal complement

F⊥ := {y ∈ Y : y ⊥ F}

of F is the largest set G perpendicular to F .

Note that u ⊥ v iff v ⊥ u since ⟨v, u⟩ = ⟨u, v⟩.

Because of the orthogonality

nullPV = ran( id − PV ) ⊥ ranPV
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just proved, PV is called the orthogonal projector onto ranV . Correspond-
ingly, we write

(6.10) Y = ranPV ⊕ nullPV

to stress the fact that, in this case, the summands in this direct sum are
orthogonal to each other. Since they sum to Y , it follows (see Problem 6.12
below) that each is the orthogonal complement of the other.

This orthogonality, as we show in a moment, has the wonderful conse-
quence that, for any y ∈ Y , PV y is the unique element of ranPV = ranV
that is closest to y in the sense of the (Euclidean) norm

(6.11) ∥ · ∥ : Y → R : y 7→
√
ycy.

Thus, for every y ∈ Y , our formula for the coordinate vector a = (V cV )−1V cy
of y ∈ ranV with respect to V gives the coordinates of the point in ranV
closest to y. If y ∈ ranV , then this is, of course, y itself.

(6.12) Example: We continue with (5.10)Example. In that example,
the choice Λt = V c amounts to choosing w = v. Now P becomes P =
vvc/vcv, and, correspondingly,

Py = v
vcy

vcv
,

which we recognize as the standard formula for the orthogonal projection of
the vector y onto the line spanned by the vector v.

Correspondingly, (5.11)Figure changes to the following.

v

y

Py

( id − P )y

ranP = ran[v]

nullP = v⊥

x

(6.13) Figure. If y − Py is perpendicular to ranP , then Py is the
closest point to y from ranP since then, for any x ∈ ranP , ∥y−x∥2 =
∥y − Py∥2 + ∥x− Py∥2.
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The proof that, for any y ∈ Y , PV y is the unique element of ranV
closest to y in the sense of the norm (6.11) is based on nothing more than
the following little calculation.

(6.14) ∥u+ v∥2 = (u+ v)c(u+ v) = ∥u∥2 + vcu+ ucv + ∥v∥2.

Since vcu = ucv, this proves

(6.15) Pythagoras: u ⊥ v =⇒ ∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Since, for any x ∈ X, y−x = (y−PV y) + (PV y−x), while (y−PV y) ∈
nullPV ⊥ ranPV = X ∋ (PV y − x) we conclude that

(6.16) ∥y − x∥2 = ∥y − PV y∥2 + ∥PV y − x∥2.

Here, the first term on the right is independent of x. This shows that ∥y−x∥
is uniquely minimized over x ∈ X by the choice x = PV y, as we claimed.

Here is the formal statement.

(6.17) Theorem: For any basis V for the linear subspace X of the
inner product space Y , the linear map

PV = V (V cV )−1V c

equals PX , the orthogonal projector onto X, in the sense that, for
all y ∈ Y , PV y ∈ X and y − PV y ⊥ X.

Therefore, Y is the orthogonal direct sum

Y = ranV ⊕ nullV c = ranPV ⊕ nullPV = X ⊕ ran( id − PV ),

and
∀(y, x) ∈ Y×X, ∥y − x∥ ≥ ∥y − PV y∥,

with equality if and only if x = PV y.

Incidentally, by choosing x = 0 in (6.16) – legitimate since ranV is a
linear subspace – we find the following very useful fact.

(6.18) Proposition: For any 1-1 column map V into Y and any y ∈ Y ,

∥y∥ ≥ ∥PV y∥,

with equality if and only if y = PV y, i.e., if and only if y ∈ ranV .
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This says that PV strictly reduces norms, except for those elements that
it doesn’t change at all.

6.3 Construct the orthogonal projection of the vector (1, 1, 1) onto the line L =
ran[1;−1; 1].

6.4 Construct the orthogonal projection of the vector x := (1, 1, 1) onto the straight
line y+ ran[v], with y = (2, 0, 1) and v = (1,−1, 1), i.e., the point y+ αv that minimizes
∥x− (y + αv)∥ over all α ∈ R.

6.5 Compute the distance between the two straight lines y+ ran[v] and z+ ran[w],
with y = (2, 0, 1), v = (1, 1, 1), z = (−1, 1,−1) and w = (0, 1, 1). (Hint: you want to
minimize ∥y + αv − (z+ βw)∥ over α, β.)

6.6 With v1 = (1, 2, 2), v2 = (−2, 2,−1), (a) construct the matrix that provides
the orthogonal projection onto the subspace ran[v1,v2] of R3; (b) compute the orthogonal
projection of the vector y = (1, 1, 1) onto ran[v1,v2].

6.7∗ Taking for granted that the space Y := C([−1 . . 1]) of real-valued continuous
functions on the interval [−1. .1] is an inner product space with respect to the inner product

⟨f, g⟩ :=
∫ 1

−1

f(t)g(t) dt,

do the following: (a) Construct (a formula for) the orthogonal projector onto X := Π<2,
using the power basis, V = [()0, ()1] for X. (b) Use your formula to compute the orthogonal
projection of ()2 onto Π<2.

6.8 (a) Prove: If F = R, then u ⊥ v if and only if ∥u+ v∥2 = ∥u∥2 + ∥v∥2. (b) What
goes wrong with your argument when F = C?

6.9 For each of the following maps f : Fn × Fn → F, determine whether or not it is
an inner product.

(a) F = R, n = 3, and f(x,y) = x1y1 + x3y3; (b) F = R, n = 3, and f(x,y) =
x1y1 − x2y2 + x3y3; (c) F = R, n = 2, and f(x,y) = x2

1 + y21 + x2y2; (d) F = C, n = 3,
and f(x,y) = x1y1 + x2y2 + x3y3; (e) F = R, n = 3, and f(x,y) = x1y2 + x2y3 + x3y1;

6.10 Prove that, for any invertible A ∈ Fn×n, ⟨·, ·⟩ : Fn × Fn → F : (x,y) 7→
(Ay)cAx = yc(AcA)x is an inner product on Fn.

6.11 Prove that, for any subset F of the inner product space Y , the orthogonal
complement F⊥ is a linear subspace. (Hint: F⊥ = ∩f∈F null fc.)

6.12∗ Prove that, whenever Y = X ⊕ Z, then X⊥ = Z and Z⊥ = X.

6.13 Prove that, if X is a linear subspace of an inner product space Y , and P is
a linear projector on X with ranP ⊂ X and ran( id − P ) ⊂ X⊥, then P = PX , the
orthogonal projector onto X.

6.14 Prove that, for any linear subspace X of a finite-dimensional inner product
space Y , ( id − PX) = PX⊥ .

6.15∗ Prove that, for any finite-dimensional linear subspace X of an inner product
space Y , (X⊥)⊥ = X.

6.16∗ Use Problem 6.15 to prove that two real matrices are row-equivalent (i.e., have
the same nullspace) if and only if they have the same row space.

6.17∗ An isometry or rigid motion in an inner product space X is any map

f : X → X that preserves distances, i.e., for which ∥f(x) − f(y)∥ = ∥x − y∥ for all

x, y ∈ X. Prove that any rigid motion on a real inner product space X that maps the

origin to itself is necessarily a linear map. (Hint: you might prove first that, for any x ̸= y

and any α ∈ R, the point (1− α)x+ αy is the unique point in X whose distance from x is

|α| ∥y − x∥ and from y is |1− α| ∥y − x∥.)
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Least-squares

We continue our discussion of the orthoprojector PV = V (V cV )−1V c on the
inner product space Y onto the subspace X with basis V . Note that, for
y ∈ Y , PV y = V a with a the unique solution to the linear equation

V cV ? = V cy.

This equation is also referred to as the normal equation since it requires
that V c(y − V a) = 0, i.e., that the residual, y − V a, be perpendicular or
normal to every column of V , hence to all of ranV (see (6.13)Figure). In
effect, given that the equation V ? = y doesn’t have a solution for y ∈ Y \X,
our particular V a = PV y gives us the closest thing to a solution.

In particular, if y ∈ Y = Rn and V ∈ Rn×r is 1-1, then PV y minimizes
∥y − V a∥ over all a ∈ Rr. For that reason, the coefficient vector a :=
V −1PV y is called the least-squares solution to the (usually inconsistent
or overdetermined) linear system V ? = y.

In MATLAB, the vector PV y is computed as V*(V\y), in line with the fact
mentioned earlier that the action of the matrix (V cV )−1V c is provided by the
operator V\, i.e., (up to roundoff and for any vector y) the three vectors

a1 = V\y, a2 = inv(V’*V)*V’*y, a3 = (V’*V)\(V’*y)

are all the same. However, the first way is preferable since it avoids actually forming
the matrix V’*V (or its inverse) and, therefore, is less prone to roundoff effects.

A practically very important special case of this occurs when X = ranV
consists of functions on some domain T and, for some finite subset S of T ,

δS : X → RS : f 7→ (f(s) : s ∈ S)

is 1-1. A good example of this would be T = [a . . b], #S ≥ k, and X = Π<k.
Then

(6.19) ⟨f, g⟩S :=
∑
s∈S

f(s)g(s) = (δSf)
t(δSg)

is an inner product on X since it is evidently linear in the first argument
and also hermitian and nonnegative, and is definite since ⟨f, f⟩S = 0 implies
δSf = 0, hence f = 0 since δS is assumed to be 1-1. Then, for arbitrary
g ∈ RS , and with V =: [v1, . . . , vr], we can compute

V cg := (⟨g, vj⟩S : j = 1:r) = (δSV )tg,

hence can construct
PV,Sg := V (V cV )−1V cg
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as the unique element V a of ranV closest to g in the sense that the sum of
squares

∑
s∈S |g(s)− (V a)(s)|2 is as small as possible. For this reason, PV,Sg

is also called the discrete least-squares approximation from ranV to g,
or, more explicitly, to the data ((s, g(s)) : s ∈ S). If #V = #S, then PV,Sg
is the unique interpolant to these data from ranV .

In any calculation of such a discrete least-squares approximation, we
would, of course, have to list the elements of S in some fashion, say as the
entries sj of the sequence (s1, . . . , sn). Then we can think of δS as the data
map into Rn given by f 7→ (f(sj) : j = 1:n). Correspondingly, δSV becomes
an n× r-matrix, and this matrix is 1-1, by the assumption that δS is 1-1 on
X = ranV . Further, the coefficient vector a := (V cV )−1V cg for PV,Sg is the
least-squares solution to the linear equation

δSV ? = g

which seeks a coefficient vector a so that V a interpolates to the data
((sj , g(sj)) : j = 1:n). Such an interpolant exists if and only if the matrix δSV
is invertible. Otherwise, one has to be content with a least-squares solution,
i.e., a discrete least-squares approximation to these data, from ranV .

6.18∗ Compute the discrete least squares approximation by straight lines (i.e., from
Π<2) to the data (j, j2), j = 1:10 using (a) the basis [()0, ()1]; (b) the basis [()0, ()1−5.5()0].
(c) Why might one prefer (b) to (a)?

Orthonormal column maps

The formula
PV = V (V cV )−1V c

for the orthogonal projector onto the range of the 1-1 column map V becomes
particularly simple in case

(6.20) V cV = id;

it then reduces to
PV = V V c.

We call V orthonormal (or, o.n., for short) in this case since, written out
entry by entry, (6.20) reads

⟨vj , vk⟩ =
{
1 if j = k;
0 otherwise,

}
=: δjk.

In other words, each column of V is normalized, meaning that it has norm
1, and different columns are orthogonal to each other. Such bases are special
in that they provide their own inverse, i.e.,

∀x ∈ ranV , x = V (V cx).
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The term ‘orthonormal’ can be confusing, given that earlier we men-
tioned the normal equation, V cV ? = V cy, socalled because it expresses the
condition that the residual, y−V a, be orthogonal or ‘normal’ to the columns
of V . In fact, norma is the Latin name for a mason’s tool for checking that
a wall is at right angles to the ground. In the same way, the normal to a
surface at a point is a vector at right angles to the surface at that point.
Nevertheless, to normalize the vector y does not mean to change it into a
vector that is perpendicular to some subspace or set. Rather, it means to
divide it by its norm, thereby obtaining the normalized vector or direc-

tion† y/∥y∥ that points in the same direction as y but has norm 1. To be
sure, this can only be done for y ̸= 0 and then ∥ y/∥y∥ ∥ = 1 because the
Euclidean norm is absolutely homogeneous, meaning that

(6.21) ∀(α, y) ∈ IF×Y , ∥αy∥ = |α|∥y∥.

We now show that every finite-dimensional linear subspace of an inner-
product space Y has o.n. bases.

(6.22) Proposition: For every 1-1 V ∈ L(IFn, Y ), there exists an o.n.
Q ∈ L(IFn, Y ) so that, for all j, ran[q1, q2, . . . , qj ] = ran[v1, v2, . . . , vj ],
hence V = QR with R (invertible and) upper triangular, a QR factor-
ization for V .

Proof: For j = 1:n, define uj := vj − PV<jvj , with V<j := Vj−1 :=
[v1, . . . , vj−1]. By (6.17)Theorem, uj ⊥ ranV<j , all j, hence uj ⊥ uk for
j ̸= k. Also, each uj is nonzero (since uj = Vj(a, 1) for some a ∈ IFj−1, and
Vj is 1-1), hence qj := uj/∥uj∥ is well-defined and, still, qj ⊥ qk for j ̸= k.

It follows that Q := [q1, . . . , qn] is o.n., hence, in particular, 1-1. Finally,
since qj = uj/∥uj∥ ∈ ranVj , it follows that, for each j, the 1-1 map [q1, . . . , qj ]
has its range in the j-dimensional space ranVj , hence must be a basis for it.

Since Q<j = [q1, . . . , qj−1] is an o.n. basis for ranV<j , it is of help in
constructing qj since it gives
(6.23)

uj = vj−PV<jvj , with PV<jvj = PQ<jvj =
∑
k<j

qk⟨vj , qk⟩ =
∑
k<j

uk
⟨vj , uk⟩
⟨uk, uk⟩

.

For this reason, it is customary to construct the uj or the qj ’s one by one,
from the first to the last, using (6.23). This process is called Gram-Schmidt

† In this book, we avoid using the term unit vector for what we have just
agreed to call a direction since unit vector means to some only one of the
coordinate directions ej .
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orthogonalization. To be sure, as (6.23) shows, there is no real need (other
than neatness) to compute the qj from the uj and, by skipping the calculation
of qj , one avoids taking square-roots.

Since any 1-1 column map into a finite-dimensional vector space can be
extended to a basis for that vector space, we have also proved the following.

(6.24) Corollary: Every o.n. column map Q into a finite-dimensional
inner product space can be extended to an o.n. basis for that space.

Given any 1-1 matrix V, the MATLAB command [q,r] = qr(V,0) provides
an o.n. basis, q, for ran V, along with the upper triangular matrix r for which q*r

equals V. The (simpler) statement [Q,R]=qr(V) provides a unitary, i.e., a square
o.n., matrix Q and an upper triangular matrix R so that Q*R equals V. If V is itself
square, then q equals Q. In the contrary case, Q equals [q,U] for some o.n. basis
U of the orthogonal complement of ranV. Finally, the simplest possible statement,
p = qr(V), gives the most complicated result, namely a matrix p of the same size
as V that contains r in its upper triangular part and complete information about
the various Householder matrices used in its strictly lower triangular part.

While, for each j = 1:#V, ranV( : , 1:j) = ranQ( : , 1:j), the construction
of q or Q does not involve the Gram-Schmidt algorithm, as that algorithm is not
reliable numerically when applied to an arbitrary 1-1 matrix V. Rather, the matrix
V is factored column by column with the aid of certain elementary matrices, the
so-called Householder reflections id − 2wwc/wcw.

As already observed, it is customary to call a square o.n. matrix uni-
tary. It is also customary to call a real unitary matrix orthogonal. However,
the columns of such an ‘orthogonal matrix’ are not just orthogonal to each
other, they are also normalized. Thus it would be better to call such a ma-
trix ‘orthonormal’, freeing the term ‘orthogonal matrix’ to denote one whose
columns are merely orthogonal to each other. But such naming conventions
are hard to change. I will simply not use the term ‘orthogonal matrix’, but
use ‘real unitary matrix’ instead.

An o.n. column map Q has many special properties, all of which derive
from the defining property, QcQ = id, by the observation that therefore, for
any a,b ∈ IFn,

(6.25) ⟨Qa, Qb⟩ = ⟨QcQa,b⟩ = ⟨a,b⟩.

This says that Q is inner-product preserving. In particular, any o.n.
Q ∈ L(IFn, X) is an isometry in the sense that

(6.26) ∀a,b ∈ IFn, ∥Qa−Qb∥ = ∥a− b∥.

More than that, any o.n. Q ∈ L(IFn, X) is angle-preserving since a
standard definition of the angle φ between two real nonzero n-vectors x and
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y is the following implicit one:

cos(φ) :=
⟨x,y⟩
∥x∥∥y∥

.

To be sure, this definition makes sense only if we can be sure that the right-
hand side lies in the interval [−1 . . 1]. But this is a consequence of the

Cauchy-Bunyakovski-Schwarz or CBS Inequality: For any u, v in
the inner product space Y ,

(6.27) |⟨u, v⟩| = |vcu| ≤ ∥u∥ ∥v∥,

with equality if and only if [u, v] is not 1-1.

Be sure to remember not only the inequality, but also exactly when it
is an equal ity.

Proof: If v = 0, then there is equality in (6.27) and [u, v] is not
1-1. Otherwise, v ̸= 0 and, in that case, by (6.18)Proposition, the or-
thogonal projection P[v]u = v(vcu)/∥v∥2 onto ran[v] of an arbitrary u ∈ Y
has norm smaller than ∥u∥ unless u = P[v]u. In other words, |vcu|/∥v∥ =
∥v(vcu)/∥v∥2∥ ≤ ∥u∥, showing that (6.27) holds in this case, with equality if
and only if u ∈ ran[v].

6.19 Prove (6.21).

6.20 Prove that V =

[
1 1 1
−1 1 −1
0 1 2

]
is a basis for R3 and compute the coordinates

of x := (1, 1, 1) with respect to V .

6.21 Verify that V =

 1 −1 1
1 −1 −1
1 2 0
0 0 2

 is an orthogonal basis for its range, and extend

it to an orthogonal basis for R4.

6.22 (a) Use the calculations in Problem 6.18 to construct an orthogonal basis for
Π<3 from the power basis V = [()0, ()1, ()2] with respect to the (discrete) inner product
in Problem 6.18.

(b) Use (a) to compute the discrete least-squares approximation from Π<3 to the
data (j, j3), j = 1:10.

6.23 Use the result of Problem 6.7 to construct an o.n. basis for Π<3 wrto the inner

product ⟨f, g⟩ :=
∫ 1

−1
f(t)g(t) dt.

6.24 What is the angle between (1, 2, 2) and (3,−1,−2)?

6.25 Consider the Vandermonde matrix

A := [δz0 , . . . , δzk ]
c[()0, . . . , ()k] = (zji : i, j = 0:k)
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for some sequence z0, . . . , zk of complex numbers.

Prove that A is a scalar multiple of a unitary matrix if and only if, for some real α,

(z0, . . . , zk) = (exp(2πi(α+ j/(k + 1))) : j = 0:k).

ranA and nullAc form an orthogonal direct sum for tarA

The two basic linear subspaces associated with A ∈ L(X,Y ) are its range,
ranA, and its kernel or nullspace, nullA. However, when X and Y are
finite-dimensional inner product spaces, it is also possible and very useful to
consider the range of A and the nullspace of the (conjugate) transpose Ac of
A together. For, then, by the definiteness of the inner product, Acy = 0 iff
⟨x,Acy⟩ = 0 for all x ∈ X, while, by (6.5), ⟨x,Acy⟩ = ⟨Ax, y⟩, hence

nullAc = {y ∈ Y : y ⊥ ranA}.

Recalling the notation

M⊥ := {y ∈ Y : y ⊥M}

for the orthogonal complement of the subset M of Y , we get the following.

(6.28) Proposition: For any A ∈ L(X,Y ), (ranA)⊥ = nullAc.

(6.29) Corollary: For any A ∈ L(X,Y ), Y is the orthogonal direct
sum Y = ranA⊕ nullAc. Hence

dim tarA = dim ranA+ dimnullAc.

Proof: Let V be any basis for ranA. By (6.17)Theorem,

Y = ranV ⊕ nullV c,

while, by choice of V , ranV = ranA, and so, by (6.28), nullV c = (ranV )⊥ =
(ranA)⊥ = nullAc.
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In particular, A is onto if and only if Ac is 1-1. Further, since (Ac)c = A,
we also have the following complementary statement.

(6.30) Corollary: For any A ∈ L(X,Y ), X is the orthogonal direct
sum X = ranAc ⊕ nullA. Hence,

dimdomA = dim ranAc + dimnullA.

In particular, Ac is onto if and only if A is 1-1. Also, on comparing (6.30)
with the (3.23)Dimension Formula, we see that dim ranA = dim ranAc.

The fact (see (6.29)Corollary) that tarA = ranA⊕ nullAc is often used
as a characterization of the elements y ∈ tarA for which the equation A? = y
has a solution. For, it says that y ∈ ranA if and only if y ⊥ nullAc. Of
course, since nullAc consists exactly of those vectors that are orthogonal to
all the columns of A, this is just a special case of the fact (see Problem 6.15)
that the orthogonal complement of the orthogonal complement of a linear
subspace is that linear subspace itself.

The inner product space IFm×n and the trace of a matrix

At the outset of this book, we introduced the space IFm×n as a special case
of the space IFT of all scalar-valued functions on some set T , namely with

T = m× n.

This set being finite, there is a natural inner product on IFm×n, namely

⟨A,B⟩ :=
∑
i,j

BijAij .

This inner product can also be written in the form

⟨A,B⟩ =
∑
i,j

(Bc)jiAij =
∑
j

(BcA)jj = trace(BcA).

Here, the trace of a square matrix C is, by definition, the sum of its diagonal
entries,

traceC :=
∑
j

Cjj .

Note that

(6.31) trace(ABc) =
∑
i,j

AijBij =
∑
j,i

BijAij = trace(BcA).
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The norm in this inner product space is called the Frobenius norm,

(6.32) ∥A∥2F := traceAcA =
∑
i,j

|Aij |2.

The Frobenius norm is compatible with the Euclidean norm ∥ ∥2 on IFn and
IFm in the sense that (according to Problem 6.30)

(6.33) ∥Ax∥2 ≤ ∥A∥F ∥x∥2, x ∈ IFn.

Not surprisingly, the map IFm×n → IFn×m : A 7→ At is unitary, i.e.,
inner-product preserving:

(6.34) ⟨At, Bt⟩ =
∑
i,j

(Bt)ij(A
t)ij =

∑
i,j

BjiAji = ⟨A,B⟩.

6.26 Prove that traceA = ⟨A, id⟩.
6.27 (6.31) shows that trace(AB) = trace(BA). Give an example to show that

trace(AB) does not in general equal (traceA)(traceB).

6.28 Verify that trace : Fn×n → F : A 7→ traceA is a linear map that satisfies
trace(AB) = trace(BA).

6.29 Prove: If f : Fn×n → F is a linear map that satisfies f(AB) = f(BA) for all
A,B ∈ Fn×n and is normalized so that f( idn) = n, then f = trace. (Hint: Problem 2.13.)

6.30∗ Prove (6.33).

6.31 T/F

(a) (x,y) 7→ yc

[
1 1
1 1

]
x is an inner product on R2;

(b) ∥x+ y∥2 ≤ ∥x∥2 + ∥y∥2.
(c) For any A ∈ Fm×n, traceAcA ≥ 0 with eqality iff A = 0.
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and the condition of a basis

Assume that V is a basis for the nontrivial linear subspace X of the inner
product space Y . The coordinate vector a for x ∈ X is the unique solution
of the equation

V ? = x.

We may not be able to compute the solution exactly. Even if we know the
entries of the solution exactly, as common fractions, say, we may not be able
to use them exactly if we use some floating-point arithmetic, as is common.
It is for this reason that one is interested in gauging the effect of an erroneous
coordinate vector â on the accuracy of V â as a representation for x = V a.

How to judge the error by the residual

Since, presumably, we do not know a, we cannot compute the error

εεεεε := a− â;

we can only compute the residual

r := x− V â.

Nevertheless, can we judge the error by the residual? Does a ‘small’ relative
residual

∥r∥/∥x∥

imply a ‘small’ relative error

∥εεεεε∥/∥a∥ ?

115
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By definition, the condition (or, condition number) κ(V ) of the basis
V is the greatest factor by which the relative error, ∥εεεεε∥/∥a∥, can exceed the
relative residual, ∥r∥/∥x∥ = ∥V εεεεε∥/∥V a∥; i.e.,

(7.1) κ(V ) := sup
a,εεεεε

∥εεεεε∥/∥a∥
∥V εεεεε∥/∥V a∥

(here and below, the supremum (or infimum) is only taken over well-defined
expressions, i.e., in this case, both a and V εεεεε are restricted to be nonzero).
However, by interchanging here the roles of a and εεεεε and then taking recipro-
cals, this also says that

1/κ(V ) = inf
εεεεε,a

∥εεεεε∥/∥a∥
∥V εεεεε∥/∥V a∥

.

Hence, altogether,

(7.2)
1

κ(V )

∥r∥
∥x∥

≤ ∥ε
εεεε∥
∥a∥

≤ κ(V )
∥r∥
∥x∥

.

In other words, the larger the condition number, the less information about
the size of the relative error is provided by the size of the relative residual.

For a better feel for the condition number, note that we can also write
the formula (7.1) for κ(V ) in the following fashion:

κ(V ) = sup
εεεεε

∥εεεεε∥
∥V εεεεε∥

sup
a

∥V a∥
∥a∥

.

Also,
∥V a∥/∥a∥ = ∥V (a/∥a∥)∥,

with a/∥a∥ normalized, i.e., of norm 1. Hence, altogether,

(7.3) κ(V ) =
sup{∥V a∥ : ∥a∥ = 1}
inf{∥V a∥ : ∥a∥ = 1}

.

This says that we can visualize the condition number κ(V ) in the following
way, as illustrated in (7.5)Figure. Consider the image

(7.4) {V a : ∥a∥ = 1}

under V of the unit sphere

{a ∈ IFn : ∥a∥ = 1}

in IFn. It will be some kind of ellipsoid, symmetric with respect to the origin.
In particular, by (17.6)Theorem, there will be a point amax with ∥amax∥ = 1
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for which V amax will be as far from the origin as possible. There will also be
a point amin with ∥amin∥ = 1 for which V amin will be as close to the origin
as possible. In other words,

κ(V ) = ∥V amax∥/∥V amin∥,

saying that the condition number gives the ratio of the largest to the smallest
diameter of the ellipsoid (7.4). The larger the condition number, the skinnier
is the ellipsoid.

In particular, if a = amax while εεεεε = amin, then the relative error is 1
while the relative residual is ∥V amin∥/∥V amax∥, and this is tiny to the extent
that the ellipsoid is ‘skinny’.

On the other hand, if a = amin while εεεεε = amax, then the relative error is
still 1, but now the relative residual is ∥V amax∥/∥V amin∥, and this is large
to the extent that the ellipsoid is ‘skinny’.

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

V (amax + .2amin)

V (amin + .2amax)

(7.5) Figure. Extreme effects of a 20% relative error on the relative

residual, for V =

[
3 2
2 3

]
.

The worst-conditioned column maps V are those that fail to be 1-1 since,
for them, V amin = 0, hence κ(V ) =∞.

On the other extreme, it follows directly from (7.3) that κ(V ) ≥ 1, and
this lower bound is reached by any o.n. basis V since any o.n. basis is an
isometry, by (6.26), i.e., ∥V a∥ = ∥a∥ for all a ∈ IFn. Thus o.n. bases are
best-conditioned, and rightfully prized for that. It was for this reason that
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we took the trouble to prove that every finite-dimensional linear subspace
of an inner product space has o.n. bases, and even discussed just how to
construct such bases.

The map norm

As we now explain, the numbers ∥V amax∥ = max{∥V a∥ : ∥a∥ = 1} and
1/∥V amin∥ = 1/min{∥V a∥ : ∥a∥ = 1} both are examples of a map norm
according to the following

(7.6) Definition: The map norm, ∥A∥, of A ∈ L(X,Y ) is the smallest
nonnegative number c for which

∀x ∈ X, ∥Ax∥ ≤ c∥x∥.

If X is trivial, then ∥A∥ = 0 for the sole A ∈ L(X,Y ). Otherwise

(7.7) ∥A∥ = sup
x ̸=0
∥Ax∥/∥x∥ = sup{∥Ax∥ : ∥x∥ = 1}.

Here, the last equality follows from the absolute homogeneity of the norm
and the homogeneity of A which combine to permit the conclusions that

∥Ax∥/∥x∥ = ∥A(x/∥x∥)∥ and ∥(x/∥x∥)∥ = 1.

In this book, we are only interested in finite-dimensional X and, for such
X,

(7.8) ∥A∥ = max
x̸=0
∥Ax∥/∥x∥ = max{∥Ax∥ : ∥x∥ = 1}.

The reason for this is beyond the scope of this book, but is now stated for
the record:

(7.9) Fact: If X is a finite-dimensional normed vector space and A ∈
L(X,Y ) for some normed vector space Y , then

F : x 7→ ∥Ax∥

is continuous and the unit sphere

{x ∈ X : ∥x∥ = 1}

is compact, hence F achieves its maximum value, ∥A∥, on that sphere.
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See page 276 for more details. For the same reason, F also achieves its
minimum value on the unit sphere, and this justifies the existence of amax

and amin in the preceding section.

We conclude that determination of the map norm is a two-part process,
as formalized in the following.

(7.10) Calculation of ∥A∥: The number c equals the norm ∥A∥ if and
only if

(i) for all x, ∥Ax∥ ≤ c∥x∥; and
(ii) for some x ̸= 0, ∥Ax∥ ≥ c∥x∥.

The first says that ∥A∥ ≤ c, while second says that ∥A∥ ≥ c, hence, to-
gether they say that ∥A∥ = c. See, e.g., the answer to Problem 7.13 for an
illustration.

(7.11) Example: We compute ∥A∥ in case A ∈ IFm×n is of the simple
form

A = [v][w]c = vwc

for some v ∈ IFm and some w ∈ IFn. Since Ax = (vwc)x = v(wcx), we have

∥(vwc)x∥ = ∥v∥|wcx| ≤ ∥v∥∥w∥∥x∥,

the equality by the absolute homogeneity of the norm, and the inequality by
(6.27)Cauchy’s Inequality. This shows that ∥vwc∥ ≤ ∥v∥∥w∥. On the other
hand, for the specific choice x = w, we get

(vwc)w = v(wcw) = v∥w∥2,

hence ∥vwc∥∥w∥ ≥ ∥vwcw∥ = ∥v∥∥w∥2, therefore, assuming that w ̸=
0, ∥vwc∥ ≥ ∥v∥∥w∥, while this inequality holds trivially if w = 0. So,
altogether, we have that

∥vwc∥ = ∥v∥∥w∥.

Note that this, incidentally, proves that, for any v ∈ IFn,

(7.12) ∥[v]∥ = ∥v∥ = ∥[v]c∥.
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As another example, note that, if also B ∈ L(Y,Z) for some inner prod-
uct space Z, then BA is defined and

∥(BA)x∥ = ∥B(Ax)∥ ≤ ∥B∥ ∥Ax∥ ≤ ∥B∥ ∥A∥∥x∥.

Therefore,

(7.13) ∥BA∥ ≤ ∥B∥ ∥A∥.

We are ready to discuss the condition (7.3) of a basis V in terms of map
norms.

Directly from (7.8), max{∥V a∥ : ∥a∥ = 1} = ∥V ∥.

(7.14) Proposition: If A ∈ L(X,Y ) is invertible and X ̸= {0} is
finite-dimensional, then

∥A−1∥ = 1/min{∥Ax∥ : ∥x∥ = 1}.

Proof: Since A is invertible, y ∈ Y is nonzero if and only if y = Ax
for some nonzero x ∈ X. Hence,

∥A−1∥ = max
y ̸=0

∥A−1y∥
∥y∥

= max
x ̸=0

∥A−1Ax∥
∥Ax∥

= 1/min
x ̸=0

∥Ax∥
∥x∥

,

and this equals 1/min{∥Ax∥ : ∥x∥ = 1} by the absolute homogeneity of the
norm and the homogeneity of A.

In particular, 1/∥A−1∥ is the largest number c for which

∀x ∈ X, c∥x∥ ≤ ∥Ax∥.

We conclude that

(7.15) κ(V ) = ∥V ∥∥V −1∥.

7.1 Complement (7.14)Proposition by discussing the situation when X = {0}.
7.2 Prove that κ(V ) ≥ 1 for any basis V with at least one column.

7.3 Determine κ([ ]).

7.4∗ Discuss a relationship, if any, between the condition of a product and the con-

dition of its factors.
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Vector norms and their associated map norms

MATLAB provides the map norm of the matrix A by the statement norm(A) (or by
the statement norm(A,2), indicating that there are other map norms available).

The norm command gives the Euclidean norm when its argument is a ‘vector’.
Specifically, norm(v) and norm(v,2) both give ∥v∥ =

√
vcv. However, since

in (present-day) MATLAB, everything is a matrix, there is room here for confusion
since experimentation shows that MATLAB defines a ‘vector’ to be any 1-column
matrix and any 1-row matrix. Fortunately, there is no problem with this, since, by
(7.12), the norm of the vector v equals the norm of the matrices [v] and vc.

The best explicit expression available for ∥A∥ for an arbitrary A ∈ IFm×n

is the following:

(7.16) ∥A∥ = σ1(A) =
√
ρ(AcA).

The first equality is (8.16), with σ1(A), by definition, the largest ‘singular
value’ of A, and, by Problem 10.7, σ1(A)

2 is the (absolutely) largest ‘eigen-
value’ of AcA, hence the ‘spectral radius’ ρ(AcA) of AcA, i.e., the smallest
possible radius of a disk centered at the origin that contains all the ‘eigen-
values’ of AcA. In general, one can only compute approximations to this
number.

7.5 Prove that the Frobenius norm ∥A∥F of A ∈ Fm×n (see (6.32)) is an upper

bound for its map norm ∥A∥ associated with the Euclidean norm. (Hint: Problem 6.30.)

For this reason (and others), other vector norms are in common use,
among them the max-norm

∀x ∈ IFn, ∥x∥∞ := max
j
|xj |,

for which the associated map norm is easily computable. It is

(7.17) ∥A∥∞ := max
x̸=0
∥Ax∥∞/∥x∥∞ = max

i

∑
j

|Aij | = max
i
∥Ai::∥1,

with

(7.18) ∥v∥1 :=
∑
j

|vj |

yet another vector norm, the socalled 1-norm. The map norm associated
with the 1-norm is also easily computable. It is (see Problem 7.7)

(7.19)

∥A∥1 := max
x̸=0
∥Ax∥1/∥x∥1 = max

j

∑
i

|Aij |

= max
j
∥A::j∥1 = ∥At∥∞ = ∥Ac∥∞.



122 7 Norms, map norms, and the condition of a basis

In this connection, the Euclidean norm is also known as the 2-norm,
since

∥x∥ =
√
xcx =

√∑
j

|xj |2 =: ∥x∥2.

Therefore, when it is important, one writes the corresponding map-norm with
a subscript 2, too. For example, compare (7.19) with

(7.20) ∥A∥ = ∥A∥2 = ∥Ac∥2 = ∥At∥2.

For the proof of these identities, recall from (6.27) that

(7.21) ∥x∥2 = max
y ̸=0
|⟨x,y⟩|/∥y∥2, x ∈ IFn.

Hence,
(7.22)

∥A∥2 = max
x̸=0

∥Ax∥2
∥x∥2

= max
x̸=0

max
y ̸=0

|⟨Ax,y⟩|
∥x∥2∥y∥2

= max
y ̸=0

max
x̸=0

|⟨x, Acy⟩|
∥x∥2∥y∥2

= max
y ̸=0

∥Acy∥2
∥y∥2

= ∥Ac∥2.

The equality ∥At∥ = ∥Ac∥ holds in any of the map-norms discussed since
they all depend only on the absolute values of the entries of the matrix A.

The MATLAB statement norm(A,inf) provides the norm ∥A∥∞ in case A is a
‘matrix’, i.e., not a ‘vector’. If A happens to equal [v] or [v]t for some vector v,
then norm(A,inf) returns the max-norm of that vector, i.e., the number ∥v∥∞.
By (7.17), this is ok if A = [v], but gives, in general, the wrong result if A = vt.
This is an additional reason for sticking with the rule of using only (n, 1)-matrices
for representing n-vectors in MATLAB.

The 1-norm, ∥A∥1, is supplied by the statement norm(A,1).

All three (vector-)norms mentioned so far are, indeed, norms in the sense
of the following definition.

(7.23) Definition: The map ∥ ∥ : X → R : x 7→ ∥x∥ is a vector norm
provided it is

(i) positive definite, i.e., ∀x ∈ X, ∥x∥ ≥ 0 with equality if and only
if x = 0;

(ii) absolutely homogeneous, i.e., ∀(α, x) ∈ IF×X, ∥αx∥ = |α|∥x∥;
(iii) subadditive, i.e., ∀x, y ∈ X, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

This last inequality is called the triangle inequality, and the vec-
tor space X supplied with a vector norm is called a normed vector
space.
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The absolute value is a vector norm for the vector space IF = IF1. From
this, it is immediate that both the max-norm and the 1-norm are vector
norms for IFn. As to the norm x 7→

√
xcx on an inner product space and,

in particular, the Euclidean or 2-norm on IFn, only the triangle inequality
might still be in doubt, but it is an immediate consequence of (6.27)Cauchy’s
Inequality, which gives that

⟨x, y⟩+ ⟨y, x⟩ = 2Re⟨x, y⟩ ≤ 2|⟨x, y⟩| ≤ 2∥x∥∥y∥,

and therefore:

∥x+ y∥2 = ∥x∥2 + ⟨x, y⟩+ ⟨y, x⟩+ ∥y∥2 ≤ (∥x∥+ ∥y∥)2.

Also, for X finite-dimensional, and both X and Y normed vector spaces,
with norms ∥ ∥X and ∥ ∥Y respectively, the vector space L(X,Y ) is a normed
vector space with respect to the corresponding map norm

(7.24) ∥A∥ := ∥A∥X,Y := max
x ̸=0

∥Ax∥Y
∥x∥X

.

All statements about the map norm ∥A∥ = ∥A∥2 made in the preceding
section hold for any of the map norms ∥A∥X,Y since their proofs there use
only the fact that x 7→

√
xcx is a norm according to (7.23)Definition. In

particular, we will feel free to consider

κ(A)p := ∥A∥p∥A−1∥p, p = 1, 2,∞, A ∈ IFn×n.

Why all these different norms? Each norm associates with a vector just
one number, and, as with bases, any particular situation may best be handled
by a particular norm.

For example, in considering the condition of the power basis V := [()j−1 :
j = 1:k] for Π<k, we might be more interested in measuring the size of the
residual p− V â in terms of the max-norm

∥f∥[c..d] := max{|f(t)| : c ≤ t ≤ d}

over the interval [c . . d] of interest, rather than in the averaging way supplied
by the corresponding 2-norm(∫ d

c

|f(t)|2 dt

)1/2

.

In any case, any two norms on a finite-dimensional vector space are
equivalent in the following sense.
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(7.25) Proposition: For any two norms, ∥ ∥′ and ∥ ∥′′, on a finite-
dimensional vector space X, there exists a positive constant c so that

∀x ∈ X, ∥x∥′′ ≤ c∥x∥′.

This is just the statement that the map norm

∥ idX∥ := max
x ̸=0
∥x∥′′/∥x∥′

is finite.

For example, for any x ∈ IFn,
(7.26)
∥x∥1 ≤

√
n∥x∥2, and ∥x∥2 ≤

√
n∥x∥∞, while ∥x∥1 ≥ ∥x∥2 ≥ ∥x∥∞.

Finally, given that it is very easy to compute the max-norm ∥A∥∞ of
A ∈ IFm×n and much harder to compute the 2-norm ∥A∥ = ∥A∥2, why
does one bother at all with the 2-norm? One very important reason is the
availability of a large variety of isometries, i.e., matrices A with

∀x,y, ∥Ax−Ay∥ = ∥x− y∥.

Each of these provides an o.n. basis for its range, and, by (6.22)Proposition,
each finite-dimensional linear subspace of an inner product space has o.n.
bases.

In contrast, the only A ∈ IFn×n that are isometries in the max-norm,
i.e., satisfy

∀x,y ∈ IFn, ∥Ax−Ay∥∞ = ∥x− y∥∞,

are of the form
diag(ε1, . . . , εn)P,

with P a permutation matrix and each εj a scalar of absolute value 1.

For this reason, we continue to rely on the 2-norm. In fact, any norm
without a subscript or other adornment is meant to be the 2-norm (or, more
generally, the norm in the relevant inner product space).

7.6 Prove that a linear map A on the normed vector space X is an isometry iff it is
norm-preserving, i.e., ∥Ax∥ = ∥x∥ for all x ∈ X.

7.7∗ Prove that, for any A ∈ Fm×n, (1) maxx ̸=0 ∥Ax∥∞/∥x∥∞ = maxi ∥Ai::∥1 =:

∥A(imax, : )∥1, hence ∥Ax∥∞ = ∥A∥∞∥x∥∞ for x := (signum(A(imax, j)) : j = 1:n), and
(2) maxx ̸=0 ∥Ax∥1/∥x∥1 = maxj ∥A::j∥1 =: ∥A( : , jmax)∥1, with ∥Ax∥1 = ∥A∥1∥x∥1 for
x = ejmax .
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7.8 Prove that, for any α ∈ F, the linear map Mα : X → X : x 7→ αx on the normed
vector space X ̸= {0} has map norm |α|.

7.9 Prove that, for any diagonal matrix D ∈ Fm×n and for p = 1, 2,∞, ∥D∥p =
maxj |Djj |.

7.10 Consider the vector space C(K), of all continuous real-valued functions on some

compact subset K of Rn. Show that C(K) is a normed vector space with respect to the

norm ∥f∥ = ∥f∥K := maxt∈K |f(t)|.

Any linear map close enough to an invertible linear map
is invertible

As a simple but important use of map norms, we now investigate their use
in proving the invertibility of a linear map by showing that it is close enough
to a linear map known to be invertible.

Assume that A ∈ L(X,Y ) is invertible, with X and Y finite-dimensional
normed vector spaces. Then, by (3.21)Proposition, dimX = dimY , hence
the invertibility of B ∈ L(X,Y ) is established once B is shown to be 1-1. For
this, observe that

(7.27) ∥Bx∥ ≥ ∥Ax∥ − ∥Bx−Ax∥ ≥ (1/∥A−1∥ − ∥B −A∥)∥x∥,

using the fact that

(7.28) min
x

∥Ax∥
∥x∥

= 1/∥A−1∥

(see, e.g., (7.14)Proposition). Hence, if 1/∥A−1∥ > ∥B − A∥, then Bx = 0
implies, with (7.27), that x = 0, i.e., B is 1-1, hence invertible and, in
that case (using (7.28) for B instead of A), (7.27) implies that 1/∥B−1∥ ≥
1/∥A−1∥ − ∥B −A∥. This proves the following useful

(7.29) Proposition. If A ∈ L(X,Y ) is invertible, with X, hence Y , finite-
dimensional normed vector spaces, then any B ∈ L(X,Y ) with ∥B − A∥ <
∥A−1∥−1 is invertible, and

∥B−1∥ ≤ ∥A−1∥/(1− ∥B −A∥ ∥A−1∥).

7.11∗ Let (0 . . 1] → L(X,Y ) : t 7→ Bt be a given map into the vector space L(X,Y )

normed with the map norm derived from the norms of the finite-dimensional normed

vector spaces X and Y . Prove: If A := limt→0 Bt exists (i.e., for some A ∈ L(X,Y ),

limt→0 ∥A − Bt∥ = 0) and is invertible, then, for all sufficiently small t, Bt is invertible,

and limt→0(Bt)−1 = A−1. (Hint: B−1 −A−1 = A−1(A−B)B−1)

Bounding the interpolation error: Lebesgue’s inequality

Recall from (5.9)Proposition the setup of interpolation: We are given the
column map V into the vector space Y and a corresponding row map Λt
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on Y so that their Gramian, ΛtV , is invertible, therefore V is 1-1 and Λt is
onto, and P := V (ΛtV )−1Λt is the linear projector with ranP = ranV and
nullP = null Λt, and so, for each y ∈ Y , Py is the unique element of ranV
that interpolates y in the sense that Λt(Py) = Λty.

Now assume that Y is a normed vector space, with vector norm ∥ · ∥.
We derive a useful bound on the norm of the interpolation error, y − Py,
in terms of the map norm ∥P∥ = maxy∈Y \0 ∥Py∥/∥y∥ of P . Since

y − Py = ( id − P )y = ( id − P )(y − x)

for all x ∈ ranP = ranV , we obtain

∥y − Py∥ ≤ ∥ id − P∥∥y − x∥

for all x ∈ ranP , and this proves Lebesgue’s Inequality

(7.30) ∥y − Py∥ ≤ ∥ id − P∥dist (y, ranP ),

with
dist (y,X) := inf

x∈X
∥y − x∥

the distance of y from the set X. Since the map norm is a norm, it satisfies
the triangle inequality, hence

∥ id − P∥ ≤ 1 + ∥P∥.

This leads to the conclusion that such an interpolation scheme P is near-
optimal in the sense that its interpolation error is close to the smallest
possible error of approximation from ranP to the extent that ∥P∥ is close to
1.

As a very simple example, consider polynomial interpolation to data at
the endpoints of an interval [a . . b], i.e.,

(Py)(t) =
y(a)(b− t) + y(b)(t− a)

b− a
, t ∈ [a . . b],

with Y = C([a . . b]) with the max-norm ∥y∥ = ∥y∥∞ = max(|y([a . . b])|).
Then

∥Py∥∞ = max(|y(a)|, |y(b)|) ≤ ∥y∥∞,

therefore ∥P∥ = 1. It follows that, in this case, the interpolation error is at
most twice the error achievable by any approximation to y by a straight line.

7.12 Prove that, for a linear projector P , ∥P∥ < 1 implies that P = 0.

7.13∗ Prove that the linear projector Pτττττ of polynomial interpolation at the pairwise

distinct points τ1, . . . , τk in the interval [a . . b] has, as a linear map on the normed vector

space Y = C([a . . b]) with norm ∥ · ∥∞, the map norm ∥Pτττττ∥ = ∥Lτττττ∥∞, with Lτττττ :=
∑

i
|ℓi|

where the ℓi are the columns of the corresponding Lagrange basis for Π<k (see (5.7)). Lτττττ

is known as the Lebesgue function of this interpolation process.
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The need for factoring linear maps

In order to compute with a linear map A ∈ L(X,Y ), we have to factor it
through a coordinate space. This means that we have to write it as

A = V Λt, with V ∈ L(IFr, Y ), hence Λt ∈ L(X, IFr) .

The following picture might be helpful:

A
X −→ Y

↘ ↗Λt
V

IFr

For example, recall how you apply the linear map D of differentiation
to a polynomial p ∈ Π≤k: First you get the polynomial coefficients of that
polynomial, and then you write down Dp in terms of those coefficients.

To test my claim, carry out the following thought experiment: You know
that there is exactly one polynomial p of degree ≤ k that matches given
ordinates at given k + 1 distinct abscissae, i.e., that satisfies

p(τi) = yi, i = 0:k

for given data (τi, yi), i = 0:k. Now, try, e.g., to compute the first derivative
of the polynomial p of degree ≤ 3 that satisfies p(j) = (−1)j , j = 1, 2, 3, 4.
Can you do it without factoring the linear map D : Π<4 → Π<4 through
some coordinate space?

127
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As another example, recall how we dealt with coordinate maps, i.e.,
the inverse of a basis. We saw that, even though a basis V : IFn → IFm

for some linear subspace X of IFm is a concrete matrix, its inverse, V −1 is,
offhand, just a formal expression. For actual work, we made use of any matrix
Λt : IFm → IFn that is 1-1 on X, thereby obtaining the factorization

V −1 = (ΛtV )−1Λt

in which ΛtV is a square matrix, hence (ΛtV )−1 is also a matrix.

The smaller one can make #V in a factorization A = V Λt of A ∈
L(X,Y ), the cheaper is the calculation of A.

(8.1) Definition: The smallest r for which A ∈ L(X,Y ) can be factored
as A = V Λt with V ∈ L(IFr, Y ) (hence Λt ∈ L(X, IFr)) is called the
rank of A. This is written

r = rankA.

Any factorization A = V Λt with #V = rankA is called minimal.

As an example,

A :=


1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

 =


1
1
1
1

 [ 1 2 3 4 5 ] ,

hence this A has rank 1 (since we can write it as A = V Λt with domV = IF1,
but we couldn’t do it with domV = IF0). To calculate Ax, we merely need
to calculate the number α := (1, 2, 3, 4, 5)tx, and then obtain Ax as the
particular scalar multiple yα of the vector y := (1, 1, 1, 1). That is much
cheaper than computing the matrix product of the 4× 5-matrix A with the
1-column matrix [x].

As the example illustrates, any matrix

A := [v][w]t = vwt

with v ∈ IFm and w ∈ IFn has rank 1 unless it is trivial, i.e., unless either v
or w is the zero vector. This explains why an elementary matrix id + vwt

is also called a rank-one perturbation of the identity.

The only linear map of rank 0 is the zero map. If A is not the zero map,
then its range contains some nonzero vector, hence so must the range of any
V for which A = V Λt with domV = IFr, therefore such r must be > 0.
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As another example, for any vector space X,

dimX = rank idX .

Indeed, if n = dimX, then, for any basis V ∈ L(IFn, X) for X, idX = V V −1,
therefore rank idX ≤ n, while, for any factorization idX = V Λt for some V ∈
L(IFr, X), V must necessarily be onto, hence dimX ≤ r, by (3.9)Corollary,
and therefore dimX ≤ rank idX . In fact, it is possible to make the rank
concept the primary one and define dimX as the rank of idX .

When A is an m × n-matrix, then, trivially, A = A idn = idmA, hence
rankA ≤ min{m,n}.

At times, particularly when A is a matrix, it is convenient to write the
factorization A = V Λt more explicitly as

(8.2) A =: [v1, v2, . . . , vr][λ1, λ2, . . . , λr]
t =

r∑
j=1

[vj ]λj .

Since each of the maps

vjλj := [vj ]λj = [vj ] ◦ λj : x 7→ (λjx)vj

has rank ≤ 1, this shows that the rank of A gives the smallest number of
terms necessary to write A as a sum of rank-one maps.

(8.3) Proposition: A = V Λt is minimal if and only if V is a basis for
ranA. In particular,

rankA = dim ranA.

Proof: Let A = V Λt. Then ranA ⊂ ranV , hence

dim ranA ≤ dim ranV ≤ #V,

with equality in the first ≤ iff ranA = ranV (by (3.18)Proposition), and in
the second ≤ iff V is 1-1. Thus, dim ranA ≤ #V , with equality iff V is a
basis for ranA.

On can prove in a similar way that A = V Λt is minimal if and only if
Λt is onto and null Λt = nullA; see Problem 8.5.

(8.4) Corollary: The factorization A = A( : , bound)rrref(A) provided
by elimination (see (4.18)) is minimal.
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(8.5) Corollary: If A = V Λt is minimal and A is invertible, then also
V and Λt are invertible.

Proof: By (8.3)Proposition, V ∈ L(IFr, Y ) is a basis for ranA, while
ranA = Y since A is invertible. Hence, V is invertible. Therefore, also
Λt = V −1A is invertible.

But note that the matrix [ 1 ] = [ 1 0 ]

[
1
0

]
is invertible, even though

neither of its two factors is.

8.1 Determine a minimal factorization for the matrix

A :=

 1 2 0 3 4
2 4 0 6 8
1 1 0 1 1
8 7 0 6 5

 .

8.2 With A the matrix of the previous problem, give a basis for ranA and a basis
for ranAt.

8.3 Give an example of a pair of matrices, A and B, of order 4, each of rank 2, yet
ranA ∩ ranB = {0}.

8.4 Prove: For any two linear maps A and B for which AB is defined, rank(AB) ≤
min{rankA, rankB}. (Hint: If A = VAΛA

t and B = VBΛB
t, then AB = VA(ΛA

tVBΛB
t)

= (VAΛA
tVB)ΛB

t. Totally different hint: Use the (3.23)Dimension Formula together with
the fact that rankC = dim ranC.)

8.5∗ Prove that the following three statements are equivalent: (a) A = V Λt is min-
imal; (b) V is 1-1 and ranV = ranA; (c) Λt is onto and null Λt = nullA.

8.6 Prove: If A = V Λt is a minimal factorization and A is a projector (i.e., A2 = A),

then ΛtV = id. (Hint: Problem 1.28.)

The trace of a linear map

Each A ∈ L(X) can be factored in possibly many different ways as

A = V Λt = [v1, . . . , vn][λ1, . . . , λn]
t

for some n (necessarily ≥ rankA). It may therefore be surprising that, nev-
ertheless, the number ∑

j

λjvj = trace(ΛtV )

only depends on A. For the proof, let W be a basis for X. Then

Â :=W−1AW =W−1V ΛtW,

while
ΛtWW−1V = ΛtV.
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Hence, by (6.31),

trace(Â) = trace(W−1V ΛtW ) = trace(ΛtWW−1V ) = trace(ΛtV ).

By holding our factorization A = V Λt fixed, this implies that trace(Â) does
not depend on the particular basis W for X we happen to use here, hence
only depends on the linear map A. With that, holding now the linear map
A and this basis W , hence the matrix Â, fixed, we see that also trace(ΛtV )
does not depend on the particular factorization A = V Λt we picked, but only
depends on A. This number is called the trace of A, written

trace(A).

The problems provide the basic properties of the trace of a linear map.

8.7 trace( idX) = dimX.

8.8 If P ∈ L(X) is a projector (i.e., P 2 = P ), then trace(P ) = dim ranP .

8.9 A 7→ trace(A) is the unique scalar-valued linear map on L(X) for which
trace([x]λ) = λx for all x ∈ X and λ ∈ X′.

8.10 If A ∈ L(X,Y ) and B ∈ L(Y,X), then (both AB and BA are defined and)
trace(AB) = trace(BA).

8.11 Prove that, for column maps V , W into X, and row maps Λt, Mt from X,

V Λt = WMt implies that trace(ΛtV ) = trace(MtW ) even if X is not finite-dimensional.

The rank of a matrix and of its (conjugate) transpose

In this section, let A′ denote either the transpose or the conjugate transpose
of the matrix A. Then, either way, A = VW ′ iff A′ =WV ′. This trivial ob-
servation implies all kinds of things about the relationship between a matrix
and its (conjugate) transpose.

As a starter, it says that A = VW ′ is minimal if and only if A′ = WV ′

is minimal. Therefore:

(8.6) Proposition: rankA = rankAc = rankAt.

(8.7) Corollary: If A is a matrix, then dim ranA = dim ranAc =
dim ranAt.

(8.8) Corollary: For any matrix A, A′ is 1-1 (onto) if and only if A is
onto (1-1).
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Proof: If A ∈ IFm×n, then A is onto iff rankA = m iff rankA′ = m
iff the natural factorization A′ = A′ idm is minimal, i.e., iff A′ is 1-1.

The other equivalence follows from this since (A′)′ = A.

For a different proof of these results, see the comments that follow
(6.29)Corollary and (6.30)Corollary.

Elimination as factorization

The description (4.2) of elimination does not rely on any particular ordering
of the rows of the given (m×n)-matrix A. At any stage, it only distinguishes
between pivot rows and those rows not yet used as pivot rows. We may
therefore imagine that we initially place the rows of A into the work-array B
in exactly the order in which they are going to be used as pivot rows, followed,
in any order whatsoever, by those rows (if any) that are never going to be
used as pivot rows.

In terms of the n-vector p provided by the (4.2)Elimination Algorithm,
this means that we start with B = A(q, : ), with q obtained from p by

q = p(find(p>0)); 1:m; ans(q) = []; q = [q, ans];

Indeed, to recall, p(j) is positive if and only if the jth unknown is bound, in
which case row p(j) is the pivot row for that unknown. Thus the assignment
q = p(find(p>0)) initializes q so that A(q,\all) contains the pivot rows in
order of their use. With that, 1:m; ans(q) = []; leaves, in ans, the indices
of all rows not used as pivot rows.

Note that q is a permutation of order m. Hence B = QA, with Q
the corresponding permutation matrix, meaning the matrix Q = I(q,\all)

obtained from the identity matrix I := eye(m) by the very same reordering.

We prefer to write this as A = PB, with P the inverse of Q, hence
obtainable from q by

P = eye(m); P(q,\all) = P;

With that done, we have, at the beginning of the algorithm,

B = P−1A

for some permutation matrix P , and all the work in the algorithm consists
of repeatedly subtracting some multiple α of some row h of B from some
later row, i.e., some row i with i > h. In terms of matrices, this means the
repeated replacement

B ← Eei,eh
(−α)B

with i > h. Since, by (2.34), Eei,eh
(−α)−1 = Eei,eh

(α), this implies that

A = PLU,
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with L the product of all those elementary matrices Eei,eh
(α) (in the appro-

priate order), and U the final state of the work-array B. Specifically, U is in
row-echelon form (as defined in (4.9)); in particular, U is upper triangular.

Each Eei,eh
(α) is unit lower triangular, i.e., of the form id +N with

N strictly lower triangular, i.e.,

Nrs ̸= 0 =⇒ r > s.

For, because of the initial ordering of the rows in B, only Eei,eh
(α) with

i > h appear. This implies that L, as the product of unit lower triangular
matrices, is itself unit lower triangular.

If we apply the elimination algorithm to the matrix [A,C], with A ∈
IFm×m invertible, then the first m columns are bound, hence the remaining
columns are free. In particular, both P and L in the resulting factorization
depend only on A and not at all on C.

In particular, in solving A? = y, there is no need to subject all of
[A,y] to the elimination algorithm. If elimination just applied to A gives
the factorization

(8.9) A = PLU

for an invertible A, then we can find the unique solution x to the equation
A? = y by the two-step process:

c← L−1P−1y

x← U−1c

and these two steps are easily carried out. The first step amounts to subject-
ing the rows of the matrix [y] to all the row operations (including reordering)
used during elimination applied to A. The second step is handled by the
Backsubstitution Algorithm (4.6), with input B = [U, c], p = (1, 2, . . . ,m, 0),
and z = (0, . . . , 0,−1).

Once it is understood that the purpose of elimination for solving A? = y
is the factorization of A into a product of “easily” invertible factors, then it is
possible to seek factorizations that might serve the same goal in a better way.
The best-known alternative is the QR factorization, in which one obtains

A = QR,

with R upper triangular and Q o.n., i.e., QcQ = id. Such a factorization is
obtained by doing elimination a column at a time, usually with the aid of
Householder matrices. These are elementary matrices of the form

Hw := Ew,w(−2/wcw) = id − 2

wcw
wwc,



134 8 Factorization and rank

and are easily seen to be self-inverse or involutory (i.e., HwHw = id),
hermitian (i.e., Hw

c = Hw), hence unitary (i.e., Hw
cHw = id = HwHw

c).

While the computational cost of constructing the QR factorization is
roughly double that needed for the PLU factorization, the QR factorization
has the advantage of being more impervious to the effects of rounding errors.
Precisely, the relative rounding error effects in the derivation of the triangular
linear system Q−1A? = Q−1y from the original linear system A? = y are,
in general, much smaller because Q, hence Q−1, is an isometry, than they
are in the derivation of the linear system PL−1A? = PL−1y, and, while the
condition of the upper triangular matrix Q−1A is that of A, the condition of
PL−1A is likely larger than that.

8.12 Prove: If L1D1U1 = A = L2D2U2, with Li unit lower triangular, Di invertible
diagonal, and Ui unit upper triangular matrices, then L1 = L2, D1 = D2, and U1 = U2.

SVD

Let A = VW c be a minimal factorization for the m × n-matrix A of rank
r. Then Ac = WV c is a minimal factorization for Ac. By (8.3), this implies
that V is a basis for ranA and W is a basis for ranAc.

Can we choose both these bases to be o.n.?

Well, if both V and W are o.n., then, for any x, ∥Ax∥ = ∥VW cx∥ =
∥W cx∥, while, for x ∈ ranAc, x = WW cx, hence ∥x∥ = ∥W cx∥. Therefore,
altogether, in such a case, A is an isometry on ranAc, a very special situation.

Nevertheless and, perhaps, surprisingly, there is an o.n. basis W for
ranAc for which the columns of AW are orthogonal, i.e., AW = V Σ with V
o.n. and Σ diagonal, hence A = V ΣW c with also V o.n.

(8.10) Theorem: For every A ∈ IFm×n, there exist o.n. bases V andW
for ranA and ranAc, respectively, and a diagonal matrix Σ with positive
diagonal entries, so that

(8.11) A = V ΣW c.

Proof: For efficiency, the proof given here uses results, concerning
the ‘eigenstructure’ of hermitian positive definite matrices, that are estab-
lished only later in this book. This may help to motivate the study to come
of such ‘eigenstructure’ of matrices.

For motivation of the proof, assume for the moment that A = V ΣW c is a
factorization of the kind we claim to exist. Then, with Σ =: diag(σ1, . . . , σr),
it follows that

AcA =WΣcV c V ΣW c =WΣcΣW c,

hence

(8.12) AcAW =WT, with T := diag(τ1, . . . , τr)
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and W o.n., and the τj = σjσj = |σj |2 all positive.

Just such an o.n. W ∈ IFn×r and positive scalars τj do exist by (12.2)
Corollary and (14.2)Proposition, since the matrix AcA is hermitian (i.e.,
(AcA)c = AcA) and positive semidefinite (i.e., ⟨AcAx,x⟩ ≥ 0 for all x)
and has rank r.

WithW and the τj so chosen, it follows thatW is an o.n. basis for ranAc,
since (8.12) implies that ranW ⊂ ranAc, andW is a 1-1 column map of order
r = dim ranAc. Further, U := AW satisfies U cU = W cAcAW = W cWT =
T, hence

V := AWΣ−1, with Σ := T1/2 := diag(
√
τj : j = 1:r),

is o.n., and so V ΣW c = A, because WW c = P := PranAc , hence ran( id −
P ) = nullP = ranAc⊥ = nullA, and so AWW c = AP = A(P + ( id−P )) =
A.

It is customary to order the numbers

σj :=
√
τj , j = 1:r.

Specifically, one assumes that

σ1 ≥ σ2 ≥ · · · ≥ σr.

These numbers σj are called the (nonzero) singular values of A, and with
this ordering, the factorization

A =
rankA∑
j=1

vjσjwj
c

is called a (reduced) singular value decomposition or svd for A.

Offhand, a svd is not unique. E.g., any o.n. basis V for IFn provides the
svd V idnV

c for idn.

Some prefer to have a factorization A = Ṽ Σ̃W̃ c in which both Ṽ and
W̃ are o.n. bases for all of IFm and IFn, respectively (rather than just for
ranA and ranAc, respectively). This can always be achieved by extending V
and W from (8.11) in any manner whatsoever to o.n. bases Ṽ := [V, V1] and
W̃ := [W,W1] and, correspondingly, extending Σ to

Σ̃ := diag(Σ, 0) =

[
Σ 0
0 0

]
∈ IFm×n

by the adjunction of blocks of 0 of appropriate size. With this, we have

(8.13) A = Ṽ Σ̃W̃ c =

min{m,n}∑
j=1

vjσjwj
c,
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and the diagonal entries

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σmin{m,n}

of Σ̃ are altogether referred to as the singular values of A. Note that
this sequence is still ordered. We will refer to (8.13) as a Singular Value
Decomposition or SVD.

The MATLAB command svd(A) returns the SVD rather than the svd of A
when issued in the form [V,S,W] = svd(A). Specifically, A = V*S*W’, with V

and W both unitary, of order m and n, respectively, if A is an m × n-matrix. By
itself, svd(A) returns, in a one-column matrix, the (ordered) sequence of singular
values of A.

The Pseudo-inverse

Here is a first of many uses to which the svd has been put. It concerns the
solution of the equation

A? = y

in case A is not invertible (for whatever reason). In a previous chapter (see
page 107), we looked in this case for a solution of the ‘projected’ problem

(8.14) A? = PranA y =: ŷ

for the simple reason that any solution x of this equation makes the residual
∥Ax−y∥2 as small as it can be made by any x. For this reason, any solution
of (8.14) is called a least-squares solution for A? = y.

If now A is 1-1, then (8.14) has exactly one solution. The question is
what to do in the contrary case. One proposal is to get the best least-
squares solution, i.e., the least-squares solution of minimal norm. The svd
for A makes it easy to find this particular solution.

If A = V ΣW c is a svd for A, then V is an o.n. basis for ranA, hence

ŷ = PranA y = V V cy.

Therefore, (8.14) is equivalent to the equation

V ΣW c? = V V cy.

Since V is o.n., hence 1-1, and Σ is invertible, this equation is, in turn,
equivalent to

W c? = Σ−1V cy,

hence, since also W is o.n., hence 1-1, to

(8.15) WW c? =WΣ−1V cy.
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SinceW is o.n.,WW c = PW is an o.n. projector, hence, by (6.18)Proposition,
strictly reduces norms unless it is applied to something in its range. Since the
right-hand side of (8.15) is in ranW , it follows that the solution of smallest
norm of (8.15), i.e., the best least-squares solution of A? = y, is that right-
hand side, i.e., the vector

x̂ := A+y,

with the matrix
A+ :=WΣ−1V c

the Moore-Penrose pseudo-inverse of A.

Note that
A+A =WΣ−1V cV ΣW c =WW c,

hence A+ is a left inverse for A in caseW is square, i.e., in case rankA = #A.
Similarly,

AA+ = V ΣW cWΣ−1V c = V V c,

hence A+ is a right inverse for A in case V is square, i.e., in case rankA =
#Ac. In any case,

A+A = PranAc , AA+ = PranA,

therefore, in particular,
AA+A = A.

2-norm and 2-condition of a matrix

Recall from (6.26) that o.n. matrices are 2-norm-preserving, i.e.,

∥x∥2 = ∥Ux∥2, x ∈ IFn, o.n. U ∈ IFm×n.

This implies that

∥TB∥2 = ∥B∥2 = ∥BU c∥2, o.n. T ∈ IFr×m, B ∈ IFm×n, o.n. U ∈ IFr×n.

Indeed,

∥TB∥2 = max
x̸=0

∥TBx∥2
∥x∥2

= max
x̸=0

∥Bx∥2
∥x∥2

= ∥B∥2.

By (7.22), this implies that also

∥BU c∥2 = ∥UBc∥2 = ∥Bc∥2 = ∥B∥2.

It follows that, with A = V ΣW c ∈ IFm×n a svd for A,

(8.16) ∥A∥2 = ∥Σ∥2 = σ1,

the last equality because of the fact that Σ = diag(σ1, . . . , σr) with σ1 ≥
σ2 ≥ · · · ≥ 0.

Assume that, in addition, A is invertible, therefore r = rankA = n = m,
making also V andW square, hence A+ is both a left and a right inverse for A,
therefore necessarily A−1 = A+ = V Σ−1W c. It follows that ∥A−1∥2 = 1/σn.
Hence, the 2-condition of A ∈ IFn×n is

κ2(A) = ∥A∥2∥A−1∥2 = σ1/σn,

and this is how this condition number is frequently defined.
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The effective rank of a noisy matrix

The problem to be addressed here is the following. If we construct a matrix in
the computer, we have to deal with the fact that the entries of the constructed
matrix are not quite exact; rounding errors during the calculations may have
added some noise. This is even true for a matrix merely entered into the
computer, in case some of its entries cannot be represented exactly by the
floating point arithmetic used (as is the case, e.g., for the number .1 or the
number 1/3 in any of the standard binary-based floatingpoint arithmetics).

This makes it impossible to use, e.g., the rref algorithm to determine the
rank of the underlying matrix. However, if one has some notion of the size
of the noise involved, then one can use the svd to determine a sharp lower
bound on the rank of the underlying matrix, because of the following.

(8.17) Proposition: If A = V ΣW c is a svd for A and rank(A) > k,
then min{∥A−B∥2 : rank(B) ≤ k} = σk+1 = ∥A−Ak∥2, with

Ak :=
k∑

j=1

vjσjwj
c.

Proof: If B ∈ IFm×n with rank(B) ≤ k, then dimnull(B) > n −
(k + 1) = dim IFn − dim ranWk+1, with

Wk+1 := [w1, . . . ,wk+1].

Therefore, by (3.30)Corollary, the intersection null(B)∩ ranWk+1 contains a
vector z of norm 1. Then Bz = 0, and W cz = Wk+1

cz, and ∥Wk+1
cz∥2 =

∥z∥2 = 1. Therefore, Az = V ΣW cz = Vk+1Σk+1Wk+1
cz, hence

∥A−B∥2 ≥ ∥Az−Bz∥2 = ∥Az∥2 = ∥Σk+1Wk+1
cz∥2

≥ σk+1∥Wk+1
cz∥2 = σk+1.

On the other hand, for the specific choice B = Ak, we get ∥A−Ak∥2 =
σk+1 by (8.16), since A−Ak =

∑
j>k vjσjwj

c is a svd for it, hence its largest
singular value is σk+1.

In particular, if we have in hand a svd

A+ E = V diag(σ̂1, . . . , σ̂r̂)W
c

for the perturbed matrix A + E, then we know, by (8.17)Proposition, that
any matrix of rank ≤ k differs from A+E by at least σ̂k+1; hence A cannot
be of rank k unless σ̂k+1 ≤ ∥E∥2. Since σ̂1 ≥ σ̂2 ≥ · · ·, there is a largest k
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for which σ̂k > ∥E∥2 and that k is the smallest j for which σ̂j+1 ≤ ∥E∥2. So,
if we know (or believe) that ∥E∥2 ≤ ε, then the best we can say about the
rank of A is that it must be at least

rε := max{j : σ̂j > ε}.

For example, the matrix

A =

 2/3 1 1/3
4/3 2 2/3
1 1 1


is readily transformed by elimination into the matrix

B =

 0 1/3 −1/3
0 0 0
1 1 1

 ,
hence has rank 2. However, on entering A into a computer correct to four
decimal places after the decimal point, we get (more or less) the matrix

Ac =

 .6667 1 .3333
1.3333 2 .6667

1 1 1

 ,
and for it, MATLAB correctly returns id3 as its rref. However, the singular
values of Ac, as returned by svd, are

(3.2340..., 0.5645..., 0.000054...)

indicating that there is a rank-2 matrix B with ∥Ac −B∥2 < .000055. Since
entries of Ac are only accurate to within 0.00005, the safe conclusion is that
A has rank ≥ 2; it happens to have rank 2 in this particular example.

The polar decomposition

The svd can also be very helpful in establishing results of a more theoretical
flavor, as the following discussion is intended to illustrate.

This discussion concerns a useful extension to square matrices of the
polar form (see page 273)

z = |z| exp(iφ)

of a complex number z, i.e., a factorization of z into a nonnegative number
|z| =

√
zz (its modulus or absolute value) and a number whose absolute value

is equal to 1, a socalled unimodular number.

There is, for any A ∈ Cn×n, a corresponding decomposition

(8.18) A =
√
AAcE,
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called a polar decomposition, with
√
AAc ‘nonnegative’ in the sense that

it is hermitian and positive semidefinite, and E ‘unimodular’ in the sense
that it is unitary, hence norm-preserving, i.e., an isometry.

A polar decomposition is almost immediate, given that we already have
a SVD A = Ṽ Σ̃W̃ c for A (see (8.13)) in hand. Indeed, from that,

A = Ṽ Σ̃Ṽ c Ṽ W̃ c,

with P := Ṽ Σ̃Ṽ c evidently hermitian, and also positive semidefinite since

⟨Px,x⟩ = xcṼ Σ̃Ṽ cx =
∑
j

σ̃j |(Ṽ cx)j |2

is nonnegative for all x, given that σ̃j ≥ 0 for all j; and

P 2 = Ṽ Σ̃Ṽ cṼ Σ̃Ṽ c = Ṽ Σ̃Σ̃cṼ c = Ṽ Σ̃W̃ cW̃ Σ̃cṼ c = AAc;

and, finally, E := Ṽ W̃ c unitary as the product of unitary maps.

Equivalence and similarity

The SVD provides a particularly useful example of equivalence. The linear
maps A and Â are called equivalent if there are invertible linear maps V
and W so that

A = V ÂW−1.

Since both V and W are invertible, such equivalent linear maps share all
essential properties, such as their rank, being 1-1, or onto, or invertible.

Equivalence is particularly useful when the domains of V and W are
coordinate spaces, i.e., when V and W are bases, and, correspondingly, Â is
a matrix, as in the following diagram:

A
X −→ Y

↑ ↑W V

IFn IFm−→
Â

In this situation, Â = V −1AW is called a matrix representation for A.

For example, we noted earlier that the matrix

D̂k :=


0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · k


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is the standard matrix representation used in Calculus for the linear map
D : Π≤k → Π<k of differentiation of polynomials of degree ≤ k.

In practice, one looks, for given A ∈ L(X,Y ), for matrix representations

Â that are as simple as possible. If that means a matrix with as many zero
entries as possible and, moreover, all the nonzero entries the same, say equal
to 1, then a simplest such matrix representation is of the form

Â = diag( idrankA, 0) =

[
idrankA 0

0 0

]
,

with 0 indicating zero matrices of the appropriate size to make Â of size
dim tarA× dimdomA.

The situation becomes much more interesting and challenging when
domA = tarA and, correspondingly, we insist that also V = W . Linear
maps A and Â for which there exists an invertible linear map V with

A = V ÂV −1

are called similar. Such similarity will drive much of the rest of this book.

8.13 For the given linear maps A,B,C : F2×3, find their matrix representation with

respect to the basis V = [e1 + e2, e2 + e3, e3 + e1] for F3 and W :=

[
−1 1
1 1

]
for F2:

(a) Ax = (5x1 + 2x2 + 7x3, x1 + 2x2 − x3); (b) Bx = (x1 + x2 + x3, x2 − x3); (c)
Cx = (−x1 − x2 − x3, x3).

8.14 What is the matrix representation of the linear map C → C : x 7→ zx with
respect to the basis [1, i] for C (as a vector space with F = R) and with z =: a+ ib a given
complex number?

8.15 T/F

(a) If A, B, M are matrices such that rankAM = rankB, then M is invertible.

(b) If M is invertible and AM = B, then rankA = rankB.

(c) If M is invertible and MA = B, then rankA = rankB.

Peter: Homework is too sparse and too simple for the com-
plexity of this chapter
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This short chapter can be skipped without loss of continuity. Much of it
can serve as a review of what has been covered so far. It owes much to the
intriguing book [GL].

Complementary mathematical concepts

Duality concerns mathematical concepts that come in pairs, that complement
one another. Examples of interest in this book include:

◦ ⊂ and ⊃;
◦ A subset S of T and its complement, \S := T\S;
◦ ∩ and ∪;
◦ ∀ and ∃;
◦ 1-1 and onto;

◦ right and left inverse;

◦ bound and free;

◦ nullspace and range of a linear map;

◦ an invertible map and its inverse;

◦ column map and row map;

◦ synthesis and analysis;

◦ a basis and its inverse;

◦ columns and rows of a matrix;

◦ a matrix and its (conjugate) transpose;

◦ a linear subspace and one of its complements;

◦ dim and codim;

◦ the vector space X and its dual, X ′ := L(X, IF);

◦ the linear map A ∈ L(X,Y ) and its dual, A′ : Y ′ → X ′ : λ 7→ λA;

◦ a norm on the vector space X and the dual norm on X ′.

142
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Each such pair expresses a kind of symmetry. Such symmetry provides,
with each result, also its ‘dual’, i.e., the result obtained by replacing one
or more concepts appropriately by its complement. This leads to efficiency,
both in the proving and in the remembering of results.

A classical example is that of points and lines in a geometry, and results
concerning lines through points. E.g., through every two distinct points there
goes exactly one line; its ‘dual’ statement is: any two nonparallel lines have
exactly one point in common.

Another classical example is DeMorgan’s Law, according to which any
statement concerning the union, intersection and containment of subsets is
true if and only if its ‘dual’ statement is true, i.e., the statement obtained
by replacing each set by its complement and replacing (⊂,⊃,∩,∪) by (⊃,⊂
,∪,∩), respectively. For example, the two ‘distributive’ laws

(R ∩ S) ∪ T = (R ∪ T ) ∩ (S ∪ T ), (R ∪ S) ∩ T = (R ∩ T ) ∪ (S ∩ T )

are ‘dual’ to each other. Again, having verified that the intersection of a
collection of sets is the largest set contained in all of them, we have, by
‘duality’, also verified that the union of a collection of sets is the smallest set
containing all of them.

Here are some specific examples concerning the material covered in this
book so far.

Let V,W be column maps. If V ⊂ W and W is 1-1, then so is V . Its
‘dual’: If V ⊃ W and W is onto, then so is V . This makes maximally 1-1
maps and minimally onto maps particularly interesting as, by now, you know
very well: A column map is maximally 1-1 if and only if it is minimally onto
if and only if it is a basis.

Let A ∈ IFm×n. Then, A is 1-1(onto) if and only if At is onto(1-1). In
terms of the rows and columns of the matrix A and in more traditional terms,
this says that the columns form a linearly independent (spanning) sequence if
and only if the rows form a spanning (linearly independent) sequence. This is
a special case of the result that nullA = (ranAc)⊥, hence that dimnullA =
codim ranAc. By going from A to Ac, and from a subspace to its orthogonal
complement, we obtain from these the ‘dual’ result that ranA = (nullAc)⊥,
hence that dim ranA = codimnullAc.

Recall from (4.18) the factorization A = A( : , bound)rrref(A). It supplies
the corresponding factorization At = At( : , rbound)rrref(At) with rbound

the index sequence of bound columns of At, i.e. of bound rows of A. By
combining these two factorizations, we get the more symmetric factorization

A = (rrref(At))tA(rbound, bound)rrref(A),

which is called the car-factorization by some.

9.1 Prove that, for any A ∈ L(X,Y ), codimnullA = dim ranA.
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9.2 In the list of pairs of complementary concepts, given at the beginning of this
chapter, many of the pairs have been ordered so as to have the first term in each pair
naturally correspond to the first term in any related pair.

For example, a right (left) inverse is necessarily 1-1 (onto).

Discover as many such correspondences as you can.

The dual of a vector space

The dual of the vector space X is, by definition, the vector space

X ′ := L(X, IF)

of all linear maps from X into the underlying scalar field. Each such map is
called a linear functional on X. (The term ‘functional’ is used to indicate
a map, on a vector space, whose target is the underlying scalar field. Some
books use the term ‘form’ instead.)

We have made much use of linear functionals, namely as the rows λ1, . . . ,
λn of specific row maps (or data maps)

Λt = [λ1, . . . , λn]
t ∈ L(X, IFn)

from the vector space X to n-dimensional coordinate space.

Example: If X = IFn, then

X ′ = L(IFn, IF) = IF1×n ∼ IFn,

and it has become standard to identify (IFn)′ with IFn via

IFn → (IFn)′ : a 7→ at.

While this identification is often quite convenient, be aware that, strictly
speaking, IFn and its dual are quite different objects.

Here is a quick discussion of X ′ for an arbitrary finite-dimensional vector
space, X. X being finite-dimensional, it has a basis, V ∈ L(IFn, X) say. Let

V −1 =: Λt =: [λ1, . . . , λn]
t

be its inverse. Each of its rows λi is a linear functional on X, hence

Λ := [λ1, . . . , λn]

is a column map into X ′.

Λ is 1-1: Indeed, if Λa = 0, then
∑

i aiλi is the zero functional, hence,
in particular,

∑
i aiλivj = 0 for all columns vj of V . This implies that

0 = (
∑

i aiλivj : j = 1:n) = at(ΛtV ) = at idn = at, hence a = 0.
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It follows that dim ranΛ = dimdomΛ = n, hence we will know that Λ
is also onto as soon as we know that the dimension of its target is ≤ n, i.e.,

dimX ′ ≤ n.

For the proof of this inequality, observe that, for each λ ∈ X ′, the composition
λV is a linear map from IFn to IF, hence a 1-by-n matrix. Moreover, the
resulting map

X ′ → IF1×n ∼ IFn : λ→ λV

is linear. It is also 1-1 since λV = 0 implies that λ = 0 since V is invertible.
Hence, indeed, dimX ′ ≤ n.

(9.1) Proposition: For each basis V of the n-dimensional vector space
X, the rows of its inverse, V −1 =: Λt =: [λ1, . . . , λn]

t, provide the
columns for the basis Λ = [λ1, . . . , λn] for X

′, which earlier we called
the basis dual to V . In particular, dimX ′ = dimX.

The two maps Λ and V are said to be bi-orthonormal to signify
that

λivj = δij , i, j = 1:n.

Here is the ‘dual’ claim.

(9.2) Proposition: Let X be an n-dimensional linear subspace of the
vector space Y . Then, for each Λt ∈ L(Y, IFn) that is 1-1 on X, there
exists exactly one basis, V , for X that is bi-orthonormal to Λ.

For every λ ∈ Y ′, there exists exactly one a ∈ IFn so that

(9.3) λ = Λa on X.

In particular, each λ ∈ X ′ has a unique such representation Λa in
ranΛ.

Proof: Since dimX = dim tarΛt and the restriction of

Λt =: [λ1, . . . , λn]
t

to X is 1-1, it must be invertible, i.e., there exists exactly one basis V for X
with ΛtV = idn. This implies that Λ is bi-orthonormal to V but does not
imply that Λ is a dual basis for V since we only assumed that Λ maps into
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Y ′, not into X ′. Still, it follows by (9.1)Proposition that RXΛ is a dual basis
for V , with RX the linear map

RX : Y ′ → X ′ : λ 7→ λ X .

In particular, every λ ∈ X ′ has exactly one representation in the form RXΛa,
and this equals Λa on X, and this holds for RXλ ∈ X ′ for any λ ∈ Y ′, and
since RXλ = λ on X, this proves (9.3).

If X is not finite-dimensional, it may be harder to provide a complete
description of its dual. In fact, in that case, one calls X ′ the algebraic
dual and, for even some very common vector spaces, like C([a . . b]), there
is no constructive description of its algebraic dual. If X is a normed vector
space, one focuses attention instead on its topological dual. The topological
dual consists of all continuous linear functionals, i.e., of all linear functionals
λ whose norm ∥λ∥ := supx∈X |λx|/∥x∥ is finite, and this goes beyond the
level of this book. Suffice it to say that a normed vector space is finite-
dimensional if and only if its algebraic dual coincides with its topological
dual. See (7.9)Fact for the ”only if”.

The very definition of 0 ∈ L(X, IF) ensures that λ ∈ X ′ is 0 if and only
if λx = 0 for all x ∈ X. What about its dual statement: x ∈ X is 0 if and
only if λx = 0 for all λ ∈ X ′? For an arbitrary vector space, this turns out
to require the Axiom of Choice. However, if X is a linear subspace of IFT for
some set T , then, in particular,

δt : X → IF : x 7→ x(t)

is a linear functional on X, hence the vanishing at x of all linear functionals
in X ′ implies that, in particular, x(t) = 0 for all t ∈ T , hence x = 0.

(9.4) Fact: For any x in the vector space X, x = 0 if and only if λx = 0
for all λ ∈ X ′.

Proof: Only the ‘only if’ needs proof. If X is finite-dimensional,
then, by (9.1), the condition λx = 0 for all λ ∈ X ′ is equivalent, for any
particular basis V for X with dual basis Λ for X ′, to having btΛtV a = 0 for
all b ∈ IFn and for x =: V a. Since ΛtV = idn, it follows that a = ΛtV a
must be zero, hence x = 0.

If X is not finite-dimensional, then, for any nonzero x ∈ X, the linear
subspace ran[x] has on it the linear functional µ that carries x to 1. By
(9.5)Fact (whose proof uses the Axiom of Choice), there exists an extension
λ of µ to all of Y and, by construction, λx = 1 ̸= 0. In other words, if x ̸= 0
then λx ̸= 0 for some λ ∈ X ′.
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Finally, one often needs (as we did just now in the preceding proof) the
following

(9.5) Fact: Every linear functional on some linear subspace of a vector
space can be extended to a linear functional on the whole vector space.

Proof: If X is a linear subspace of the finite-dimensional vector
space Y , then there is a basis [V,W ] for Y with V a basis for X. If now
λ ∈ X ′, then there is a unique µ ∈ Y ′ with µ[V,W ] = [λV, 0], and it extends
λ to all of Y .

If Y is not finite-dimensional, then the Axiom of Choice is needed in the
proof.

9.3 Use the proof of (9.2) to show that the linear map RX introduced there is onto.

Why does this not supply a proof of (9.5)Fact in case the linear subspace in question is

finite-dimensional?

The dual of an inner product space

We introduced inner-product spaces as spaces with a ready supply of linear
functionals. Specifically, the very definition of an inner product ⟨, ⟩ on the
vector space Y requires that, for each y ∈ Y , yc := ⟨·, y⟩ be a linear functional
on Y . This sets up a map

c : Y → Y ′ : y 7→ yc

from the inner product space to its dual. This map is additive. It is also ho-
mogeneous in case IF = R. If IF = C, then the map is skew-homogeneous,
meaning that

(αy)c = αyc, α ∈ IF, y ∈ Y.

Either way, this map is 1-1 if and only if its nullspace is trivial. But, since
yc = 0 implies, in particular, that ycy = 0, the positive definiteness required
of the inner product guarantees that then y = 0, hence the map y 7→ yc is
1-1.

If now n := dimY <∞, then, by (9.1)Proposition, dimY ′ = dimY = n,
hence, by the (3.23)Dimension Formula, y 7→ yc must also be onto. This
proves

(9.6) Proposition: If Y is a finite-dimensional inner product space,
then every λ ∈ Y ′ can be written in exactly one way as λ = yc for some
y ∈ Y .

We say in this case that yc represents λ.
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If Y is not finite-dimensional, then the conclusion of this proposition
still holds, provided we consider only the topological dual of Y and provided
Y is ‘complete’, the very concept we declared beyond the scope of this book
when, earlier, we discussed the Hermitian (a.k.a. conjugate transpose) of a
linear map between two inner product spaces.

The dual of a linear map

Any A ∈ L(X,Y ) induces in a natural way the linear map

A′ : Y ′ → X ′ : λ 7→ λA.

This map is called the dual to A.

If also B ∈ L(Y, Z), then BA ∈ L(X,Z) and, for every λ ∈ Z ′, λ(BA) =
(λB)A = A′(B′(λ)), hence

(9.7) (BA)′ = A′B′, A ∈ L(X,Y ), B ∈ L(Y, Z).

If both X and Y are coordinate spaces, hence A is a matrix, then, with
the identification of a coordinate space with its dual via the map IFn →
(IFn)′ : a 7→ at, the dual of A coincides with its transpose, i.e.,

A′ = At, A ∈ IFm×n = L(IFn, IFm).

If Y = IFm, hence A is a row map, A = Λt = [λ1, . . . , λm]t say, then,
with the identification of (IFm)′ with IFm, (Λt)′ becomes the column map

(Λt)′ = [λ1, . . . , λm] = Λ.

In this way, we now recognize a row map on X as the pre-dual of a column
map into X ′.

If X = IFn, hence A is a column map, A = V = [v1, . . . , vn] say, then,
with the identification of (IFn)′ with IFn, V ′ becomes a row map on Y ′,
namely the row map that associates λ ∈ Y ′ with the n-vector (λvj : j = 1:n).
Its rows are the linear functionals

Y ′ → IF : λ 7→ λvj

on Y ′ ‘induced’ by the columns of V . Each of these rows is therefore a linear
functional on Y ′, i.e., an element of (Y ′)′, the bidual of Y .

(9.8) Proposition: Let A ∈ L(X,Y ).

(a) If A is onto, then A′ is 1-1.

(b) If A is of finite rank and 1-1, then A′ is onto.
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Proof: If A is onto, then λA = 0 implies that λ = 0, hence A′ is 1-1.
If A is of finite rank, let V ∈ L(IFn, Y ) be a basis for ranA, and let Mt :
ranA → IFn be its inverse. By (9.5)Fact, each of the rows of Mt has an
extension to an element of Y ′. In other words, there exists Λ ∈ L(IFn, Y ′)
for which Λt agrees on ranA with Mt = V −1. Also, A being 1-1 implies the
existence of a column map W into X with V = AW , hence W is necessarily
a basis for X, and id = ΛtV = ΛtAW . By (9.1)Proposition, it follows that
(ΛtA)t = AtΛ is a basis for X ′, hence A′ is onto.



10 The powers of a linear map

and its spectrum

If tarA = domA, then we can form the powers

Ak := AA · · ·A︸ ︷︷ ︸
k factors

of A. Here are some examples that show the importance of understanding
the powers of a linear map.

Examples

Fixed-point iteration: A standard method for solving a large linear
system A? = y (with A ∈ IFn×n) is to split the matrix A suitably as

A =M −N

with M ‘easily invertible’, and to generate the sequence x0,x1,x2, . . . of ap-
proximate solutions by the iteration

(10.1) xk :=M−1(Nxk−1 + y), k = 1, 2, . . . .

Assuming this iteration to converge, with x := limk→∞ xk its limit, it follows
that

(10.2) x =M−1(Nx+ y),

hence that Mx = Nx + y, therefore finally that Ax = (M −N)x = y, i.e.,
the limit solves our original problem A? = y.

150
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Let εk := x − xk be the error in our kth approximate solution. Then
on subtracting the iteration equation (10.1) from the exact equation (10.2),
we find that

εk = x− xk =M−1(Nx+ y − (Nxk−1 + y)) =M−1Nεk−1.

Therefore, by induction,

εk = Bkε0, with B :=M−1N

the iteration map. Since we presumably don’t know the solution x, we have
no way of choosing the initial guess x0 in any special way. For convergence,
we must therefore demand that

lim
k→∞

Bkz = 0 for all z ∈ IFn.

It turns out that this will happen if and only if all eigenvalues of B are less
than 1 in absolute value.

random walk: Consider a random walk on a graph G. The specifics
of such a random walk are given by a stochastic matrix M of order n, with
n the number of vertices in the graph. This means that all the entries of M
are nonnegative, and all the entries in each row add up to 1, i.e.,

M ≥ 0, Me = e,

with e the vector with all entries equal to 1,

e := (1, 1, 1, . . . , 1).

The entries of M are interpreted as probabilities: Mij gives the probability
that, on finding ourselves at vertex i, we would proceed to vertex j. Thus,
the probability that, after two steps, we would have gone from vertex i to
vertex j is the sum of the probabilities that we would have gone from i to
some k in the first step and thence to j in the second step, i.e., the number∑

k

MikMkj = (M2)ij .

More generally, the probability that we have gone after m steps from vertex
i to vertex j is the number (Mm)ij , i.e., the (i, j)-entry of the mth power of
the matrix M .

A study of the powers of such a stochastic matrix reveals that, for large
m, all the rows of Mm look more and more alike. Precisely, for each row i,

lim
m→∞

(Mm)i:: = x∞
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for a certain (i-independent) vector x∞ with nonnegative entries that sum
to one; this is part of the so-called Perron-Frobenius Theory. In terms of the
random walk, this means that, for large m, the probability that we will be
at vertex j after m steps is more or less independent of the vertex we started
off from. One can find this limiting probability distribution x∞ as a properly
scaled eigenvector of the transpose M t of M belonging to the eigenvalue 1.

As the simple example M =

[
0 1
1 0

]
shows, the last paragraph isn’t

quite correct. Look for the discussion of the Perron-Frobenius theorem later
in this book (see pages 207ff).

polynomials in a map: Once we know the powers Ak of A, we can
also construct polynomials in A, in the following way. If p is the polynomial

p : t 7→ c0 + c1t+ c2t
2 + · · ·+ ckt

k,

then we define the linear map p(A) to be what we get when we substitute A
for t:

p(A) := c0 id + c1A+ c2A
2 + · · ·+ ckA

k.

We can even consider power series. The most important example is the
matrix exponential:

(10.3) exp(A) := id +A+A2/2 +A3/6 + · · ·+Ak/k! + · · · .

The matrix exponential is used in solving the first-order system

(10.4) Dy(t) = Ay(t) for t > 0, y(0) = b

of constant-coefficient ordinary differential equations. Here A is a square
matrix, of order n say, and y(t) is an n-vector that depends on t. Further,

Dy(t) := lim
h→0

(y(t+ h)− y(t))/h

is the first derivative at t of the vector-valued function y. One verifies that
the particular function

y(t) := exp(tA)b, t ≥ 0,

solves the differential equation (10.4). Practical application does require
efficient ways for evaluating the power series

exp((tA)) := id + tA+ (tA)2/2 + (tA)3/6 + · · ·+ (tA)k/k! + · · · ,

hence for computing the powers of tA.
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Eigenvalues and eigenvectors

The calculation of Akx is simplest if A maps x to a scalar multiple of itself,
i.e., if

Ax = µx = xµ

for some scalar µ. For, in that case, A2x = A(Ax) = A(xµ) = Axµ = xµ2

and, more generally,

(10.5) Ax = xµ =⇒ Akx = xµk, k = 0, 1, 2, . . . .

If x = 0, this will be so for any scalar µ. If x ̸= 0, then this will be true for at
most one scalar µ. That scalar is called an eigenvalue for A with associated
eigenvector x.

(10.6) Definition: Let A ∈ L(X). Any scalar µ for which there is
a nontrivial vector x ∈ X so that Ax = xµ is called an eigenvalue
of A, with (µ, x) the corresponding eigenpair. The collection of all
eigenvalues of A is called the spectrum of A and is denoted spct(A).
Thus

spct(A) = {µ ∈ IF : A− µ id is not invertible}.

All the elements of null(A − µ id)\0 are called the eigenvectors of A
associated with µ. The number

ρ(A) := max | spct(A)| = max{|µ| : µ ∈ spct(A)}

is called the spectral radius of A.

Since µ ∈ spct(A) exactly when (A − µ id) is not invertible, this puts
a premium on knowing whether or not a given linear map is invertible. We
pointed out in Chapter 3 that the only matrices for which we could tell this
at a glance are the triangular matrices. To recall, by (3.36)Proposition, a
triangular matrix is invertible if and only if none of its diagonal entries is
zero. Since (A − µ id) is triangular for any µ in case A is triangular, this
gives the important

(10.7) Proposition: For any triangular matrix of order n, spct(A) =
{Ajj : j = 1:n}.

In the best of circumstances, there is an entire basis V = [v1, v2, . . . , vn]
for X = domA consisting of eigenvectors for A. In this case, it is very easy



154 10 The powers of a linear map and its spectrum

to compute Akx for any x ∈ X. For, in this situation, Avj = vjµj , j = 1:n,
hence

AV = [Av1, . . . , Avn] = [v1µ1, . . . , vnµn] = VM,

with M the diagonal matrix

M := diag(µ1, . . . , µn).

Therefore, for any k,

AkV = VMk = V diag(µk
1 , . . . , µ

k
n).

Also, since V is a basis for X, any x ∈ X can be written (uniquely) as x = V a
for some n-vector a and thus

Akx = AkV a = VMka = v1µ
k
1a1 + v2µ

k
2a2 + · · ·+ vnµ

k
nan

for any k. For example, for such a matrix and for any t,

exp(tA) = V exp(tM)V −1 = V diag(. . . , exp(tµj), . . .)V
−1.

To be sure, if A is not 1-1, then at least one of the µj must be zero, but this
doesn’t change the fact that M is a diagonal matrix.

(10.8) Example: The matrix A :=

[
2 1
1 2

]
maps the 2-vector x :=

(1, 1) to 3x and the 2-vector y := (1,−1) to itself. Hence, A[x,y] = [3x,y] =
[x,y] diag(3, 1) or

A = V diag(3, 1)V −1, with V := [x,y] =

[
1 1
1 −1

]
.

Elimination gives

[V, id] =

[
1 1 1 0
1 −1 0 1

]
→
[
1 1 1 0
0 −2 −1 1

]
→

→
[
1 0 1/2 1/2
0 −2 −1 1

]
→
[
1 0 1/2 1/2
0 1 1/2 −1/2

]
,

hence

V −1 =

[
1 1
1 −1

]
/2.

It follows that, for any k,

Ak = V diag(3k, 1)V −1 =

[
3k 1
3k −1

] [
1 1
1 −1

]
/2 =

[
3k + 1 3k − 1
3k − 1 3k + 1

]
/2.

In particular,

A−1 =

[
1/3 + 1 1/3− 1
1/3− 1 1/3 + 1

]
/2 =

[
2 −1
−1 2

]
/3.

Also,

exp(tA) = V diag(e3t, et)V −1 =

[
e3t + et e3t − et

e3t − et e3t + et

]
.
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10.1∗ Let A =

[
1 2
2 4

]
. (i) Find a basis V and a diagonal matrix M so that A =

VMV −1. (ii) Determine the matrix exp(A).

10.2 Let A =

[
4 1 −1
2 5 −2
1 1 2

]
.

Use elimination to determine all eigenvectors for this A belonging to the eigenvalue
3, and all eigenvectors belonging to the eigenvalue 5. (It is sufficient to give a basis for
null(A− 3 id) and for null(A− 5 id).)

10.3 If A is a triangular matrix, then one of its eigenvectors can be determined
without any calculation. Which one?

10.4

(a) Prove that the matrix A =

[
4 1 −1
2 5 −2
1 1 2

]
maps the vector space Y := ranV with

V :=

[
0 2
3 1
1 1

]
into itself, hence the restriction of A to Y , i.e.,

A|Y := B : Y → Y : y 7→ Ay

is a well-defined linear map. (You will have to verify that ranAV ⊆ ranV ; looking
at rref([V AV ]) should help.)

(b) Determine the matrix representation of B with respect to the basis V for domB = Y ,
i.e., compute the matrix V −1BV . (Hint: (5.4)Example tells you how to read off this
matrix from the calculations in (a).)

(c) Determine the spectrum of the linear map B = A|Y defined in (a). (Your answer in

(b) could be helpful here since similar maps have the same spectrum.)

10.5 Prove that 0 is the only eigenvalue of the matrix A =

[
0 1 2
0 0 3
0 0 0

]
and that, up

to scalar multiples, e1 is the only eigenvector for A.

10.6 Let µ ∈ spct(A) (hence Ax = µx for some x ̸= 0). Prove:

(i) For any scalar α, αµ ∈ spct(αA).

(ii) For any scalar α, µ+ α ∈ spct(A+ α id).

(iii) For any natural number k, µk ∈ spct(Ak).

(iv) If A is invertible, then µ ̸= 0 and µ−1 ∈ spct(A−1).

(v) If A is a matrix, then µ ∈ spct(At) and µ ∈ spct(Ac).

10.7∗ Prove that, for any A ∈ Fm×n, the spectral radius of AcA equals σ1(A)2, the

square of the largest singular value of A.

Diagonalizability

(10.9) Definition: A linear map A ∈ L(X) is called diagonalizable if
it has an eigenbasis, i.e., if there is a basis for its domain X consisting
entirely of eigenvectors for A.
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(10.10) Lemma: If Vµ is a basis for null(A − µ id), then [Vµ : µ ∈
spct(A)] is 1-1.

Proof: Note that, for any µ ∈ spct(A) and any ν,

(A− ν id)Vµ = (µ− ν)Vµ,

and, in particular, (A − µ id)Vµ = 0. Hence, if
∑

µ Vµaµ = 0, then, for
each µ ∈ spct(A), after applying to both sides of this equation the product
of all (A − ν id) with ν ∈ spct(A)\µ, and using the fact that these factors
commute with one another (see (10.21)Lemma), we are left with the equation
(
∏

ν ̸=µ(µ − ν))Vµaµ = 0, and this implies that aµ = 0 since Vµ is 1-1 by
assumption. In short, [Vµ : µ ∈ spct(A)]a = 0 implies a = 0.

(10.11) Corollary: #spct(A) ≤ dimdomA, with equality only if A is
diagonalizable.

(10.12) Proposition: A linear map A ∈ L(X) is diagonalizable if and
only if

(10.13) dimX =
∑

µ∈spct(A)

dimnull(A− µ id).

Proof: By (10.10)Lemma, (10.13) implies that domA has a basis
consisting of eigenvectors for A.

Conversely, if V is a basis for X = domA consisting entirely of eigen-
vectors for A, then AV = VM for some diagonal matrix

M =: diag(µ1, . . . , µn),

hence, for any scalar µ, (A − µ id) = V (M − µ id)V −1. In particular,
null(A − µ id) = ran[vj : µ = µj ], hence

∑
µ∈spct(A) dimnull(A − µ id) =∑

µ∈spct(A) #{j : µj = µ} = n = #V = dimX.



Are all square matrices diagonalizable? 157

(10.12)Proposition readily identifies a circumstance under which A is not
diagonalizable, namely when null(A − µ id) ∩ ran(A − µ id) ̸= {0} for some
µ. For, with Vν a basis for null(A − ν id) for any ν ∈ spct(A), we compute
AVν = νVν , hence (A − µ id)Vν = (ν − µ)Vν and therefore, for any ν ̸= µ,
Vν = (A − µ id)Vν/(ν − µ) ⊂ ran(A − µ id). This places all the columns of
the 1-1 map V\µ := [Vν : ν ̸= µ] in ran(A − µ id) while, by (10.10)Lemma,
ranVµ ∩ ranV\µ is trivial. Hence, if ranVµ = null(A − µ id) has nontrivial
intersection with ran(A− µ id), then ranV\µ cannot be all of ran(A− µ id),
and therefore∑
ν ̸=µ

dimnull(A− ν id) = #V\µ

< dim ran(A− µ id) = dimX − dimnull(A− µ id),

hence, by (10.12)Proposition, such A is not diagonalizable.

This has motivated the following

(10.14) Definition: The scalar µ is a defective eigenvalue of A if

null(A− µ id) ∩ ran(A− µ id) ̸= {0}.

Any such µ certainly is an eigenvalue (since, in particular, null(A −
µ id) ̸= {0}), but I don’t care for such negative labeling ; if it were up to me,
I would call such µ an interesting eigenvalue, since the existence of such
eigenvalues makes for a richer theory. Note that, by (3.27)Proposition, µ is
a defective eigenvalue for A iff, for some, hence for every, bases V and W for
ran(A− µ id) and null(A− µ id) respectively, [V,W ] is not 1-1.

(10.15) Corollary: If A has a defective eigenvalue, then A is not di-
agonalizable.

10.8 Prove: if A ∈ L(X) is diagonalizable and #spct(A) = 1, then A = µ idX for
some µ ∈ F.

10.9 What is a simplest matrix A with spct(A) = {1, 2, 3}?
10.10 For each of the following matrices A ∈ F2×2, determine whether or not 0 is

a defective eigenvalue (give a reason for your answer). For a mechanical approach, see

Problem 4.9. (a) A = 0. (b) A =

[
1 2
2 4

]
. (c) A =

[
−2 −1
4 2

]
. (d) A = id2.

10.11∗ Prove that, for every linear map A on the finite-dimensional vector space X,
if A is diagonalizable, then so is p(A) for every polynomial p.
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10.12 Prove that any linear projector P on a finite-dimensional vector space X is
diagonalizable. (Hint: Show that, for any basis U for ranP and any basis W for nullP ,
V := [U,W ] is a basis for X, and that all the columns of V are eigenvectors for P . All of
this should follow from the fact that P 2 = P .)

10.13 Prove that any linear involutory map R on a finite-dimensional vector space

X is diagonalizable. (Hint: Problem 5.13.)

Are all square matrices diagonalizable?

By (10.15)Corollary, this will be so only if all square matrices have only
nondefective eigenvalues.

(10.16) Example: The simplest example of a matrix with a defective
eigenvalue is provided by the matrix

N :=

[
0 1
0 0

]
= [0, e1].

By (10.7)Proposition, spct(N) = {0}. Yet nullN = ran[e1] = ranN , hence
the only eigenvalue of N is defective, and N fails to be diagonalizable, by
(10.15)Corollary.

Of course, for this simple matrix, one can see directly that it cannot
be diagonalizable, since, if it were, then some basis V for R2 would consist
entirely of eigenvectors for the sole eigenvalue, 0, for N , hence, for this basis,
NV = 0, therefore N = 0, contrary to fact.

We will see shortly that, on a finite-dimensional vector space over the
complex scalars, almost all linear maps are diagonalizable, and all linear maps
are almost diagonalizable.

Does every square matrix have an eigenvalue?

Since an eigenvalue for A is any scalar µ for which null(A−µ id) is not trivial,
the answer necessarily depends on what we mean by a scalar.

If we only allow real scalars, i.e., if IF = R, then not every matrix has
eigenvalues. The simplest example is a rotation of the plane, e.g., the matrix

A :=

[
0 −1
1 0

]
= [e2,−e1].

This linear map rotates every x ∈ R2 90 degrees counter-clockwise, hence the
only vector x mapped by it to a scalar multiple of itself is the zero vector.
In other words, this linear map has no eigenvectors, hence no eigenvalues.

The situation is different when we also allow complex scalars, i.e., when
IF = C, and this is the reason why we considered complex scalars all along
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in this book. Now every (square) matrix has eigenvalues, as follows from the
following simple argument.

(10.17) Theorem: Any linear map A on some nontrivial finite-dimens-
ional vector spaceX over the complex scalar field IF = C has eigenvalues.

Proof: Let n := dimX, pick any x ∈ X\0 and consider the column
map

K := [x,Ax,A2x, . . . , Anx].

Since #K > dim tarK, K cannot be 1-1. This implies that some column
of K is free. Let Adx be the first free column, i.e., the first column that is
in the range of the columns preceding it. Then nullK contains exactly one
vector of the form

a = (a0, a1, . . . , ad−1, 1, 0, . . . , 0),

and this is the vector we choose. Then, writing the equation Ka = 0 out in
full, we get

(10.18) a0x+ a1Ax+ · · ·+ ad−1A
d−1x+Adx = 0.

Now here comes the trick: Consider the polynomial

(10.19) p : t 7→ a0 + a1t+ · · ·+ ad−1t
d−1 + td.

Then, substituting for t our map A, we get the linear map

p(A) := a0 id + a1A+ · · ·+ ad−1A
d−1 +Ad.

With this, (10.18) can be written, very concisely,

p(A)x = 0.

This is not just notational convenience. Since ad = 1, p isn’t the zero poly-
nomial, and since x ̸= 0, d must be greater than 0, i.e., p cannot be just a
constant polynomial. Thus, by the Fundamental Theorem of Algebra, p has
zeros. More precisely,

p(t) = (t− z1)(t− z2) · · · (t− zd)

for certain (possibly complex) scalars z1, . . . , zd. This implies (see (10.21)
Lemma below) that

p(A) = (A− z1 id)(A− z2 id) · · · (A− zd id).

Now, p(A) is not 1-1 since it maps the nonzero vector x to zero. Therefore,
not all the maps (A− zj id), j = 1:d, can be 1-1. In other words, for some j,
(A− zj id) fails to be 1-1, i.e., has a nontrivial nullspace, and that makes zj
an eigenvalue for A.
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(10.20) Example: Let’s try this out on our earlier example, the ro-
tation matrix

A := [e2,−e1].
Choosing x = e1, we have

[e1, Ae1, A
2e1] = [e1, e2,−e1],

hence the first free column is A2e1 = −e1, or

e1 +A2e1 = 0.

Thus the polynomial of interest is

p : t 7→ 1 + t2 = (t− i)(t+ i),

with
i :=
√
−1

the imaginary unit (see pages 272ff on complex numbers). In fact, we con-
clude, with y := (A + i id)e1, that (A − i id)y = p(A)e1 = 0, while y =
Ae1 + ie1 = e2 + ie1 ̸= 0, showing that (i, e2 + ie1) is an eigenpair for this A.

Polynomials in a linear map, Krylov subspaces,
and the minimal polynomials

The proofs of (10.10)Lemma and of (10.17)Theorem use in an essential way
the following fact.

(10.21) Lemma: If r is the product of the polynomials p and q, i.e.,
r(t) = p(t)q(t) for all t, then, for any linear map A ∈ L(X),

r(A) = p(A)q(A) = q(A)p(A).

Proof: If you wanted to check that r(t) = p(t)q(t) for the polyno-
mials r, p, q, you would multiply p and q term by term, collect like terms and
then compare coefficients with those of r. For example, if p(t) = t2 + t + 1
and q(t) = t− 1, then

p(t)q(t) = (t2 + t+ 1)(t− 1) = t2(t− 1) + t(t− 1) + (t− 1)

= t3 − t2 + t2 − t+ t− 1 = t3 − 1,

i.e., the product of these two polynomials is the polynomial r given by r(t) =
t3−1. The only facts you use are: (i) free reordering of terms (commutativity
of addition), and (ii) things like tt = t2, i.e., the fact that

titj = ti+j .

Both of these facts hold if we replace t by A.
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Here is a further use of this lemma. We now prove that the poly-
nomial p constructed in the proof of (10.17) has the property that every
one of its roots is an eigenvalue for A. This is due to the fact that we
constructed it in the form (10.19) with d the smallest integer for which
Adx ∈ ran[x,Ax, . . . , Ad−1x]. Thus, with µ any zero of p, we can write

(10.22) p(t) = (t− µ)q(t)

for some polynomial q necessarily of the form

q(t) = b0 + b1t+ · · ·+ bd−2t
d−2 + td−1.

The crucial point here is that q is of degree < d. This implies that q(A)x ̸= 0
since, otherwise, (b0, b1, . . . , 1) would be a nontrivial vector in
null[x,Ax, . . . , Ad−1x] and this would contradict the choice of d as the index
for which Adx is the first free column in [x,Ax,A2x, . . .]. Since

0 = p(A)x = (A− µ id)q(A)x,

it follows that µ is an eigenvalue for A with associated eigenvector q(A)x.

This is exactly how we got an eigenvector for the eigenvalue i in (10.20)
Example.

(10.23) Example: As another example, consider again the matrix

A =

[
2 1
1 2

]
from (10.8)Example. We choose x = e1 and consider

[x,Ax, . . . , Anx] = [e1, Ae1, A(Ae1)] =

[
1 2 5
0 1 4

]
.

Since [e1, Ae1, A
2e1] is in row echelon form, we conclude that the first two

columns are bound. Elimination gives the rref[
1 0 −3
0 1 4

]
,

hence (3,−4, 1) ∈ null[e1, Ae1, A
2e1]. Correspondingly, p(A)e1 = 0, with

p(t) = 3− 4t+ t2 = (t− 3)(t− 1).

Consequently, µ = 3 is an eigenvalue for A, with corresponding eigenvector

(A− id)e1 = (1, 1);

also, µ = 1 is an eigenvalue for A, with corresponding eigenvector

(A− 3 id)e1 = (−1, 1).

Note that the resulting basis

[
1 −1
1 1

]
for IF2 consisting of eigenvectors for

A differs in some detail from the one we found in (10.8)Example. After all,
if v is an eigenvector, then so is αv for any nonzero scalar α.
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10.14∗ The Fibonacci sequence f := (f0, f1, f2, . . .) is defined by its two-term
recurrence:

fk+1 = fk + fk−1, k = 1, 2, . . . ; (f0, f1) := (0, 1).

Thus, fk:k+1 = Afk−1:k with

A :=

[
0 1
1 1

]
.

Therefore, by induction on k, fk:k+1 = Ake2.

(a) Use elimination as in (10.23)Example to determine a diagonal matrix M and basis
V for F2 for which AV = VM.

(b) Use the eigenstructure of A found in (a) to compute f50.

Here is some standard language concerning the items in our discussion
so far. One calls (x,Ax,A2x, . . .) the Krylov sequence for A at x, and
calls

KA,x := ran[x,Ax,A2x, . . .]

the Krylov subspace for A at x. KA,x is A-invariant, meaning that
A(KA,x) ⊂ KA,x. This implies that the restriction

Ax := A KA,x

of A to KA,x is in L(KA,x). Any eigenvalue of Ax is an eigenvalue of A.
However, if dimKA,x is much smaller than dimX, then we would expect it
to be much easier to find eigenvalues for Ax than it is to find eigenvalues for
A.

To find out more about the structure of KA,x and of Ax, we now con-
sider polynomials p for which p(A)x = 0. Any such nontrivial polynomial is
called an annihilating polynomial for A at x. We may assume without
loss of generality that this polynomial is monic, i.e., its highest nonzero co-
efficient is 1, since we can always achieve this by dividing the polynomial by
its highest nonzero coefficient without changing the fact that it is an anni-
hilating polynomial for A at x. When KA,x = X, then x is called a cyclic
vector for A, and A is called non-derogatory in case it has a cyclic vector.
Such annihilating polynomials simplify our dealings with KA,x because of the
following.

(10.24) Lemma: If the annihilating polynomial, p, for A at x has
degree k, then KA,x = ran[x,Ax, . . . , Ak−1x].

Proof: If y ∈ KA,x, then y is a weighted sum of vectors Ajx, hence
can be written as y = h(A)x for some polynomial h. By the Euclidean
algorithm (see page 281), there exist polynomials q and r, with deg r < deg p
so that h = qp+ r, therefore, by (10.21)Lemma and since p(A)x = 0,

y = h(A)x = q(A)p(A)x+ r(A)x = r(A)x ∈ ran[x,Ax, . . . , Adeg rx]

while ran[x,Ax, . . . , Adeg rx] ⊂ ran[x,Ax, . . . , Ak−1x] since deg r < deg p =
k.
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This encourages us to choose k as small as possible or, equivalently, to
choose for p the monic annihilating polynomial for A at x of smallest degree.
By the Lemma just proved, that degree cannot be smaller than d, with Adx
the first or leftmost free column in [x,Ax, . . .], yet as we saw in the proof
of (10.17)Theorem, there is a unique monic annihilating polynomial of that
degree d. Further, for that choice of d, all the columns of [x,Ax, . . . , Ad−1x]
are bound, hence we conclude from (10.24)Lemma that [x,Ax, . . . , Ad−1x] is
a basis for the Krylov subspace KA,x.

Here, for the record, is a formal account of what we have proved so far.

(10.25) Proposition: For every A ∈ L(X) with dimX <∞ and every
x ∈ X\0, there is a unique monic polynomial p of smallest degree for
which p(A)x = 0. This polynomial is called the minimal polynomial
for A at x and is denoted

pA,x.

It can be constructed in the form

pA,x(t) = a0 + a1t+ · · ·+ ad−1t
d−1 + td,

with Adx the first or leftmost free column of [x,Ax,A2x, . . .], hence
(a0, . . . , ad−1, 1) ∈ null[x,Ax, . . . , Adx].

For this choice of d, [x,Ax, . . . , Ad−1x] is a basis for the Krylov
subspace KA,x = ran[x,Ax,A2x, . . .], hence

KA,x = {q(A)x : q ∈ Π<d}.

Assuming that X is a vector space over IF = C, every zero µ of pA,x is
an eigenvalue of A, with associated eigenvector q(A)x, where pA,x(t) =:
(t − µ)q(t). (See pages 280ff on Horner’s method for the standard way
to compute q from pA,x and µ.)

For example, consider the permutation matrix P = [e2, e3, e1] and take
x = e1. Then

[x, Px, P 2x, P 3x] = [e1, e2, e3, e1].

Hence, P 3x is the first free column here. The element in the nullspace corre-
sponding to it is the vector (−1, 0, 0, 1). Hence, the minimal polynomial for
P at x = e1 is of degree 3; it is the polynomial p(t) = t3 − 1. It has the zero
µ = 1, which therefore is an eigenvalue of P . A corresponding eigenvector is
obtainable in the form q(P )e1 with q(t) := p(t)/(t − 1) = t2 + t + 1, hence
the eigenvector is e3 + e2 + e1.

Here are two additional useful properties of pA,x.
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(10.26) Proposition: Every annihilating polynomial p for A at x is of
the form p = qpA,x for some polynomial q, i.e.,

IA,x := {p ∈ Π : p(A)x = 0} = ΠpA,x := {qpA,x : q ∈ Π}.

Proof: Let p be a polynomial. By the Euclidean algorithm (see
page 281), there exist polynomials q and r so that p = qpA,x+ r with deg r <
deg pA,x. Further, if p ∈ IA,x, then also r = p − qpA,x ∈ IA,x, hence r must
be the zero polynomial since pA,x is of minimal (positive) degree in IA,x.

In particular, pA,x divides the minimal polynomial of A, meaning
the monic polynomial p of smallest degree that annihilates A, i.e., satisfies
p(A) = 0. This polynomial is customarily denoted by

pA.

(10.27) Proposition: For any A ∈ L(X) and any x ∈ X\0, any
eigenvalue µ of A with eigenvector y in KA,x is a zero of pA,x.

Also, pA,x = pAx,x is the minimal polynomial for Ax := A KA,x
.

Proof: Let d := deg pA,x and assume that Ay = µy for some scalar
µ and some nonzero y ∈ KA,x = {q(A)x : q ∈ Π<d}, the equality by
(10.25)Proposition. Then y = q(A)x for some nontrivial polynomial q of
degree < d, while 0 = (A−µ id)y = (A−µ id)q(A)x, hence r := (· −µ)q is a
nontrivial annihilating polynomial for A at x, of degree ≤ d, hence necessar-
ily a (nontrivial) scalar multiple of pA,x by the minimality of pA,x, therefore
pA,x(µ) = 0.

Since Ax = A on KA,x, [x,Ax,A2x, . . .] = [x,Axx,A
2
xx, . . .], hence

pAx,x = pA,x. Further, by (10.21)Lemma,

pA,x(A)q(A)x = q(A)pA,x(A)x = q(A)0 = 0, q ∈ Π,

hence KA,x = {q(A)x : q ∈ Π} ⊂ null pA,x(A), therefore pA,x = 0 on KA,x.
Any other nontrivial polynomial p for which p(A) is zero on KA,x must nec-
essarily have p(A)x = 0, hence be divisible by pA,x, by (10.26)Proposition,
therefore of degree ≥ deg pA,x = dimKA,x, showing pA,x to be the monic
annihilating polynomial for Ax of minimal degree.
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10.15 Use Elimination as in (10.23) to determine all the eigenvalues and, for each

eigenvalue, a corresponding eigenvector, for each of the following matrices: (i)

[
7 −4
5 −2

]
;

(ii) [0, e1, e2] ∈ R3×3 (try x = e3); (iii)

[−1 1 −3
20 5 10
2 −2 6

]
.

10.16∗ Let (µ, x) be an eigenpair for A ∈ L(X). Prove: (i) For any polynomial p,
(p(µ), x) is an eigenpair for p(A); (ii) If B ∈ L(X) with AB = BA and Bx ̸= 0, then
(µ,Bx) is an eigenpair for A.

10.17∗

(a) Prove: If p is any nontrivial polynomial and A is any square matrix for which p(A) =
0, then spct(A) ⊆ {µ ∈ C : p(µ) = 0}. (Hint: Problem 10.16(i).)

(b) What can you conclude about spct(A) in case you know that A is idempotent, i.e., a
linear projector, i.e., A2 = A?

(c) What can you conclude about spct(A) in case you know that A is nilpotent, i.e.,
Aq = 0 for some integer q?

(d) What can you conclude about spct(A) in case you know that A is involutory, i.e.,
A−1 = A?

(e) What is the spectrum of the linear map D : Π≤k → Π≤k of differentiation, as a map
on polynomials of degree ≤ k?

10.18∗ Prove: Let A ∈ L(X) and x ∈ X\0. If the corresponding minimal polynomial
pA,x for A at x has degree d = dimX, then spct(A) ⊂ {z ∈ F : pA,x(z) = 0}, with equality
in case F = C.

10.19 Assume that F = C and use the minimal polynomial at e1 to determine the
spectrum of the following matrices: (i) [e2, 0]; (ii) [e2, e3, e1]; (iii) [e2, e2]; (iv) [e2, e1, 2e3].

10.20∗ The companion matrix for the monic polynomial p : t 7→ a1 + a2t+ · · ·+
antn−1 + tn is, by definition, the matrix Ap := [e2, . . . , en,−a] ∈ Fn×n. (a) Prove that p
is the minimal polynomial for A at e1. (b) Use (a) and MATLAB’s eig command to find all
the zeros of the polynomial p : t 7→ 1 + t+ t2 + · · ·+ t9. Check your answer.

10.21∗ Let x ∈ X\0 and A ∈ L(X), and Ax := A KA,x
. Prove that Ax ∈ L(KA,x)

and that, if F = C, then spct(Ax) = {z ∈ C : pA,x(z) = 0}.
10.22∗ Prove that A ∈ L(X) is non-derogatory if and only if, for some x ∈ X,

deg pA,x = dimX, in which case x is a cyclic vector for A.

10.23 Let A ∈ L(X) be non-derogatory, dimX = n. Prove:

(i) C(A) := {B ∈ L(X) : AB = BA} = Π(A) := {p(A) : p ∈ Π}.
(ii) The map f : p 7→ p(A) is linear and carries Π<n 1-1 onto C(A).

10.24

(i) Show that any A ∈ F2×2\{0} must be non-derogatory or else be a scalar multiple of
the identity. (Hint: find a nontrivial vector that is not an eigenvector.)

(ii) Show that any linear projector on the linear space X is derogatory unless dimX ≤ 2.

10.25 Let A be a matrix of order n, let x ∈ Fn\0, and let P be the orthogonal
projector of Fn onto the space Y := ran[x, Ax, . . . , Ar−1x], the Krylov subspace of order r
for A generated by x. Assume that Y is r-dimensional, and let PArx =:

∑
j<r

ajA
jx. (i)

Prove that K := [x, PAx, (PA)2x, . . . , (PA)rx] = [x, Ax, . . . , Ar−1x, PArx]. (ii) Prove

that q(t) := tr −
∑

j<r
ajt

j is the minimal polynomial at x for the linear map PA : Y →
Y : y 7→ PAy. (iii) Conclude that q is the unique monic polynomial of degree r for which
∥q(A)x∥2 is as small as possible.

10.26 Prove: (i) for any A,B ∈ L(X), nullA ∩ nullB ⊂ null(A + B); (ii) for any
A,B ∈ L(X) with AB = BA, nullA+ nullB ⊂ null(AB).

10.27 Prove: If g is the greatest common divisor of the nontrivial polynomials p1, . . . ,
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pr and m is their least common multiple, then, for any A ∈ L(X), null g(A) = ∩j null pj(A)

and nullm(A) =
∑

j
null pj(A). (Hint: Problem 17.6.)

It is enough to understand the eigenstructure of matrices

So far, we know how to find some eigenvalues and corresponding eigenvectors
for a given A ∈ L(X), making use of minimal polynomials at some chosen
x ∈ X\0 found by elimination. But can we be sure to find all the eigenvalues
that way? By (10.11)Corollary, we know that we have found them all if we
have found n := dimX of them. But if we find fewer than that, then we
can’t be sure.

The standard approach to finding the entire spectrum of A is by search-
ing for linear maps B that have the same spectrum as A but carry that
spectrum more openly, like triangular matrices (see (10.7)Proposition). This
search makes essential use of the notion of similarity.

(10.28) Definition: We say that A ∈ L(X) and B ∈ L(Y ) are similar
to each other and write

A ∼ B

in case there is an invertible V ∈ L(Y,X) so that

A = V BV −1.

In particular, a linear map is diagonalizable if and only if it is similar to
a diagonal matrix.

In trying to decide whether or not a given linear map A is diagonalizable,
it is sufficient to decide this question for any convenient linear map B similar
to A. For, if such a B is diagonalizable, i.e., similar to a diagonal matrix,
then A is similar to that very same diagonal matrix. This follows from the
fact that similarity is an equivalence relation:

(10.29) Proposition: Similarity is an equivalence relation. Specif-
ically,

(i) A ∼ A (reflexive);

(ii) A ∼ B implies B ∼ A (symmetric);

(iii) A ∼ B and B ∼ C implies A ∼ C (transitive).

Proof: A ∼ A, since A = idA id. Also, if A = V BV −1 for some
invertible V , then alsoW := V −1 is invertible, and B = V −1AV =WAW−1.
Finally, if A = V BV −1 and B =WCW−1, then U := VW is also invertible,
and A = V (WCW−1)V −1 = UCU−1.
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Now, any linear map A ∈ L(X) on a finite-dimensional vector space X
is similar (in many ways if X is not trivial) to a matrix. Indeed, for any basis

V for X, Â := V −1AV is a matrix similar to A. The map Â so defined is
indeed a matrix since both its domain and its target is a coordinate space
(the same one, in fact; hence Â is a square matrix). We conclude that, in
looking for ways to decide whether or not a linear map is diagonalizable, it
is sufficient to know how to do this for square matrices.

Every complex (square) matrix is similar to
an upper triangular matrix

While having in hand a diagonal matrix similar to a given A ∈ L(X) is
very nice indeed, for most purposes it is sufficient to have in hand an upper
triangular matrix similar to A. There are several reasons for this.

One reason is that, as soon as we have an upper triangular matrix sim-
ilar to A, then (see (10.33)Corollary) we can easily manufacture from this
a matrix similar to A and with off-diagonal elements as small as we please
(except that, in general, we can’t make them all zero).

A more fundamental reason is that, once we have an upper triangu-
lar matrix similar to A, then we know the entire spectrum of A since, by
(10.7)Proposition, the spectrum of a triangular matrix is the set of its diag-
onal entries. Here are the various facts.

(10.30) Proposition: If A and Â are similar, then spct(A) = spct(Â).

Proof: If Â = V −1AV for some invertible V , then, for any scalar µ,
Â − µ id = V −1(A − µ id)V . In particular, Â − µ id is not invertible (i.e.,

µ ∈ spct(Â)) if and only if A− µ id is not invertible (i.e., µ ∈ spct(A)).

(10.31) Corollary: If A ∈ L(X) is similar to a triangular matrix Â,

then µ is an eigenvalue for A if and only if µ = Âjj for some j. In a
formula,

spct(A) = {Âjj : all j}.

More precisely, if Â = V −1AV is upper triangular and j is the smallest
index for which µ = Âjj , then there is an eigenvector for A belonging
to µ available in the form w = V a, with a the element in the standard
basis for null(Â−µ id) associated with the (free) jth column of Â−µ id,

i.e., a ∈ null(Â − µ id), aj = 1, and all other entries corresponding to

free columns of Â− µ id are 0; cf. (4.14).
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The now-standard algorithm for computing the eigenvalues of a given
matrix A is the QR method. It generates a sequence B1, B2, B3, . . . of
matrices all similar to A that converges to an upper triangular matrix. To the
extent that the lower triangular entries of Bk are small (compared to ∥Bk∥,
say), the diagonal entries of Bk are close to eigenvalues of Bk, hence of A.
The actual version of the QR method used in MATLAB is quite sophisticated,
as much care has gone into making the algorithm fast as well as reliable in
the presence of round-off.

The MATLAB command eig(A) gives you the list of eigenvalues of A. The
more elaborate command [V,M]=eig(A) gives you, in V, a list of corresponding
‘eigenvectors’, in the sense that, approximately, AV( : , j) = V( : , j)M(j, j), all j.

(10.32) Theorem: Every complex (square) matrix is similar to an
upper triangular matrix.

Proof: The proof is by induction on the order, n, of the given matrix
A.

If n = 1, then A is a 1 × 1-matrix, hence trivially upper triangular.
Assume that we have proved the theorem for all matrices of order n− 1 and
let A be of order n. Since the scalar field is C, we know that A has an
eigenvector, u1, say, with corresponding eigenvalue, µ1 say. Extend [u1] to a
basis U = [u1,u2, . . . ,un] for Cn. Then

AU = [Au1, . . . , Aun] = [u1µ1, Au2, . . . , Aun].

We want to compute U−1AU . For this, observe that U−1u1 = U−1Ue1 = e1.
Therefore,

U−1AU = [e1µ1, U
−1Au2, . . . , U

−1Aun].

Writing this out in detail, we have

U−1AU =: Â =


µ1 × · · · ×
0 × · · · ×
...

... · · ·
...

0 × · · · ×

 =:

[
µ1 C
0 A1

]
.

Here, C is some 1 × (n − 1) matrix of no further interest, A1 is a matrix of
order n − 1, hence, by induction hypothesis, there is some invertible W so
that Â1 :=W−1A1W is upper triangular. We compute

diag(1,W−1)Â diag(1,W ) =

[
1 0
0 W−1

] [
µ1 C
0 A1

] [
1 0
0 W

]
=

[
µ1 CW
0 W−1A1W

]
.
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The computation uses the fact that multiplication from the left (right) by a
block-diagonal matrix multiplies the corresponding rows (columns) from the
left (right) by the corresponding diagonal blocks (see Problem 2.17). Since

diag(1,W−1) diag(1,W ) = diag(1, idn−1) = idn,

this shows that Â is similar to an upper triangular matrix. Since A is similar
to Â, this finishes the proof.

Various refinements in this proof are possible (as we will show later, in
the discussion of the ‘Schur form’), to give more precise information about
possible upper triangular matrices similar to a given A. For the present,
though, this is sufficient for our needs since it allows us to prove the following:

(10.33) Corollary: Every complex (square) matrix is similar to an
‘almost diagonal’ matrix. Precisely, for every complex matrix A and
every ε > 0, there exists an upper triangular matrix Bε similar to A
whose off-diagonal entries are all < ε in absolute value.

Proof: By (10.32)Theorem, we know that any such A is similar to
an upper triangular matrix. Since similarity is transitive (see (10.29)Propo-
sition), it is therefore sufficient to prove this Corollary in case A is upper
triangular, of order n, say.

The proof in this case is a simple trick: Consider the matrix

B :=W−1AW,

with
W := diag(δ1, δ2, . . . , δn),

and the scalar δ to be set in a moment. W is indeed invertible as long as
δ ̸= 0, since then

W−1 = diag(δ−1, δ−2, . . . , δ−n).

Now, multiplying a matrix by a diagonal matrix from the left (right) multi-
plies the rows (columns) of that matrix by the diagonal entries of the diagonal
matrix. Therefore,

Bij = (W−1AW )ij = Aijδ
j−i, all i, j.

In particular, B is again upper triangular, and its diagonal entries are those
of A. However, all its possibly nontrivial off-diagonal entries lie above the
diagonal, i.e., are entries Bij with j > i, hence are the corresponding entries
of A multiplied with some positive power of the scalar δ. Thus, if

c := max
i<j
|Aij |

and we choose δ := min{ε/c, 1}, then, we can be certain that

|Bij | ≤ ε, all i ̸= j,

regardless of how small we choose that positive ε.
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10.28 T/F

(a) The only diagonalizable matrix A having just one factorization A = VMV −1 with M
diagonal is the empty matrix.

(b) If A is the linear map of multiplication by a scalar, then any basis for its domain is
an eigenbasis for A.

(c) A triangular matrix of order n is diagonalizable if and only if it has n different
diagonal entries.

(d) Any (square) triangular matrix is diagonalizable.

(e) Any matrix of order 1 is diagonalizable.

(f) A matrix of order n has n eigenvalues.

(g) Similar linear maps have the same spectrum.

(h) The linear map of differentiation on Π≤k is nilpotent.

(i) The identity map is idempotent.

(j) If the matrix A has 3 eigenvalues, then it must have at least 3 columns.

(k) If null(A− µ id) is not trivial, then every one of its elements is an eigenvector for A
belonging to the eigenvalue µ.



11 Convergence of the power sequence

Convergence of sequences in a normed vector space

Our discussion of the power sequence A0, A1, A2, . . . of a linear map naturally
involves the convergence of such a sequence.

Convergence of a vector sequence or a map sequence is most conveniently
described with the aid of a norm, as introduced earlier, starting at page 120.

Suppose x1,x2,x3, . . . is an infinite sequence of n-vectors. In order to
avoid confusion, I refer to the jth entry of the kth term xk in such a vector
sequence by xk(j). We say that this sequence converges to the n-vector
x∞ and write

x∞ = lim
k→∞

xk,

in case
lim
k→∞

∥x∞ − xk∥ = 0.

Such convergence takes place entry-wise, i.e.,

x∞ = lim
k→∞

xk ⇐⇒ ∀i, x∞(i) = lim
k→∞

xk(i).

Note that x∞ = limk→∞ xk if and only if, for every ε > 0, there is some k0
so that, for all k > k0, ∥x∞ − xk∥ < ε. This says that, for any given ε > 0
however small, all the terms in the sequence from a certain point on lie in
the “ball”

Bε(x∞) := {y ∈ IFn : ∥y − x∞∥ < ε}
whose center is x∞ and whose radius is ε.

(11.1) Lemma: A convergent sequence is necessarily bounded. More
explicitly, if the sequence (xk) of n-vectors converges, then supk ∥xk∥ <
∞, i.e., there is some c so that, for all k, ∥xk∥ ≤ c.

171
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The proof is a verbatim repeat of the proof of this assertion for scalar
sequences, as given on the pages 274ff on scalar sequences.

In the same way, we say that the sequence A1, A2, A3, . . . of matrices
converges to the matrix B and write

lim
k→∞

Ak = B,

in case

lim
k→∞

∥B −Ak∥∞ = 0.

As in the case of vector sequences, a convergent sequence of matrices is
necessarily bounded.

Here, for convenience, we have used the map norm associated with the
max-norm since we have the simple and explicit formula (7.17) for it. Yet we
know from (7.25)Proposition that any two norms on any finite-dimensional
normed vector space are equivalent. In particular, if ∥ ∥′ is any norm on
L(IFn) = IFn×n, then there is a positive constant c so that

∀A ∈ IFn×n, ∥A∥∞/c ≤ ∥A∥′ ≤ c∥A∥∞.

This implies that limk→∞ ∥B −Ak∥∞ = 0 if and only if

lim
k→∞

∥B −Ak∥′ = 0,

showing that our definition of what it means for Ak to converge to B is
independent of the particular matrix norm we use. We might even have
chosen the matrix norm

∥A∥′ := max
i,j
|Aij | = max

x ̸=0

∥Ax∥∞
∥x∥1

,

and so explicitly confirmed that convergence of matrices is entry-wise, i.e.,
limk→∞Ak = B if and only if

∀i, j, lim
k→∞

(Ak)ij = Bij .

11.1 For each of the following matrices A, work out Ak for arbitrary k ∈ N and, from

that, determine directly whether or not the power sequence A0, A1, A2, . . . converges; if it

does, also determine that limit. (i) A := α idX ; (ii) A :=

[
1/2 210

0 1/2

]
; (iii) A := [−e1, e2];

(iv) A =

[
a b
0 c

]
.
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Three interesting properties of the power sequence
of a linear map

We have already most of the tools in hand needed to analyze the following
three interesting properties that the power sequence of A, i.e., the sequence

(11.2) A0, A1, A2, . . .

may have.

Let A ∈ L(X) with dimX <∞. Then, for any basis V of X,

Â := V −1AV

is a matrix similar to A, and, for any k,

Ak = V ÂkV −1.

Thus, if we understand the sequence (11.2) for any square matrix A, then we
understand (11.2) for any A ∈ L(X) with dimX <∞.

For this reason, we state here the three interesting properties only for a
matrix A.

We call the matrix A power-bounded in case its power sequence is
bounded, i.e., supk ∥Ak∥∞ < ∞, i.e., there is a constant c so that, for all k,
∥Ak∥∞ ≤ c.

We call the matrix A convergent in case its power sequence converges,
i.e., in case, for some matrix B, B = limk→∞Ak.

We call the matrix A convergent to 0 in case

lim
k→∞

Ak = 0.

See the pages 274ff on the convergence of scalar sequences and, in par-
ticular, (17.5)Lemma concerning the scalar sequence (ζ0, ζ1, ζ2, . . .).

The first property is fundamental in the study of evolutionary (i.e., time-
dependent) processes, such as weather or fluid flow. In the simplest approxi-
mation, the state of the system (be it the weather or waves on the ocean or
whatever) at time t is described by some vector y(t), and the state y(t+∆t)
at some slightly later time t+∆t is computed as

y(t+∆t) = Ay(t),

with A some time-independent matrix. Such a process is called stable if
∥y(t)∥ remains bounded for all time regardless of the initial state, y(0), of
the system. Since y(k∆t) = Aky(0), the requirement of stability is equivalent
to the power-boundedness of A.
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The third property is fundamental in the study of iterative processes, as
discussed earlier, starting on page 150.

The second property is in between the other two. In other words, we
have listed the three properties here in the order of increasing strength: if
A is convergent to 0, then it is, in particular, convergent. Again, if A is
convergent, then it is, in particular, power-bounded.

Suppose now that x is an eigenvector for A, with corresponding eigen-
value µ. Then Ax = µx, hence Akx = µkx for k = 1, 2, 3, . . .. Sup-
pose A is power-bounded. Then, in particular, for some c, we should have
c∥x∥∞ ≥ ∥Ak∥∞∥x∥∞ ≥ ∥Akx∥∞ = ∥µkx∥∞ = |µ|k∥x∥∞. Since ∥x∥∞ ̸= 0,
this implies that the scalar sequence (|µ|k : k = 1, 2, 3, . . .) must be bounded,
hence |µ| ≤ 1. Since we took an arbitrary eigenvector, we conclude that

(11.3) A power-bounded =⇒ ρ(A) ≤ 1.

Actually, more is true. Suppose that µ is a defective eigenvalue for A,
which, to recall, means that

null(A− µ id) ∩ ran(A− µ id) ̸= {0}.

In other words, there exists an eigenvector for A belonging to µ of the form
x = (A− µ id)y. This implies that

Ay = x+ µy.

Therefore

A2y = Ax+ µAy = µx+ µ(x+ µy) = 2µx+ µ2y,

hence

A3y = 2µAx+ µ2Ay = 2µ2x+ µ2(x+ µy) = 3µ2x+ µ3y.

By now, the pattern is clear:

Aky = kµk−1x+ µky.

This also makes clear the difficulty: If |µ| = 1, then

∥Ak∥∞∥y∥∞ ≥ ∥Aky∥∞ ≥ k∥x∥∞ − ∥y∥∞.

This shows that A cannot be power-bounded.

We conclude:
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(11.4) Proposition: If the matrix A is power-bounded, then, for all
µ ∈ spct(A), |µ| ≤ 1, with equality only if µ is a nondefective eigenvalue
for A.

Now we consider the case that A is convergent (hence, in particular,
power-bounded). If A is convergent, then, for any eigenvector x with associ-
ated eigenvalue µ, the sequence (µkx : k = 0, 1, 2, . . .) must converge. Since
x stays fixed, this implies that the scalar sequence (µk : k = 0, 1, 2, . . .) must
converge. This, to recall, implies that |µ| ≤ 1 with equality only if µ = 1.

Finally, if A is convergent to 0, then, for any eigenvector x with associ-
ated eigenvalue µ, the sequence (µkx) must converge to 0. Since x stays fixed
(and is nonzero), this implies that the scalar sequence (µk) must converge to
0. This, to recall, implies that |µ| < 1.

Remarkably, these simple necessary conditions just derived, for power-
boundedness, convergence, and convergence to 0, are also sufficient; see
(11.10)Theorem.

For the proof, we need one more piece of information, namely a better
understanding of the distinction between defective and nondefective eigen-
values.

11.2 For each of the following four matrices A, determine whether or not it is
(a) power-bounded, (b) convergent, (c) convergent to zero. (i) idn; (ii) [1, 1; 0, 1]; (iii)
[8/9, 1010; 0, 8/9]; (iv) − idn.

Splitting off the nondefective eigenvalues

Recall that the scalar µ is called a defective eigenvalue for A ∈ L(X) in case

null(A− µ id) ∩ ran(A− µ id) ̸= {0}.

(11.5) Proposition: If M is a set of nondefective eigenvalues of A ∈
L(X), for some finite-dimensional vector space X, then X has a basis
U = [V,W ], with V consisting entirely of eigenvectors of A belonging
to these nondefective eigenvalues, and W any basis for the subspace
Z := ran p(A), with p(t) :=

∏
µ∈M (t− µ).

Further, Z is A-invariant, meaning that A(Z) ⊂ Z, hence A Z :
Z → Z : z 7→ Az is a well-defined map on Z, and spct(A Z) =
spct(A)\M .
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Proof: Since Ap(A) = p(A)A, we have

AZ = A(ran p(A)) = ranAp(A) = p(A) ranA ⊂ ran p(A) = Z,

showing Z to be A-invariant. This implies that A Z : Z → Z : z 7→ Az is a
well-defined linear map on Z.

We claim that X is the direct sum of null p(A) and ran p(A), i.e.,

(11.6) X = null p(A) +̇ ran p(A).

Since, by (3.23)Dimension Formula, dimX = dimnull p(A) + dim ran p(A),
it is, by (3.33)Proposition, sufficient to prove that

(11.7) null p(A) ∩ ran p(A) = {0}.

For its proof, we show that we can break up each x ∈ X into a sum of
#M components xµ, µ ∈ M, with

xµ ∈
{
null(A− µ id), if x ∈ null p(A),
ran(A− µ id), if x ∈ ran p(A),

which proves (11.7) since (A−µ id)∩ ran(A−µ id) = {0} for all µ ∈ M. For
the breakup, let

pµ : t 7→ p(t)/(t− µ), µ ∈ M,

and recall from (5.7) that

(pµ/pµ(µ) : µ ∈ M)

is a Lagrange basis for the polynomials of degree < #M. In particular,

1 =
∑
µ∈M

pµ/pµ(µ).

Hence, with (10.21)Lemma, id =
∑

µ∈M pµ(A)/pµ(µ) and so, for any x ∈ X,

x =
∑
µ∈M

xµ,

with
xµ := pµ(A)x/pµ(µ)

in null(A − µ id) in case x ∈ null p(A) (since (A − µ id)xµ = p(A)x/pµ(µ)),
but also in ran(A − µ id) in case also x ∈ ran p(A) ⊂ ran(A − µ id), hence
then xµ = 0 since we assumed that each µ ∈ M is not defective. This shows
(11.7), hence (11.6).
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More than that, we just saw that x ∈ null p(A) implies that x =
∑

µ xµ
with xµ ∈ null(A− µ id), all µ ∈ M, hence, null p(A) ⊂ ranV , with

V := [Vµ : µ ∈ M]

and Vµ a basis for null(A − µ id), all µ. On the other hand, each column of
V is in null p(A), hence also ranV ⊂ null p(A), therefore V is onto null p(A)
and, since it is 1-1 by (10.10)Lemma, it is a basis for null p(A). Therefore,
by (11.6), U := [V,W ] is a basis for X for any basis W for Z = ran p(A).

Finally, let ν ∈ spct(A), hence Ax = νx for some x ̸= 0. Then p(A)x =
p(ν)x, hence x ∈ ran p(A) = Z in case p(ν) ̸= 0, i.e., ν ̸∈ M, and therefore
ν ∈ spct(A Z). Otherwise, p(ν) = 0, and then p(A)x = 0, i.e., 0 ̸= x ∈
null p(A) hence, by (11.7), x cannot be in ran p(A) = Z, i.e., ν ̸∈ spct(A Z).
This proves that spct(A Z) = spct(A)\M.

It follows that the matrix representation for A with respect to this basis
U = [V,W ] has the simple form

U−1AU =

[
M 0
0 B̂

]
:= diag(µ1, . . . , µr, B̂),

with µ1, . . . , µr a sequence taken from M, and B̂ some square matrix, namely
B̂ =W−1AW .

(11.8) Theorem: Let A ∈ L(X), with X a finite-dimensional vector
space.

(i) If A is diagonalizable, then all its eigenvalues are nondefective,
and X = +̇µ∈spct(A) null(A− µ id).

(ii) If IF = C and all of A’s eigenvalues are nondefective, then A is
diagonalizable.

Proof: (i) The first part is a restatement of (10.15)Corollary; the
second part follows from (3.34)Corollary.

(ii) If none of the eigenvalues of A is defective, then we can choose
M = spct(A) in (11.5)Proposition, leaving A Z as a linear map with an
empty spectrum. Hence, if also IF = C, then we know from (10.17)Theorem
that ranW = domA Z must be trivial, hence V is a basis for X.

Here is a simple example. Let A =

[
2 1
1 2

]
. Then A maps x := (1, 1) to

(3, 3) = 3x. Hence, µ := 3 ∈ spct(A). We compute

ran(A− µ id) = ran

[
−1 1
1 −1

]
= ran

[
−1
1

]
,
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since the first column of (A−µ id) is bound and the second is free. This also

implies that null(A− µ id) is one-dimensional, with V :=

[
1
1

]
a basis for it.

It follows, by inspection, that null(A− µ id)∩ ran(A− µ id) = {0} since
the only vector of the form (1, 1)α and of the form (−1, 1)β is the zero vec-

tor. Equivalently, the matrix U :=

[
1 −1
1 1

]
is 1-1, hence a basis for R2.

Consequently, 3 is a nondefective eigenvalue for A.

Now, what about A Z , with Z = ran(A − µ id)? In this case, things
are very simple since Z is one-dimensional. Since A(Z) ⊂ Z, A must map
any z ∈ Z to a scalar multiple of itself! In particular, since z = (−1, 1) ∈
ran(A− µ id), A must map this z into a scalar multiple of itself, and this is
readily confirmed by the calculation that A maps z to −(2, 1) + (1, 2) = z,
i.e., to itself. This shows that z is an eigenvector for A belonging to the
eigenvalue 1.

Altogether therefore,

AU = [Ax,Az] = [3x, z] = U diag(3, 1),

showing that A is actually diagonalizable.

This simple example runs rather differently when we change A to A :=[
2 1
0 2

]
. Since A is upper triangular, its sole eigenvalue is µ = 2. But

(A − µ id) =

[
0 1
0 0

]
, and we saw earlier that its range and nullspace have

the nontrivial vector e1 in common. Hence, 2 is a defective eigenvalue for
this matrix A.

(11.9) Example: Let A := [x][y]t with x, y ∈ Rn\0. Then rankA = 1,
hence ranA = ran[x] is one-dimensional, therefore x is an eigenvector for A.
Since Az = x (ytz), we have, in particular,

Ax = x (ytx),

hence x is an eigenvector for A belonging to the eigenvalue µ := ytx.

Since A is of rank 1, dimnullA = n − 1. Let V be a basis for nullA,
i.e., V ∈ L(Rn−1, nullA) invertible. Then U := [V, x] is 1-1 (hence a basis
for Rn) if and only if x ̸∈ ranV , i.e., if and only if x ̸∈ nullA.

case x ̸∈ ranV : Then U = [V, x] is a basis for Rn. Consider the

representation Â = U−1AU for A with respect to this basis: With V =:
[v1, v2, . . . , vn−1], we have Auj = Avj = 0 for j = 1:n−1, therefore

Âej = 0, j = 1:n−1.
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Further, we have Ax = x (ytx), therefore

Âen = U−1AUen = U−1Ax = (ytx)en,

(recall that, for any z ∈ Rn, U−1z provides the coordinates of z with respect
to the basis U , i.e., U(U−1z) = z). Hence, altogether,

Â = [0, . . . , 0, (ytx)en].

In particular, A is diagonalizable, with eigenvalues 0 and ytx.

case x ∈ ranV : Then U = [V, x] is not a basis for Rn. Worse than that,
A is now not diagonalizable. This is due to the fact that, in this case, the
eigenvalue 0 for A is defective: For, x ̸= 0 while Ax = 0, hence

{0} ̸= ran(A− 0 id) = ranA = ran[x] ⊂ nullA = null(A− 0 id).

Therefore null(A− 0 id) ∩ ran(A− 0 id) ̸= {0}.

It is hard to tell just by looking at a matrix whether or not it is diagonal-
izable. There is one exception: If A is hermitian, i.e., equal to its conjugate
transpose, then it is not only diagonalizable, but has an orthonormal basis
of eigenvectors, as is shown in the next chapter.

11.3∗ Prove: If A =

[
B C
0 D

]
, with B and D square matrices, then spct(A) =

spct(B)∪ spct(D). (Hint: Prove first that such a matrix A is invertible if and only if both
B and D are invertible.)

11.4 Use Problem 11.3 to determine the spectrum of the matrix

A :=

 1 2 3 4
2 4 5 6
0 0 2 1
0 0 1 2

.
11.5 (a) Use Problem 11.3 to determine the spectrum of the matrixA :=

[
1 2 a
2 1 b
0 0 3

]
.

(b) For which choices of a and b is A not diagonalizable?

11.6∗ (a) Prove: If A = V diag(µ,B)V −1 for some invertible B, scalar µ and matrix

B, then µ is an eigenvalue of At with eigenvector the first row of V −1.

Three interesting properties of the power sequence
of a linear map: The sequel

(11.10) Theorem: Let A ∈ Cn×n. Then:

(i) A is power-bounded iff, for all µ ∈ spct(A), |µ| ≤ 1, with |µ| = 1
only if µ is not defective.

(ii) A is convergent iff, for all µ ∈ spct(A), |µ| ≤ 1, with |µ| = 1 only if
µ is not defective and µ = 1.

(iii) A is convergent to 0 iff ρ(A) < 1.
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Proof: We only have to prove the implications ‘⇐=’, since we proved
all the implications ‘=⇒’ in an earlier section (see pages 172ff).

We begin with (iii). Since A is a matrix over the complex scalars, we
know from (10.33)Corollary that, for any ε > 0, we can find an upper tri-
angular matrix Bε similar to A and with all off-diagonal entries less than ε
in absolute value. This means, in particular, that A = V B(ε)V −1 for some
(invertible) matrix V , hence, for any k, Ak = V (B(ε))kV −1, therefore,

∥Ak∥∞ ≤ ∥V ∥∞∥B(ε)∥k∞∥V −1∥∞.
We compute

∥B(ε)∥∞ = max
i

∑
j

|(B(ε))ij | ≤ max
i
|(B(ε))ii|+ (n− 1)ε,

since each of those sums involves n − 1 off-diagonal entries and each such
entry is less than ε in absolute value. Further, B(ε) is upper triangular and
similar to A, hence

max
i
|(B(ε))ii| = max{|µ| : µ ∈ spct(A)} = ρ(A).

By assumption, ρ(A) < 1. This makes it possible to choose ε positive
yet so small that ρ(A) + (n − 1)ε < 1. With this choice, ∥B(ε)∥∞ < 1,
hence limk→∞ ∥B(ε)∥k∞ = 0. Therefore, since ∥V ∥∞ and ∥V −1∥∞ stay fixed
throughout, also ∥Ak∥∞ → 0 as k →∞. In other words, A is convergent to
0.

With this, we are ready also to handle (i) and (ii). Both assume that
all eigenvalues of A of modulus 1 are nondefective. By (11.5)Proposition,
this implies the existence of a basis U = [V,W ] for Cn so that V consists of
eigenvectors of A belonging to eigenvalues of modulus 1, while Z := ranW
is A-invariant and A Z has only eigenvalues of modulus < 1. In particular,
AV = VM for some diagonal matrix M with all diagonal entries of modulus
1, and AW = WB for some matrix B with spct(B) = spct(A Z), hence
ρ(B) < 1. Consequently, for any k,

AkU = Ak[V,W ] = [AkV,AkW ] = [VMk,WBk] = U diag(Mk, Bk).

In other words,
Ak = U diag(Mk, Bk)U−1.

Therefore, ∥Ak∥∞ ≤ ∥U∥∞ max{∥M∥k∞, ∥Bk∥∞}∥U−1∥∞, and this last ex-
pression converges to ∥U∥∞∥U−1∥∞ since ∥M∥∞ = 1 while ∥Bk∥∞ → 0, by
(iii). Since any convergent sequence is bounded, this implies that also the
sequence (∥Ak∥∞) must be bounded, hence we have finished the proof of (i).

Assume now, in addition, as in (ii) that all eigenvalues of A of modu-
lus 1 are actually equal to 1. Then M = id, and so, limk→∞Ak = C :=
U diag(M, 0)U−1 since Ak − C = U diag(0, Bk)U−1, hence

∥Ak − C∥∞ ≤ ∥U∥∞∥Bk∥∞∥U−1∥∞ ≤ const∥Bk∥∞ → 0

as k →∞.
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(11.11) Example: Here is a concrete example, chosen for its simplic-
ity.

Let A =

[
1 1
0 α

]
. Then spct(A) = {1, α}. In particular, A is diagonal-

izable if α ̸= 1 (by (10.11)Corollary) since then A has two eigenvalues. On
the other hand, if α = 1, then A is not diagonalizable since it then looks
like id2 +N , with N := [0, e1] the simplest example of a non-diagonalizable
matrix. Also, in the latter case, the sole eigenvalue, 1, is certainly defective
since e1 is both in null(A− id) and in ran(A− id).

Also,

Ak =

[
1 1 + α+ · · ·+ αk−1

0 αk

]
=


[
1 1−αk

1−α

0 αk

]
if α ̸= 1;[

1 k
0 1

]
otherwise.

We see that A is power-bounded whenever |α| ≤ 1 except when α = 1, i.e.,
except when there is a defective absolutely largest eigenvalue.

Further, A is convergent iff |α| < 1, i.e., if, in addition, the sole eigenvalue
of size 1 is equal to 1 and is nondefective.

The power method

The simple background for the success of the power method is the following
consequence of (11.10)Theorem (ii).

(11.12) Proposition: If A has just one eigenvalue µ of absolute value
ρ(A) and µ is nondefective, then, for almost any x and almost any y,
the sequence

Akx/(ycAkx), k = 1, 2, . . .

converges to an eigenvector of A belonging to that absolutely maximal
eigenvalue µ. In particular, for almost any vector y, the ratio

ycAk+1x/ycAkx

converges to µ.

Proof: By assumption, there is (by (11.5)Proposition) a basis U :=
[V,W ], with V a basis for the space null(A−µ id) comprising all eigenvectors
of A belonging to that absolutely largest eigenvalue µ of A, and B := A ranW

having all its eigenvalues < |µ| in absolute value. This implies that ρ(B/µ) <
1. Therefore, for any x =: [V,W ](a,b),

Akx = µkV a+BkWb = µk
(
V a+ (B/µ)kWb

)
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and (B/µ)kWb→ 0 as k →∞. Consequently, for any y,

ycAk+1x

ycAkx
=
µk+1(ycV a+ yc(B/µ)k+1Wb)

µk(ycV a+ yc(B/µ)kWb)
= µ

ycV a+ yc(B/µ)k+1Wb

ycV a+ yc(B/µ)kWb

converges to µ as k →∞ provided ycV a ̸= 0.

Note that the speed with which ycAk+1x/ycAkx converges to µ depends
on the speed with which (B/µ)kWb → 0 as k → ∞, hence, ultimately, on
ρ(B/µ).

In the scaled power method, one would, instead, consider the se-
quence

xk+1 := A(xk/∥xk∥), k = 0, 1, . . . ,

or, more simply, the sequence

xk+1 := A(xk/y
txk), k = 0, 1, . . . .

The power method is at the heart of good algorithms for the calculation
of eigenvalues. In particular, the standard algorithm, i.e., the QR method,
can be interpreted as a (very sophisticated) variant of the power method.

11.7 Using MATLAB if really necessary, try out the Power method on the following
matrices A, starting at the specified vector x, and discuss success or failure. (Note: You
can always use eig(A) to find out what the absolutely largest eigenvalue of A is (as well
as some eigenvector for it), hence can tell whether or not the power method is working for

you. If it isn’t, identify the source of failure.) (a) A =

 0 .2 .2 .3
.2 0 .2 .3
.5 .4 0 .4
.3 .4 .6 0

 , x = (1, 1, 1, 1);

(b) A =

[
0 1
−1 0

]
, x = (1,−1); (c) A =

[
1 0
1 1

]
, x = e1; (d) A =

[
4 1 −1
2 5 −2
1 1 2

]
, x =

(1,−2,−1).

11.8 T/F

(a) If the matrix A of order n has n eigenvalues, then none of its eigenvalues is defective.

(b) If, for some sequence (xn : n ∈ N) of m-vectors, limn→∞ ∥xn∥2 = 0, then
limn→∞ ∥xn∥ = 0 for any norm ∥ · ∥ on Fm.

(c) If all the eigenvalues of A are < 1, then limk→∞ Ak → 0.

(d) If all the eigenvalues of A are ≤ 1 in absolute value, then A is power-bounded.

(e) If p(A)x = 0 for some polynomial p, A ∈ L(X) and x ∈ X\{0}, then every eigenvalue
of A is a zero of p.
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Canonical forms exhibit essential aspects of a linear map. Of the three
discussed in this chapter, only the Schur form has practical significance. But
the mathematics leading up to the other two is too beautiful to be left out.

The only result from this chapter used later in this book is the spectral
theorem for hermitian matrices; see (12.2) Corollary.

The Schur form

The discussion of the powers Ak of A used crucially the fact that any square
matrix is similar to an upper triangular matrix. The argument we gave there
for this fact is due to I. Schur, who used a refinement of it to show that
the basis V for which V −1AV is upper triangular can even be chosen to be
unitary or orthonormal, i.e., so that

V cV = id.

(12.1) Schur’s theorem: Every A ∈ L(Cn) is unitarily similar to
an upper triangular matrix, i.e., there exists a unitary basis U for Cn so
that Â := U−1AU = U cAU is upper triangular.

Proof: Simply repeat the proof of (10.32)Theorem, with the fol-
lowing modifications: Normalize the eigenvector u1, i.e., make it have (Eu-
clidean) length 1, then extend it to an o.n. basis for Cn (as can always be
done by applying Gram-Schmidt to an arbitrary basis [u1, . . .] for Cn). Also,
observe that unitary similarity is also an equivalence relation since the prod-
uct of unitary matrices is again unitary. Finally, if W is unitary, then so is
diag(1,W ).

183
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Here is one of the many consequences of Schur’s theorem. It concerns
hermitian matrices, i.e., matrices A for which Ac = A. By Schur’s theorem,
such a matrix, like any other matrix, is unitarily similar to an upper triangular
matrix, i.e., for some unitary matrix U , Â := U cAU is upper triangular. On
the other hand, for any matrix A and any unitary matrix U ,

(U cAU)c = U c(Ac)U.

In other words: if Â is the matrix representation for A with respect to a
unitary basis, then Âc is the matrix representation for Ac with respect to
the very same basis. For our hermitian matrix A with its upper triangular
matrix representation Â = U cAU with respect to the unitary basis U , this
means that also Âc = Â, i.e., that the upper triangular matrix Â is also lower
triangular and that its diagonal entries are all real. This proves the hard part
of the following remarkable

(12.2) Corollary: A matrix A ∈ Cn is hermitian if and only if it is
unitarily similar to a real diagonal matrix.

Proof: We still have to prove that if Â := U cAU is real and diagonal
for some unitary U , then A is necessarily hermitian. But that follows at once
from the fact that then Âc = Â, therefore Ac = (UÂU c)c = UÂcU c =

UÂU c = A.

12.1 Verify that the symmetric matrix

[
2i 1
1 0

]
is not diagonalizable.

A slightly more involved argument makes it possible to characterize all
those matrices that are unitarily similar to a diagonal matrix (real or not).
Such a matrix has enough eigenvectors to make up an entire orthonormal
basis from them. Here are the details.

Start with the observation that diagonal matrices commute with one
another. Thus, if Â := U cAU is diagonal, then

AcA = (UÂcU c)(UÂU c) = UÂcÂU c = UÂÂcU c = (UÂU c)(UÂcU c) = AAc,

hence having AcA = AAc is a necessary condition for A to be unitarily similar
to a diagonal matrix. Remarkably, this condition is sufficient as well. Note
that this condition can be directly tested by computing the two products and
comparing them. It constitutes the only criterion for the diagonalizability
of a matrix available that can be tested for by finitely many calculations.
Not surprisingly, matrices with this property are very convenient and have,
correspondingly, been given a very positive label. They are called normal.
(Another label might have been boring.)
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One way to prove that normal matrices are unitarily similar to a diagonal
matrix is by way of a refinement of Schur’s theorem: It is possible to find
a unitary basis that simultaneously upper-triangularizes two matrices A and
B provided A and B commute, i.e., provided AB = BA. This is due to the
fact that commuting matrices have some eigenvector in common.

Assuming this refinement of Schur’s Theorem (cf. (12.5)Theorem below),
one would obtain, for a given normal matrix A, a unitary basis U so that both
U cAU and U cAcU are upper triangular. Since one of these is the conjugate
transpose of the other, they must both be diagonal. This finishes the proof
of

(12.3) Theorem: A matrix A ∈ Cn is unitarily similar to a diagonal
matrix if and only if AAc = AcA.

Now for the proof of the Refined Schur’s Theorem. Since the proof of
Schur’s theorem rests on eigenvectors, it is not surprising that a proof of its
refinement rests on the following

(12.4) Lemma: If A,B ∈ Cn commute, then there exists a vector that
is eigenvector for both of them.

Proof: Let x be an eigenvector for A, Ax = xµ say, and let p = pB,x

be the minimal polynomial for B at x. Since x ̸= 0, p has zeros. Let ν be
one such and set p =: (· − ν)q. Since IF = C, we know that v := q(B)x is an
eigenvector for B (for the eigenvalue ν). But then, since AB = BA, we also
have Aq(B) = q(B)A, therefore

Av = Aq(B)x = q(B)Ax = q(B)xµ = vµ,

showing that our eigenvector v for B is also an eigenvector for A.

(12.5) Refined Schur’s Theorem: For every A,B ∈ L(Cn) that
commute, there exists a unitary basis U for Cn so that both U cAU and
U cBU are upper triangular.

Proof: This is a further refinement of the proof of (10.32)Theorem.
The essential step in that proof was to come up with some eigenvector for A
which was then extended to a basis, well, to an o.n. basis U for the proof of
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Schur’s Theorem. Therefore, to have U simultaneously upper-triangularize
both A and B, all that’s needed is (i) to observe that, by (12.4)Lemma,
we may choose u1 to be a (normalized) eigenvector of A and B since, by
assumption, AB = BA; and (ii) verify that the submatrices A1 and B1

obtained in the first step again commute (making it possible to apply the
induction hypothesis to them). Here is the verification of this latter fact:

Assuming the eigenvalue of B corresponding to the eigenvector u1 to be
ν, we have

U cAU =

[
µ C
0 A1

]
U cBU =

[
ν D
0 B1

]
.

Therefore[
µν µD + CB1

0 A1B1

]
=

[
µ C
0 A1

] [
ν D
0 B1

]
= U cAUU cBU = U cABU = U cBAU

= U cBU U cAU =

[
νµ νC +DA1

0 B1A1

]
,

hence also A1 and B1 commute.

The primary decomposition

The following analysis goes back to Frobenius and could be viewed as a
first step toward a finest A-invariant direct sum decomposition, a.k.a. the
Jordan form, though the Jordan form is deduced in the next section without
any reference to this section. We give the analysis here in the more general
situation when the scalar field IF may not be algebraically closed.

The ‘primary decomposition’ refers to the following facts (taken for
granted here). The ring Π of (univariate) polynomials over the field IF is
a unique factorization domain. This means that each monic polynomial
can be written in exactly one way (up to order of the factors) as a product
of irreducible polynomials, i.e., monic polynomials that have no proper fac-
tors. Here, p is called a proper factor of q if (i) 0 < deg p < deg q, and (ii)
q = hp for some polynomial h.

If IF = C (or any other algebraically closed field), then each such irre-
ducible polynomial is a monic linear polynomial, i.e., of the form (· − µ) for
some scalar µ. Otherwise, irreducible polynomials may well be of higher than
first degree. In particular, if IF = R, then an irreducible polynomial may be
of second degree, like the polynomial ()2 + 1, but no irreducible polynomial
would be of higher degree than that.

The irreducible polynomials are the ‘primes’ in the ‘ring’ Π, hence the
above-mentioned unique factorization is one into powers of ‘primes’, or a
prime factorization.
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To obtain the ‘primary decomposition’ of the vector spaceX with respect
to the linear map A ∈ L(X), it is convenient to start with the set

NA := {p ∈ Π : null p(A) ̸= {0}}

of all polynomials p for which p(A) fails to be invertible. This set is not
trivial, meaning that it contains more than just the zero polynomial if, as we
continue to assume, dimX <∞, since then

(12.6) ∀x ∈ X, pA,x ∈ NA,

with pA,x the minimal polynomial for A at x, which, to recall, is the monic
polynomial p of smallest degree for which p(A)x = 0.

Call an element of NA minimal if it is monic and none of its proper
factors is in NA, and let

QA

be the collection of all minimal elements of NA.

The set QA is not empty since NA is not empty, and is closed under
multiplication by a scalar, hence contains a monic polynomial of smallest
degree. Any q ∈ QA is necessarily irreducible, since, otherwise, it would be
the product of certain polynomials p with p(A) 1-1, hence also q(A) would
be 1-1.

(12.7) Lemma: Let p be a product of elements of QA,

p =:
∏

q∈Q′
A

q(A)dq

say, with dq ∈ N and Q′
A a finite subset of QA. Then,

(12.8) Xp := null p(A) = +̇
q∈Q′

A

null q(A)dq ,

i.e., Xp = null p(A) is the direct sum of the spaces

Yq := null q(A)dq .

In other words (by (3.33)Proposition), with Vq a basis for Yq,

Vp := [Vq : q ∈ Q′
A]

is a basis for Xp.
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Proof: There is nothing to prove if Q′
A has just one element. So,

assume that #Q′
A > 1, and consider the set

I :=
∑

q∈Q′
A

(p/qdq )Π := {
∑

q∈Q′
A

(p/qdq )pq : pq ∈ Π}

of all polynomials writable as a weighted sum of the polynomials

(12.9) p/qdq =
∏

g∈Q′
A
\q

gdg , q ∈ Q′
A,

with polynomial (rather than just scalar) weights. This set is a polynomial
ideal, meaning that it is closed under addition, as well as under multiplication
by polynomials. More than that (see page 279), I = Π q∗, with q∗ the monic
polynomial of smallest degree in I. In other words, the monic polynomial
q∗ is a factor of every q ∈ I, in particular of every p/qdq with q ∈ Q′

A. But
these polynomials have no proper factor in common because each q ∈ Q′

A is
irreducible. Therefore, q∗ is necessarily the monic polynomial of degree 0,
i.e., q∗ = ()0.

It follows that
()0 =

∑
q∈Q′

A

(p/qdq )hq

for certain polynomials hq. This implies that, for the corresponding linear
maps

(12.10) Pq : Xp → Xp : y 7→ (p/qdq )(A)hq(A)y, q ∈ Q′
A,

(well-defined since Xp = null p(A) is r(A)-invariant for any r ∈ Π; see Prob-
lem 12.2) we have

(12.11) idXp
=
∑
q

Pq.

Also, for q ̸= g, PqPg = s(A)p(A) for some s ∈ Π, by (12.10) and (12.9).
Therefore, PqPg = 0 for g ̸= q. Therefore also

Pq = Pq idXp
= Pq(

∑
g

Pg) =
∑
g

PqPg = PqPq.

This shows that each Pq is a linear projector, hence, by (5.12)Proposition,
that Xp is the direct sum of the ranges of the Pq. It remains to show that

(12.12) ranPq = Yq = null q(A)dq .

It is immediate that ranPq ⊂ Yq ⊂ Xp. With that, Yq ⊂ nullPg for all
g ∈ Q′

A\q, and this implies (12.12), by (12.11).
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Now let p = pA be the minimal (annihilating) polynomial for A,
meaning the monic polynomial p of smallest positive degree for which p(A) =
0.

To be sure, there is such a polynomial since X is finite-dimensional,
hence so is L(X) (by (3.22)Corollary), therefore [Ar : r = 0: dimL(X)] must
fail to be 1-1, i.e., there must be some a for which

p(A) :=
∑

j≤dimL(X)

ajA
j = 0,

yet aj ̸= 0 for some j > 0, hence the set of all annihilating polynomials
of positive degree is not empty, therefore must have an element of minimal
degree, and it will remain annihilating and of that degree if we divide it by
its leading coefficient.

By the minimality of pA, every proper factor of pA is necessarily in NA.
Hence pA is of the form

pA =
∏

q∈Q′
A

qdq

for some positive integers dq and some Q′
A ⊂ QA. (In fact, it is immediate

from (12.7)Lemma that necessarily Q′
A = QA, but we don’t need that here.)

This gives, with (12.7)Lemma, the primary decomposition for X wrto
A:

(12.13) X = +̇
q
null q(A)dq ,

and each dq is the smallest natural number for which

(12.14) null q(A)dq =
∪
r

null q(A)r.

Indeed, from (12.13), every x ∈ X is uniquely writable as x =
∑

g xg with

xg ∈ null g(A)dg , all g ∈ Q′
A, and, since each null g(A)dg is A-invariant, we

therefore have q(A)rx =
∑

g q(A)
rxg = 0 if and only if q(A)rxg = 0 for

all g ∈ Q′
A. However, null q(A) ⊂ null q(A)dq hence, by (12.13), null q(A) ∩

null g(A)dg = {0} for every g ∈ Q′
A\q, therefore, for every g ∈ Q′

A\q, q(A)
maps null g(A)dg 1-1 into itself, hence q(A)rxg = 0 if and only if xg = 0.
Therefore, altogether, x ∈ null q(A)r if and only if x = xq ∈ null q(A)dq ∩
null q(A)r, thus proving (12.14). If now null q(A)r = null q(A)dq for some
r < dq, then already p := pA/q

dq−r would annihilate A, contradicting pA’s
minimality.

If IF = C, then each q is of the form (· − µq) for some scalar µq and,
correspondingly,

X = +̇
q
null(A− µq id)

dq .
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In particular, A− µq id is nilpotent on

Yq := null(A− µq id)
dq ,

with degree of nilpotency equal to dq. Since

A = µq id + (A− µq id),

it follows that

(12.15)

exp(tA) = exp(tµq id) exp(t(A− µq id))

= exp(tµq)
∑
r<dq

tr(A− µq id)
r/r! on Yq,

thus providing a very helpful detailed description of the solution y : t 7→
exp(tA)c to the first-order ODE y′(t) = Ay(t), y(0) = c, introduced in
(10.4).

12.2∗ Prove: For every r, p ∈ Π and every A ∈ L(X), r(A)(null p(A)) ⊂ null p(A),
i.e., null(A) is r(A)-invariant.

12.3 Assume that p, q ∈ NA with null p(A) ∩ null q(A) ̸= {0}. Prove that p and q
have a common factor of degree > 0, hence that p = q in case they are both irreducible.

12.4 A subset F of the vector space X := C(1)(R) of continuously differentiable
functions is called D-invariant if the derivative Df of any f ∈ F is again in F .

Prove: Any finite-dimensional D-invariant linear subspace Y of C(1)(R) is necessarily
in the nullspace of a constant-coefficient ordinary differential operator, i.e., an operator of
the form p(D) for some polynomial p.

It follows that Y is spanned by certain exponential polynomials, i.e., functions of

the form t 7→ q(t) exp(ξt) for certain polynomials q and scalars ξ, the latter being the roots

of p.

The Jordan form

The Jordan form is the result of the search for the ‘simplest’ matrix repre-
sentation for A ∈ L(X) for some n-dimensional vector space X. It starts off
from the following observation.

Suppose X is the direct sum

(12.16) X = Y1 +̇Y2 +̇ · · · +̇Yr

of r linear subspaces, each of which is A-invariant. Then

spct(A) =
∪
j

spct(A Yj
).

More than that, with Vj a basis for Yj , we have AVj ⊂ ranVj , all j. This im-
plies that the coordinate vector of any column of AVj with respect to the basis
V := [V1, . . . , Vr] for X has nonzero entries only corresponding to columns
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of Vj , and these possibly nonzero entries can be found as the correspond-
ing column in the matrix V −1

j AVj . Consequently, the matrix representation

Â = V −1AV for A with respect to the basis V is block-diagonal, i.e., of the
form

Â = diag(V −1
j AVj : j = 1:r) =

V
−1
1 AV1

. . .

V −1
r AVr

 .
The smaller we can make the A-invariant summands Yj , the simpler and

more helpful is our overall description Â of the linear map A. Of course, the
smallest possible A-invariant subspace of X is the trivial subspace, but it
would not contribute any columns to V , hence we will assume from now on
that our A-invariant direct sum decomposition (12.16) is proper, meaning
that none of its summands Yj is trivial.

With that, each Yj has dimension ≥ 1, hence is as small as possible
if it is 1-dimensional, Yj = ran[vj ] say, for some nonzero vj . In this case,
A-invariance says that Avj must be a scalar multiple of vj , hence vj is an
eigenvector for A, and the sole entry of the matrix [vj ]

−1A[vj ] is the corre-
sponding eigenvalue for A.

Thus, at best, each Yj is 1-dimensional, hence V consists entirely of
eigenvectors for A, i.e., A is diagonalizable. Since we know that not every
matrix is diagonalizable, we know that this best situation cannot always be
attained. But we can try to make each Yj as small as possible, in the following
way.

(12.17) Jordan Algorithm:
input: X n-dimensional vector space, A ∈ L(X).
Y ← {X}
while ∃Z1 +̇Z2 ∈ Y with both Zj nontrivial and A-invariant, do:

replace Z1 +̇Z2 in Y by Z1 and Z2.
endwhile
output: the proper A-invariant direct sum decomposition X = +̇Y ∈Y Y .

At all times, the elements of Y form a proper direct sum decomposition
for X. Hence

#Y ≤
∑
Y ∈Y

dimY = dimX = n.

Since each pass through the while-loop increases #Y by 1, the algorithm
must terminate after at most n− 1 steps.
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Now consider any particular Y in the collection Y output by the algo-
rithm. It is, by construction, not the direct sum of two proper A-invariant
spaces, a fact to be used twice in the arguments to follow. However, Y is a
nontrivial A-invariant subspace. Hence, with the assumption that IF = C,
we know that A Y : Y → Y : y 7→ Ay is a linear map with some eigenvalue,
µ say. This implies that the linear map

N : Y → Y : y 7→ (A− µ id)y

is well-defined and has a nontrivial nullspace.

Claim 1: For some y ∈ Y and some q ∈ N, Nq−1y ̸= 0 = Nqy.

Proof: Indeed, since nullN ̸= {0}, this holds, e.g., for q = 1 and
y ∈ nullN\0.

Claim 2: For any y and q as in Claim 1, there is (see Problem 5.4)
λ ∈ Y ′ with λNq−1y ̸= 0 and, for any such λ, Y = null Λt +̇ ranV , with
Λ := [λN i−1 : i = 1:q], and V := [Nq−jy : j = 1:q] 1-1.

Proof: The Gramian matrix ΛtV = (λN i−1Nq−jy : i, j = 1:q) is
square and upper triangular, with all diagonal entries equal to λNq−1y ̸= 0,
hence ΛtV is invertible. This implies that V is 1-1 and, by (5.9), that Y is
the direct sum of null Λt and ranV .

Claim 3: There is a largest q satisfying Claim 1, and for that q, Y =
nullNq +̇ ranNq.

Proof: The V of Claim 2 is 1-1, hence q = #V ≤ dimY , therefore
there is a largest q satisfying Claim 1. For that q, nullNq ∩ ranNq is trivial:
indeed, if x ∈ nullNq ∩ ranNq, then x = Nqu for some u ∈ Y , and also
N2qu = Nqx = 0, but if Nqu ̸= 0, then, for some r > q, Nr−1u ̸= 0 = Nru,
which would contradict the maximality of q. Hence x = Nqu = 0. But
also, by the (3.23)Dimension Formula, dimY = dimnullNq + dim ranNq,
therefore, by (3.33)Proposition, Y is the direct sum of nullNq and ranNq.

12.5 Prove: For every noninvertible N ∈ L(X) with dimX < ∞, there exists q ∈ N
so that ranNq ∩nullNq = {0}, hence X = ranNq +̇ nullNq . The smallest such q is called
the index of N . The index of an invertible N is defined to be 0.

12.6 Prove: The index of a real symmetric matrix is ≤ 1.

12.7 Prove: For every N ∈ L(X) with dimX < ∞, (i) the sequence nullNj , j =

0, 1, 2, . . . is strictly increasing, and (ii) the sequence ranNj , j = 0, 1, 2, . . . is strictly

decreasing, as long as j is less than the index of N ; after that, the sequences become

stationary.

Claim 4: For the largest q, VY := [Nq−jy : j = 1:q] = V of Claim 2 is
a basis for Y , hence q = dimY and the matrix representation for A Y with
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respect to the basis VY for Y has the simple form

(12.18) V −1
Y (A Y )VY =



µ 1 0 · · · 0 0
0 µ 1 · · · 0 0
0 0 µ · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · µ 1
0 0 0 · · · 0 µ

 =: J(µ, q) ∈ IFq×q.

Proof: We know from Claim 3 that, for a largest q satisfying Claim
1, Y is the direct sum of nullNq and ranNq, and both subspaces are N -
invariant, hence A-invariant, therefore necessarily one of them must be triv-
ial, and, as by choice, nullNq is not trivial, it follows that ranNq = {0},
hence Nq = 0. This implies that, for this q, the space null Λt of Claim
2 is N -invariant, while ranV there is N -invariant for any q since NV =
V [0, e1, . . . , eq−1]. Since, by Claim 2, Y is the direct sum of these N -
invariant, hence A-invariant, spaces, only one can be nontrivial and, since
0 ̸= y ∈ ranV , it follows that Y = ranV = ranVY and, since VY is 1-1
by Claim 2, VY is a basis for Y , and V −1

Y (A − µ id) Y VY = V −1
Y NVY =

[0, e1, . . . , eq−1], hence V
−1
Y A Y VY = µ idq + [0, e1, . . . , eq−1], which proves

(12.18).

It follows that the matrix representation for A with respect to the basis

[VY : Y ∈ Y]

for X is block-diagonal, with each diagonal block a Jordan block, J(µ, q),
i.e., of the form (12.18) for some scalar µ and some natural number q. Any
such matrix representation for A is called a Jordan (canonical) form for
A.

There is no reason to believe that such a Jordan form is unique. After
all, it depends on the particular order we choose for the elements of Y when
we make up the basis [VY : Y ∈ Y]. More than that, there is, in general,
nothing unique about Y. For example, if A = 0 or, more generally A = α id,
then any direct sum decomposition for X is A-invariant, hence [VY : Y ∈ Y]
can be any basis for X whatsoever for this particular A.

Nevertheless, the Jordan form is canonical in the following sense.



194 12 Canonical forms

(12.19) Proposition: Let Â =: diag(J(µY , dimY ) : Y ∈ Y) be a
Jordan canonical form for A ∈ L(X). Then

(i) spct(A) = {Âjj : j = 1:n} = ∪Y ∈Yspct(A Y ).

(ii) For each µ ∈ spct(A) and each q ∈ N,

(12.20) nµ(q) := dimnull(A− µ id)q =
∑

µY =µ

min(q, dimY ),

hence ∆nµ(q) := nµ(q+1)− nµ(q) equals the number of blocks for
µ of order > q, giving the decomposition-independent expression
−∆2nµ(q − 1) = ∆nµ(q − 1) − ∆nµ(q) for the number of Jordan
blocks of order q for µ.

Proof: Since Â is a block-diagonal matrix representation for A,

dimnull(A− µ id)q =
∑
Y ∈Y

dimnullJ(µy − µ,dimY )q

while nullJ(σ, s)q ̸= {0} only for σ = 0, and

J(0, s)q = [0, . . . ,0, e1, . . . , es−q] for q ≤ s,

hence dimnullJ(0, s)q = min(q, s) for arbitrary q ∈ N.

In particular, the Jordan form is unique up to an ordering of its blocks.

Also, (12.20) tells us that dimnull(A − µ id) equals the number of Jor-
dan blocks associated with µ, while the number of times that µ appears
on the diagonal of a Jordan canonical form for A, i.e.,

∑
µY =µ dimY , equals

maxq dimnull(A−µ id)q = dim∪q∈N null(A−µ id)q, the last equality because

null(A− µ id)q, q = 1, 2, . . ., is an increasing sequence. Correspondingly,

(12.21) #gµ := dimnull(A− µ id), µ ∈ spct(A),

is called the geometric multiplicity of the eigenvalue µ, as it counts the
maximum number of columns in a 1-1 column map staffed entirely by eigen-
vectors for µ, while
(12.22)

#aµ := max
q

dimnull(A− µ id)q = dim
∪
q∈N

null(A− µ id)q, µ ∈ spct(A),

is called the algebraic multiplicity of µ. We will return to these multiplicity
notions later, after bringing determinants into play.
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While the Jordan form is mathematically quite striking and useful, it is
of no practical relevance since it does not depend continuously on the entries
of A, hence cannot be determined reliably by floating-point calculations.

12.8 Give an example to show that the Jordan form of a matrix A does not depend
continuously on the entries of A.

12.9∗ Prove that the minimal polynomial pA for the Jordan block A := J(µ, q) is
(· − µ)q .

12.10∗ What is the multiplicity of an eigenvalue of A as the zero of the minimal
polynomial pA for A? What is the relationship, if any, with the geometric or algebraic
multiplicity of that eigenvalue? (Feel free to use the primary decomposition; however,
these questions can also be answered with the aid of the Jordan form.)

12.11 Prove: Let Ax be the restriction of A ∈ L(X) to the Krylov subspace KA,x for
some nonzero x in some finite-dimensional vector space X. Then, the matrix representation
for Ax with respect to the basis V := [x,Ax, . . . , Ad−1x] of KA,x is the companion matrix
for pA,x.

12.12∗ Prove: A ∈ L(X) is diagonalizable if and only if X is the direct sum of
(null(A− µ id) : µ ∈ spct(A)).

12.13 Prove that A ∈ L(X) with F = C is diagonalizable if and only if all its Jordan
blocks are of order 1.

12.14∗ Prove: If A,B ∈ L(X) and AB = BA, then, for every µ ∈ spct(A), null(A−
µ id) is B-invariant. Conclude that, under this condition, and with ν ∈ spct(B), null(A−
µ id) ∩ null(B − ν id) is both A- and B-invariant.

12.15∗ Prove: If F = C and A,B ∈ L(X), and AB = BA, then the diagonalizability
of B implies that the restriction of B to Y := null(A − µ id) is diagonalizable for every
µ ∈ spct(A).

12.16∗ Prove: (a) If F = C and A,B ∈ L(X) are both diagonalizable and AB = BA,
then X is the direct sum of null(A−µ id)∩null(B−ν id), µ ∈ spct(A), ν ∈ spct(B). (Hint:
Problem 3.28) Conclude that (b) there is some basis consisting of eigenvectors for both A
and B, i.e., A and B are simultaneously diagonalizable.

12.17 Prove: If A1, . . . , Ar ∈ L(X) are all diagonalizable and commute with each
other, then they are simultaneously diagonalizable, i.e., there is some basis for X all of
whose columns are eigenvectors for every Ai.

12.18∗ Prove: If Y provides a proper A-invariant direct sum decomposition for X

and A ∈ L(X) is diagonalizable, then every B := A Y , Y ∈ Y, is diagonalizable.

The Weyr form

The Weyr (canonical) form can be obtained from a Jordan normal form by
permutation of the columns of the corresponding ‘Jordan’ basis that gives
rise to the Jordan form.

Recall that each column v in a ‘Jordan’ basis can be uniquely identified
by three properties: the eigenvalue µ to which it belongs, its degree, i.e.,
the smallest integer d for which v ∈ null(A − µ id)d, and the eigenvector
(A − µ id)d−1v in the ‘Jordan’ basis. Moreover, it will be important to
associate with each eigenvector v its order, i.e., the largest d for which
v = (A− µ id)d−1w for some column w of the ‘Jordan’ basis.

The corresponding ‘Weyr’ basis W groups all columns of the Jordan
basis associated with the same eigenvalue together, producing the basis W =
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[Wµ : µ ∈ spct(A)]. In particular,

ranWµ = ∪q null(A− µ id)q.

The resulting matrix representationW−1AW is therefore block-diagonal with
as many diagonal blocks as there are eigenvalues.

We now consider the structure of the diagonal block associated with the
eigenvalue µ which will depend on the order in which we choose to list in Wµ

all the columns of the ‘Jordan’ basis associated with µ. We choose to list
them by degree, first those of degree 1, then those of degree 2, then those of
degree 3, etc. . More precisely, those of degree 1 are listed in decreasing order
with those of the same order ordered arbitrarily. Those of degree higher than
1 are listed to match the order chosen for their corresponding eigenvectors.
In this way, we obtain Wµ in the form

Wµ = [Wµ,1Wµ,2, . . .],

with Wµ,d the columns of degree d, all d. Also, for each d,

Wµ,d−1 = [(A− µ id)Wµ,d, Eµ,d],

with Eµ,d comprising the columns associated with µ of degree d that are not
the image under (A− µ id) of some column of the ‘Jordan’ basis.

It follows that the Weyr block associated with the eigenvalue µ has the
following characteristic form:

D1 B1

D2 B2

. . .
. . .

Dq−1 Bq−1

Dq

 ,
with each Di = µ idri for a decreasing sequence r1 ≥ r2 ≥ · · ·, and Bi an
identity matrix of order ri × ri+1, i.e., of the form

Bi =

[
idri+1

0

]
.

Precisely, [Wµ,1, . . . ,Wµ,d] is a basis for null(A− µ id)d, hence

ri = dimnull(A− µ id)i − dimnull(A− µ id)i−1

are numbers depending on A alone. In particular, the Weyr form for A is
unique, up to the ordering of the diagonal blocks. Each diagonal block looks
like a block version of a Jordan block.
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In this short chapter, we discuss briefly the standard techniques for ‘local-
izing’ the spectrum of a given linear map A. Such techniques specify regions
in the complex plane that must contain parts or all of the spectrum of A. To
give a simple example, we proved (in (12.2)Corollary) that all the eigenvalues
of a hermitian matrix must be real, i.e., that spct(A) ⊂ R in case Ac = A.
More precise localization statements for hermitian matrices can be found in
the chapter on optimization and quadratic forms.

Since µ ∈ spct(A) iff (A−µ id) is not invertible, it is not surprising that
many localization theorems derive from a test for invertibility.

Gershgorin’s circles

Let µ be an eigenvalue for A with corresponding eigenvector x. Without
loss of generality, we may assume that ∥x∥ = 1 in whatever vector norm on
X = domA we are interested in at the moment. Then

|µ| = |µ|∥x∥ = ∥µx∥ = ∥Ax∥ ≤ ∥A∥∥x∥ = ∥A∥,

with ∥A∥ the corresponding map norm for A. This proves that the spectrum
of A must lie in the closed disk B∥A∥ of radius ∥A∥ centered at the origin.
In other words,

(13.1) ρ(A) ≤ ∥A∥

for any map norm ∥ · ∥.

For example, no eigenvalue of A =

[
1 2
−2 −1

]
can be bigger than 3 in

absolute value since ∥A∥∞ = 3.

A more refined containment set is obtained by the following more refined
analysis.

197
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If E ∈ IFn×n has map-norm < 1, then A := idn − E is 1-1 since then

∥Ax∥ = ∥x− Ex∥ ≥ ∥x∥ − ∥Ex∥ ≥ ∥x∥ − ∥E∥∥x∥ = ∥x∥(1− ∥E∥)

with the factor (1 − ∥E∥) positive, hence Ax = 0 implies that ∥x∥ = 0.
Moreover,

(13.2) ∥A−1∥ = ∥ idn − E−1∥ ≤ 1/(1− ∥E∥).

Now consider a diagonally dominant A, i.e., a matrix A with the
property that

(13.3) ∀i, |Aii| >
∑
j ̸=i

|Aij |.

For example, of the three matrices

(13.4)

[
2 −1
2 3

]
,

[
−2 −1
3 3

]
,

[
−2 −1
4 3

]
,

only the first is diagonally dominant. Setting

D := diagA = diag(. . . , Aii, . . .),

we notice that (i) D is invertible (since all its diagonal entries are nonzero);
and (ii) the matrix E defined by D−1A =: id − E satisfies

Eij =

{
−Aij/Aii, if i ̸= j;
0, otherwise,

hence has norm
∥E∥∞ = max

i

∑
j ̸=i

|Aij/Aii| < 1,

by the assumed diagonal dominance of A. This implies that the matrix
id − E = D−1A is invertible, therefore also A is invertible. This proves

(13.5) Proposition: Any diagonally dominant matrix is invertible.

In particular, the first of the three matrices in (13.4) we now know to be
invertible. As it turns out, the other two are also invertible; thus, diagonal
dominance is only sufficient but not necessary for invertibility. Equivalently,
a noninvertible matrix cannot be diagonally dominant.
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In particular, for (A− µ id) to be not invertible, it must fail to be diag-
onally dominant, i.e.,

(13.6) ∃i |Aii − µ| ≤
∑
j ̸=i

|Aij |.

This gives the famous

(13.7) Gershgorin Circle Theorem: The spectrum of A ∈ Cn×n is
contained in the union of the closed disks

Bri(Aii) := {z ∈ C : |Aii − z| ≤ ri :=
∑
j ̸=i

|Aij |}, i = 1:n.

For the three matrices in (13.4), this says that

spct(

[
2 −1
2 3

]
) ⊂ B1(2) ∪B2(3), spct(

[
−2 −1
3 3

]
) ⊂ B1(−2) ∪B3(3),

spct(

[
−2 −1
4 3

]
) ⊂ B1(−2) ∪B4(3).

More than that, according to the refinement of the Gershgorin Circle Theo-
rem discussed in Problem 13.6, the second matrix must have one eigenvalue
in the closed disk B1(−2) and another one in the closed disk B3(3), since
these two disks have an empty intersection. By the same refinement, if the
third matrix has only one eigenvalue, then it would necessarily have to be the
point −1, i.e., the sole point common to the two disks B1(−2) and B4(3).

13.1 Does each of the two Gershgorin disks of the matrix A :=

[
5 −1
6 0

]
contain an

eigenvalue of A?

The trace of a linear map

Recall that the trace of a square matrix A is given by

trace(A) =
∑
j

Ajj .

Further, as already observed in (6.31), if the product of the two matrices B
and C is square, then

(13.8) trace(BC) =
∑
j

∑
k

BjkCkj =
∑
jk

BjkCkj = trace(CB).
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Hence, if A = V ÂV −1, then

trace(A) = trace(V (ÂV −1)) = trace(ÂV −1V ) = trace Â.

This proves

(13.9) Proposition: Any two similar matrices have the same trace.

This permits the definition of the trace of an arbitrary linear map A on
an arbitrary finite-dimensional vector space X as the trace of the matrices
similar to it. In particular, trace(A) equals the sum of the diagonal entries
of any Schur form for A, i.e., trace(A) is the sum of the eigenvalues of A,
however with some of these eigenvalues possibly repeated.

For example, trace( idn) = n, while spct( idn) = {1}.
Offhand, such eigenvalue multiplicity seems to depend on the particular

Schur form (or any other triangular matrix representation) for A. But, since
all of these matrices have the same trace, you will not be surprised to learn
that all these triangular matrix representations for A have each eigenvalue
appear on its diagonal with exactly the same multiplicity, necessarily its alge-
braic multiplicity (12.22) as any Jordan canonical form for A is a triangular
matrix representation for A. The proof of this claim is most easily given with
the aid of yet another tool for testing invertibility, namely determinants, to
which we turn next.

Determinants

The determinant is, by definition, the unique map

det : IFn×n → IF : A 7→ detA

for which the induced map

(IFn)n → IF : (a1, . . . ,an) 7→ det[a1, . . . ,an]

is multilinear and alternating, while

(13.10) det idn = 1.

(All claims about determinants made in this section, including the uniqueness
just mentioned, are proved in the chapter entitled ”More about determinants”
which starts on page 223.) Here, multilinear means that det[a1, . . . ,an] is
linear in each of the n columns ai, i.e.,

(13.11) det[. . . ,a+ αb, . . .] = det[. . . ,a, . . .] + α det[. . . ,b, . . .].
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(Here and below, the various ellipses . . . indicate the other columns, the ones
that are kept fixed.) Further, alternating means that the interchange of
two columns reverses the sign, i.e.,

det[. . . ,a, . . . ,b, . . .] = − det[. . . ,b, . . . ,a, . . .].

In particular, detA = 0 in case two columns of A are the same, i.e.,

det[. . . ,b, . . . ,b, . . .] = 0.

Combining this last with (13.11), we find that

det[. . . ,a+ αb, . . . ,b, . . .] = det[. . . ,a, . . . ,b, . . .],

i.e., addition of a scalar multiple of one column to a different column does
not change the determinant.

In particular, if A = [a1,a2, . . . ,an] is not invertible, then detA = 0 since
then there must be some column aj of A writable as a linear combination of
other columns, i.e.,

detA = det[. . . ,aj , . . .] = det[. . . ,0, . . .] = 0,

the last equality by the multilinearity of the determinant.

Conversely, if A is invertible, then detA ̸= 0, and this follows from the
fundamental determinantal identity (proved on page 229)

(13.12) det(AB) = det(A) det(B)

since it implies that, for an invertible A,

1 = det idn = det(AA−1) = det(A) det(A−1),

the first equality by (13.10).

(13.13) Theorem: For all A ∈ Cn×n,

spct(A) = {µ ∈ C : det(A− µ id) = 0}.

Of course, this theorem is quite useless unless we have in hand an explicit
formula for the determinant. Here is the standard formula:
(13.14)

det(A) = det[a1,a2, . . . ,an] =
∑
σ∈SSn

(−1)σ
∏
j

aj(σj) =
∑
σ∈SSn

(−1)σ
∏
j

Aσj ,j
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in which the sum is over all permutations σ of degree n, i.e., all 1-1 (hence
invertible) maps σ : {1, . . . , n} → {1, . . . , n}, and

(−1)σ := signum∆(σ), ∆(σ) :=

∏
j<k

(σk − σj)


is 1 or −1 depending on whether it takes an even or an odd number of inter-
changes to bring the sequence σ back into increasing order (see Problem 15.1
for a proof of this assertion).

For n = 1, we get the trivial fact that, for any scalar a, spct([a]) = {a}.
For n = 2, (13.13) implies that

spct(

[
a b
c d

]
) = {µ ∈ C : (a− µ)(d− µ) = bc}.

For n = 3, we get

spct(

 a b c
d e f
g h i

) = {µ ∈ C : p(µ) = 0},

with

p(µ) := (a−µ)(e−µ)(i−µ)+ bfg+ chd− c(e−µ)g− (a−µ)fh− bd(i−µ).

For n = 4, (13.14) already involves 24 summands, and, for general n,
we have n! = 1 · 2 · · ·n summands. Thus, even with this formula in hand,
the theorem is mostly only of theoretical interest since already for modest
n, the number of summands involved becomes too large for any practical
computation.

In fact, the determinant detA of a given matrix A is usually computed
with the aid of some factorization of A, relying on the fundamental identity
(13.12) and on the following

(13.15) Lemma: The determinant of any triangular matrix is the prod-
uct of its diagonal entries.

Proof: This observation follows at once from (13.14) since any per-
mutation σ other than the identity (1, 2, . . . , n) must have σk < k for some
k, hence the corresponding product

∏
j Aσj ,j in (13.14) will be zero for any

lower triangular matrix. Since any such σ must also have σh > h for some h,
the corresponding product will also vanish for any upper triangular matrix.
Thus, in either case, only the product

∏
j Aσj ,j is possibly nonzero.
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So, with A = PLU as constructed by Gauss-elimination, with L unit
lower triangular and U upper triangular, and P a permutation matrix, we
have

detA = (−1)P
∏
j

Ujj ,

with the number (−1)P equal to 1 or −1 depending on the parity of the
permutation carried out by P , i.e., whether the number of row interchanges
made during Gauss elimination is even or odd.

Formula (13.14) is often taken as the definition of detA. It is a simple
consequence of the fundamental identity (13.12), and the latter follows readily
from the multilinearity and alternation property of the determinant. For
these and other details, see the chapter ‘More on determinants’.

Annihilating polynomials

Recall that the nontrivial polynomial p is called annihilating for A ∈ L(X)
if p(A) = 0.

For example, A is nilpotent exactly when, for some k, the monomial ()k

annihilates A, i.e., Ak = 0. As another example, A is a linear projector (or,
idempotent) exactly when the polynomial p : t 7→ t(t− 1) annihilates A, i.e.,
A2 = A.

Annihilating polynomials are of interest because of the following version
of the Spectral Mapping Theorem:

(13.16) Theorem: For any polynomial p and any linear map A ∈ L(X)
with IF = C,

spct(p(A)) = p(spct(A)) := {p(µ) : µ ∈ spct(A)}.

Proof: If µ ∈ spct(A), then, for some nonzero x, Ax = µx, therefore
also p(A)x = p(µ)x, hence p(µ) ∈ spct(p(A)). In other words, p(spct(A)) ⊂
spct(p(A)).

Conversely, if ν ∈ spct(p(A)), then p(A)− ν id fails to be 1-1. However,
assuming without loss of generality that p is a monic polynomial of degree r,
we have p(t)− ν = (t− µ1) · · · (t− µr) for some scalars µ1, . . . , µr, therefore

p(A)− ν id = (A− µ1 id) · · · (A− µr id),

and, since the left-hand side is not 1-1, at least one of the factors on the right
must fail to be 1-1. This says that some µj ∈ spct(A), while p(µj) − ν = 0.
In other words, spct(p(A)) ⊂ p(spct(A)).
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In particular, if p annihilates A, then p(A) = 0, hence spct(p(A)) = {0},
therefore spct(A) ⊂ {µ ∈ C : p(µ) = 0}.

For example, 0 is the only eigenvalue of a nilpotent linear map. The only
possible eigenvalues of an idempotent map are the scalars 0 and 1.

The best-known annihilating polynomial for a given A ∈ IFn×n is its
characteristic polynomial, i.e., the polynomial

χ
A
: t 7→ det(t idn −A).

To be sure, by (10.32), we can write any such A as the product A = V ÂV −1

with Â upper triangular. Correspondingly,

(13.17)

χ
A
(t) = detV det(t idn − Â)(detV )−1 = det(t idn − Â)

= χ
Â
(t) =

∏
j

(t− Âjj),

the last equation by (13.15)Lemma. Consequently, χ
A
(A) = V χ

A
(Â)V −1,

with

χ
A
(Â) = (Â− µ1 id) · · · (Â− µn id), µj := Âjj , j = 1:n,

and this, we claim, is necessarily the zero map, for the following reason: The
factor (Â − µj id) is upper triangular, with the jth diagonal entry equal to

zero. This implies that, for each i, (Â− µj id) maps

Ti := ran[e1, . . . , ei]

into itself, but maps Tj into Tj−1. Therefore

ranχ
A
(Â) = χ

A
(Â)Tn = (Â− µ1 id) · · · (Â− µn id)Tn

⊂ (Â− µ1 id) · · · (Â− µn−1 id)Tn−1

⊂ (Â− µ1 id) · · · (Â− µn−2 id)Tn−2

. . .

⊂ (Â− µ1 id)T1 ⊂ T0 = {0},

or, χ
A
(Â) = 0, therefore also χ

A
(A) = 0. This is known as the Cayley-

Hamilton Theorem.

Note that the collection IA := {p ∈ Π : p(A) = 0} of all polynomials
that annihilate a given linear map A is an ideal, meaning that it is a linear
subspace of Π that is also closed under multiplication by polynomials: if
p ∈ IA and q ∈ Π, then their product qp : t 7→ q(t)p(t) is also in IA. Since
IA is not empty, it contains a monic polynomial of minimal degree. We called
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this polynomial on page 164 the minimal (annihilating) polynomial for
A and denoted it by pA. It generates the ideal in the sense that IA = ΠpA.
In technical terms, IA is a principal ideal, more precisely the principal ideal
generated by pA.

In exactly the same way, the collection IA,x := {p ∈ Π : p(A)x = 0}
was seen on page 164 to be the principal ideal ΠpA,x, with pA,x the minimal
annihilating polynomial for A at x, i.e., the unique monic polynomial of
smallest degree in it. Since IA ⊂ IA,x, it follows that pA,x must be a factor
for any p ∈ IA and, in particular, for χ

A
.

13.2∗ (a) Prove: If the minimal polynomial p = pA,x of the linear map A ∈ L(X) at
some x ∈ X\0 has degree equal to dimX, then pA,x(A) = 0. (b) Prove that the spectrum
of the companion matrix (see Problem 10.20) of the monic polynomial p equals the zero
set of p.

13.3 Recall that a matrix A of order n is non-derogatory if it has a cyclic vector,
i.e., if, for some x, [x, Ax, . . . , An−1x] is 1-1 (hence a basis).

Prove that the non-derogatory matrices of order n are dense, i.e., for every matrix
B of order n and every ε > 0, there exists a non-derogatory matrix A so that ∥B−A∥∞ ≤
ε. (Hint: prove first that there are non-derogatory matrices (e.g., companion matrices
(why?)), then consider the function z 7→ det[x, (B + zA)x, . . . , (B + zA)n−1x] with x a
cyclic vector for A.)

13.4 Formulate and prove a ‘spectral mapping theorem’ for the maps p : Fn×n →
Fn×n given by p(A) := At and p(A) := Ac.

13.5 make one about the coefs of char.pol. being symmetric functions of evs, and one

about the ith coeff. being the sum of the n− ith principal minors. all of these, including

the trace, are invariant under similarity. still to be done!

The multiplicities of an eigenvalue

Since χ
A

is of degree n in case A ∈ Cn, χ
A

has exactly n zeros counting
multiplicities. This means that

(13.18) χ
A
(t) = (t− ν1) · · · (t− νn)

for a certain n-sequence ν. Further,

spct(A) = {νj : j = 1:n},

and this set may well contain only one number, as it does when A = 0 or
A = id.

Since, by (13.17), (13.18) holds with ν the sequence of diagonal entries
of any triangular matrix representation for A, we know that such a sequence
contains each eigenvalue µ of A to its algebraic multiplicity #aµ (12.22), i.e.,
the multiplicity with which µ appears in any Jordan canonical form.

In this way, if IF = C and dimX = n, then any A ∈ L(X) has exactly n
eigenvalues counting (algebraic) multiplicity.
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13.19 Proposition: For any eigenvalue, the algebraic multiplicity is no
smaller than the geometric multiplicity, with equality if and only if the
eigenvalue is not defective.

Proof: From (12.21) and (12.22),

#gµ = dimnull(A− µ id) ≤ dim
∪
q∈N

null(A− µ id)q = #aµ, µ ∈ spct(A),

with equality if and only if null(A − µ id) = null(A − µ id)2 if and only if
null(A− µ id) ∩ ran(A− µ id) = {0} if and only if µ is not defective.

An eigenvalue for which algebraic and geometric multiplicity coincide is
called semisimple, as a generalization of a simple eigenvalue which is an
eigenvalue for which #aµ = 1, hence #aµ = #gµ.

For example, the matrix idn has only the eigenvalue 1, but with algebraic
and geometric multiplicity n. In other words, the sole eigenvalue is semi-
simple as it should be since idn is trivially diagonalizable.

In contrast, the sole eigenvalue, 0, of

[
0 1
0 0

]
has algebraic multiplicity

2 but its geometric multiplicity is only 1. In other words, its sole eigenvalue
is defective as it should be since this matrix is not diagonalizable.

13.6∗ Prove the following generalization of the (13.7)Gershgorin Circle Theoren: If

the union of k of the disks Bri (A(i, i)) is disjoint from the union of the remaining disks,
then it contains exactly k of the eigenvalues, counting algebraic multiplicities. (Hint: use
the facts that χ

A
is a continuous function of A and that the zeros of a polynomial are

continuous functions of its coefficients.)

13.7 Using, perhaps, (13.17), determine the algebraic and geometric multiplicities
for all the eigenvalues of the following matrix. (Read off the eigenvalues; use elimination
to determine geometric multiplicities.)

A :=


1 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 3 0 1
0 0 0 0 3 1
0 0 0 0 0 3


13.8∗ Let A ∈ L(X), X finite-dimensional, F = C. Prove that the multiplicity of

µ ∈ spct(A) as a zero of the minimal polynomial pA of A equals the order of the largest
Jordan block belonging to µ, hence is bounded by #aµ.

13.9 Give examples to show that the multiplicity of µ ∈ spct(A) as a zero of pA can
be larger than, equal to, or smaller than #gµ.

13.10∗ Prove: If F = C, and deg pA = n for some A ∈ Cn×n, then every eigenvalue

of A has geometric multiplicity 1.
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Perron-Frobenius

We call the vector y ∈ Rn positive (nonnegative) and write

y > 0 (y ≥ 0)

if all its entries are positive (nonnegative). Since a vector has, in general,
several entries, there is room for confusion here, since y can be nonnegative
and not zero without being positive.

We will also use the notation

|y| := (|yi| : i = 1:n), |B| := (|Bij | : i, j = 1:n)

for the pointwise absolute value of the vector y and the matrixB, respectively.

Analogously, we call a matrix A positive (nonnegative) and write
A > 0 (A ≥ 0) in case all its entries are positive (nonnegative).

13.11∗ Prove, for A ∈ Fn×n, x ∈ Fn that if A > 0 and 0 ̸= x ≥ 0, then Ax > 0,
while 0 ̸= A ≥ 0, x > 0 does not imply that Ax > 0.

13.12∗ Let a,b,y ∈ Rn. Prove: If y > 0, and b ≤ a, then bty ≤ aty with equality

if and only if b = a.

A positive (nonnegative) matrixA of order nmaps the positive orthant

Rn
+ := {y ∈ Rn : y ≥ 0}

into its interior (into itself). Thus the (scaled) power method, applied to
a nonnegative A and started at a nonnegative vector, would converge to a
nonnegative vector if it converges. This suggests that the absolutely largest
eigenvalue for a nonnegative matrix is nonnegative, with a corresponding
nonnegative eigenvector. The Perron-Frobenius theorem makes this intuition
precise. For its derivation, we assume that A is a nonnegative matrix of order
n.

Since A maps Rn
+ into itself, it makes sense to consider, for given y ∈

Rn
+\0, scalars α for which Ay ≥ αy (in the sense that (Ay)j ≥ αyj , all

j), i.e., for which Ay − αy ≥ 0. The largest such scalar is the nonnegative
number

r(y) := min{(Ay)j/yj : yj > 0}

which is well-defined for every y ∈ Rn
+\0. The basic observation is that

(13.20) Ay − αy > 0 =⇒ r(y) > α.

The function r so defined is dilation-invariant, i.e., r(αy) = r(y) for all α > 0,
hence r takes on all its values already on the set

S+ := {y ≥ 0 : ∥y∥ = 1}.
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At this point, we need, once again, a result that goes beyond the scope of
this book, namely the fact (see (17.6)Theorem) that S+ is compact, while r
is continuous at any y > 0 and upper semicontinuous at any y ≥ 0, hence
r takes on its supremum over Rn

+\0 at some point in S+. I.e., there exists
x ∈ S+ for which

µ := r(x) = sup r(S+) = sup r(Rn
+\0).

Assume now, in addition to A ≥ 0, that also p(A) > 0 for some polyno-
mial p.

Claim 1: Ax = µx.

Proof: Assume that Ax ̸= µx. Since µ = r(x), we have 0 ̸= Ax −
µx ≥ 0, thereforeA(p(A)x)−µp(A)x = p(A)(Ax−µx) > 0 by Problem 13.11,
hence, by (13.20), r(p(A)x) > µ = sup r(S+), a contradiction.

Claim 2: x > 0.

Proof: Since 0 ̸= x ≥ 0 and p(A) > 0, we have p(µ)x = p(A)x > 0,
hence xi ̸= 0, all i, therefore, x > 0.

13.13 Prove that, under the same conditions, any nonnegative eigenvector for any

eigenvalue ν for such A must be positive, and p(ν) > 0.

Consequence 1: x is the unique maximizer for r (in S+).

Proof: If also r(y) = µ for some y ∈ S+, then, by the same argu-
ment, Ay = µy, therefore Az = µz for all z = x+ α(y− x) with α ∈ R, and
each of these z must be positive if it is nonnegative, and this is possible only
if y − x = 0 (since otherwise, since x > 0, there is an absolutely smallest α
for which some component of z is zero, hence z ≥ 0 yet not > 0).

Consequence 2: For any eigenvalue ν of any matrix B with eigenvector
y, if |B| ≤ A, then |ν| ≤ µ, with equality only if | y/∥y∥ | = x and |B| = A.
More than that, equality implies that B = (µ/ν)DAD−1, with
D := diag(. . . , yj/|yj |, . . .).

Proof: Observe that

(13.21) |ν||y| = |By| ≤ |B| |y| ≤ A|y|,

hence |ν| ≤ r(|y|) ≤ µ. If now |ν| = µ, then, by the uniqueness of the
minimizer x (and assuming without loss that ∥y∥ = 1), we must have |y| = x
and equality throughout (13.21), and this implies |B| = A, by Problem 13.12,
since we now know that |y| > 0, while |B| ≤ A by assumption.
Moreover, the positivity of |y| implies that D := diag(. . . , yj/|yj |, . . .) is well
defined and satisfies y = D|y|, therefore A|y| = µ|y| = (µ/ν)D−1(νy) while
νy = By = BD|y|, hence, altogether, A|y| = C|y| with C := (µ/ν)D−1BD,
hence |C| = |B| ≤ A, therefore A = C by Problem 13.12.
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Consequence 3: By choosing B = A in Consequence 2, we get that
µ = ρ(A) := max{|ν| : ν ∈ σ(A)}, and that µ has geometric multiplicity 1
(as an eigenvalue of A) since, for any eigenvector y of A for the eigenvalue
µ, we must have A = DAD−1 with D = diag(. . . , yi/|yi|, . . .), hence also
0 < p(A) = Dp(A)D−1 which implies that 0 < D, hence that y > 0, hence
y/∥y∥ = x. We also get that ρ(A) is strictly monotone in the entries of A,

i.e., that ρ(Ã) > ρ(A) in case Ã ≥ A ̸= Ã (using the fact that p(A) > 0 and

Ã ≥ A implies that also q(Ã) > 0 for some polynomial q; see Problem 13.14).

13.14∗ Prove: (i) If 0 ≤ A ≤ Ã, then 0 ≤ Ak ≤ Ãk for k ∈ N; (ii) Use (i) to show

that if p(A) > 0 for some polynomial p, and Ã ≥ A ≥ 0, then q(A) > 0 for some polynomial

q.

As a consequence, we find computable upper and lower bounds for the
spectral radius of A:

Claim 3:

∀y > 0, r(y) ≤ ρ(A) ≤ R(y) := max
i

(Ay)i/yi,

with equality in one or the other if and only if there is equality throughout
if and only if y = αx (for some positive α). In particular, ρ(A) is the only
eigenvalue of A with nonnegative eigenvector.

Proof: Assume without loss that y ∈ S+. We already know that, for
any 0 < y ∈ S+, r(y) ≤ ρ(A) with equality if and only if y = x. For the other
inequality, observe that R(y) = ∥C−1ACe∥∞ with C := diag(. . . , yj , . . .) and
e := (1, . . . , 1), hence ACe = Ay. Since C−1AC ≥ 0, it takes on its max-
norm at e, by Problem 7.7, hence

R(y) = ∥C−1AC∥∞ ≥ ρ(C−1AC) = ρ(A).

Now assume that r(y) = R(y). Then Ay = r(y)y, hence r(y) ≤ r(x) =
ρ(A) ≤ R(y) = r(y), therefore equality must hold throughout and, in par-
ticular, y = x. Note that R(y) = ν = r(y) in case y is a positive eigenvector
for A with eigenvalue ν, hence ρ(A) is, indeed, the only eigenvalue of A with
a positive eigenvector.

If, on the other hand, r(y) < R(y), then we can find Ã ̸= A ≤ Ã so that

Ãy = R(y)y (indeed, then z := R(y)y−Ay is nonnegative but not 0, hence

Ã := A + y−1
1 [z]e1

t does the job) therefore r
Ã
(y) = R(y) = R

Ã
(y), hence

R(y) = ρ(Ã) > ρ(A).

Claim 4: µ has simple algebraic multiplicity.

Proof: Since we already know that µ has simple geometric mul-
tiplicity, it suffices to show that µ is not a defective eigenvalue, i.e., that
null(A − µ id) ∩ ran(A − µ id) = {0}. So assume to the contrary that
Ay− µy is an eigenvector of A belonging to µ. Since A and µ are real, then
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(A−µ id)Rey and (A−µ id) Imy are in null(A−µ id) and they can’t both be
zero. Therefore, we may assume that (A−µ id)y is real, hence, by the simple
geometric multiplicity of µ, we may assume without loss that Ay − µy = x,
or Ay = µy + x, therefore, by induction on k, Aky = µky + kµk−1x, hence,
finally,

(A/µ)ky = y + k(x/µ).

Hence, for large enough k, z := (A/µ)ky ∈ Rn
+, and Az = µ(A/µ)k+1y =

µ(z+ x/µ) > µz, therefore r(z) > µ by (13.20), a contradiction.

The collection of these claims/consequences constitutes the Perron-
Frobenius Theorem. Oskar Perron proved all this under the assumption
that A > 0 (i.e., p = ()1) but observed that it is sufficient to assume that
Ak > 0 for some k (i.e., p = ()k). Frobenius extended it to all A ≥ 0 that
are irreducible. While this term has some algebraic and geometric meaning
(see below), its most convenient definition for the present purpose is that
p(A) > 0 for some polynomial p. In the contrary case, A is called reducible,
and not(iv) below best motivates such a definition. Here are some equivalent
statements:

Claim 5: Let A ≥ 0. Then the following are equivalent:

(i) p(A) > 0 for some polynomial p.

(ii) For all (i, j), there exists k = k(i, j) so that (Ak)ij > 0.

(iii) No proper A-invariant subspace is spanned by some ej ’s.

(iv) For no permutation matrix P is

(13.22) PAP−1 =

[
B C
0 D

]
with B,D square matrices of positive order.

(v) The directed graph for A is strongly connected.

Proof: (ii)=⇒(i) since then p(A) :=
∑

i,j A
k(i,j) > 0.

If (ii) does not hold, then there exists (i, j) so that (Ak)ij = 0 for all
k. But then also p(A)ij = 0 for all polynomials p; in other words, not(ii)
implies not(i) which is equivalent to (i)=⇒(ii). Further, it says that the
set J := J(j) := {r : ∃{k} (Ak)rj ̸= 0} is a proper subset of {1, . . . , n}
(since it doesn’t contain i), but neither is it empty ( since it contains j, as
(A0)jj ̸= 0). Since (Ak+ℓ)rj =

∑
m(Ak)rm(Aℓ)mj , it follows that J(m) ⊂

J(j) for all m ∈ J(j). This implies, in particular, that Arm = 0 for all
r ̸∈ J(j),m ∈ J(j), hence that ran[em : m ∈ J(j)] is a proper A-invariant
subspace, thus implying not(iii). It also implies not(iv), since it shows that
the columns A::m, m ∈ J(j), have zero entries in rows r, r ̸∈ J(j), i.e., that
(13.22) holds for the permutation P = [(em)m∈J(j), (er)r ̸∈J(j)], with both B
and D of order < n.

Conversely, if e.g., (iii) does not hold, and ran[em : m ∈ J(j)] is that
proper A-invariant subspace, then it is also invariant under any p(A), hence
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also p(A)rm = 0 for every r ̸∈ J(j), m ∈ J(j), i.e., (i) does not hold, while
not(iv) evidently implies not(iii).

The final characterization is explicitly that given by Frobenius, – except
that he did not formulate it in terms of graphs; that was done much later, by
Rosenblatt (1957) and Varga (1962). Frobenius (1912) observed that, since

(Ak)ij =
∑
ν1

· · ·
∑
νk−1

Ai,ν1 · · ·Aνk−1,j ,

therefore, for i ̸= j, (Ak)ij ̸= 0 if and only if there exists some sequence
i =: i0, i1, . . . , ik−1, ik := j so that Air,ir+1 ̸= 0 for all r. Now, the directed
graph of A is the graph with n vertices in which the directed edge (i, j) is
present iff Aij ̸= 0. Such a graph is called strongly connected in case it
contains, for each i ̸= j, a path connecting vertex i with vertex j, and this,
as we just observed, is equivalent to having (Ak)ij ̸= 0 for some k > 0. In
short, (ii) and (v) are equivalent.

There are various refinements of this last claim available. For example,
in testing whether the directed graph of A is strongly connected, we only need
to check paths involving distinct vertices, and such paths involve at most n
vertices. Hence, in condition (ii), we need to check only for k < n. But, with
that restriction, (ii) is equivalent to having idn +A+ · · ·+An−1 > 0, i.e., to
having (i) hold for quite a specific polynomial.

13.15 T/F

(a) A noninvertible matrix cannot be diagonally dominant.

(b) A symmetric matrix has only real eigenvalues.

(c) If µ ∈ spct(A), ν ∈ spct(B) for some A,B ∈ L(X), then µν ∈ spct(AB).

(d) The geometric multiplicity of an eigenvalue cannot exceed its algebraic multiplicity.

(e) For a simple eigenvalue, its algebraic multiplicity equals its geometric multiplicity.

(f) The collection of all univariate polynomials vanishing at 1 is an ideal.

(g) If deg q < deg pA, then q(A) is invertible.

(h) If p(A) = 0 for some polynomial p, then every zero of p is an eigenvalue of A.

(i) If the sum A+B of two matrices is defined, then det(A+B) = detA+ detB.
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Minimization

We are interested in minimizing a given function

f : dom f ⊂ Rn → R,

i.e., we are looking for x ∈ dom f so that

∀y ∈ dom f, f(x) ≤ f(y).

Any such x is called a minimizer for f ; in symbols:

x ∈ argmin f.

The discussion applies, of course, also to finding some x ∈ argmax f ,
i.e., finding a maximizer for f , since x ∈ argmax f iff x ∈ argmin(−f).

Finding minimizers is, in general, an impossible problem since one cannot
tell whether or not x ∈ argmin f except by checking every y ∈ dom f to make
certain that, indeed, f(x) ≤ f(y). However, if f is a ‘smooth’ function, then
one can in principle check whether, at least, x is a local minimizer, i.e.,
whether f(x) ≤ f(y) for all ‘nearby’ y, by checking whether the gradient

Df(x) = (Dif(x) : i = 1:n)

of f at x is zero. Here, Dif = ∂f/∂xi is the derivative of f with respect to
its ith argument.

To be sure, the vanishing of the gradient of f at x is only a necessary
condition for x to be a minimizer for f , since the gradient of a (smooth)
function must also vanish at any local maximum, and may vanish at points

212
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that are neither local minima nor local maxima but are, perhaps, only saddle
points. By definition, any point x for which Df(x) = 0 is a critical point
for f .

At a critical point, f is locally flat. This means that, in the Taylor
expansion

f(x+ h) = f(x) + (Df(x))th+ ht(D2f(x)/2)h+ h.o.t.(h)

for f at x, the linear term, (Df(x))th, is zero. Thus, if the matrix

H := D2f(x) = (DiDjf(x) : i, j = 1:n)

of second derivatives of f is 1-1, then x is a local minimizer (maximizer) for
f if and only if 0 is a minimizer (maximizer) for the quadratic form

Rn → R : h 7→ htHh

associated with the Hessian H = D2f(x) for f at x.

If all second derivatives of f are continuous, then also DiDjf = DjDif ,
hence the Hessian is real symmetric, therefore

Ht = H.

However, in the contrary case, one simply defines H to be

H := (D2f(x) + (D2f(x))t)/2,

thus making it real symmetric while, still,

∀h ∈ Rn, htHh = htD2f(x)h.

In any case, it follows that quadratic forms model the behavior of a smooth
function ‘near’ a critical point (and this is true in a trivial sort of way even
when the Hessian is 0 at that point). The importance of minimization of real-
valued functions is the prime motivation for the study of quadratic forms, to
which we now turn.

Quadratic forms

Each A ∈ Rn×n gives rise to a quadratic form, denoted by aA, via

qA : Rn → R : x 7→ xtAx.

However, as we already observed, the quadratic form ‘sees’ only the sym-
metric part

(A+At)/2
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of A, i.e.,

∀x ∈ Rn, xtAx = xtA+At

2
x.

For this reason, in discussions of the quadratic form qA, we will always assume
that A is real symmetric.

The Taylor expansion for qA is very simple. One computes

qA(x+ h) = (x+ h)tA(x+ h) = xtAx+ xtAh+ htAx+ htAh

= qA(x) + 2(Ax)th+ htAh,

using the fact that At = A, thus htAx = xtAh = (Ax)th, hence

DqA(x) = 2Ax, D2qA(x) = 2A.

It follows that, for any 1-1 A, 0 is the only critical point of qA. The
sought-for classification of critical points of smooth functions has led to the
following classification of quadratic forms:

positive the unique minimizer
positive semi- a minimizer

A is definite := 0 is for qA.negative semi- a maximizer
negative the unique maximizer

If none of these conditions obtains, i.e., if there exist x and y so that xtAx <
0 < ytAy, then qA is called indefinite and, in this case, 0 is a saddle point
for qA.

(14.1)Figure shows three quadratic forms near their unique critical point.
One is a minimizer, another is a saddle point, and the last one is a maxi-
mizer. Also shown is a quadratic form with a whole straight line of critical
points. The figure (generated by the MATLAB command meshc) also shows
some contour lines or level lines, i.e., lines in the domain R2 along which
the function is constant. The contour plots are characteristic: Near an ex-
treme point, be it a maximum or a minimum, the level lines are ellipses,
with the extreme point their center, while near a saddle point, the level lines
are hyperbolas, with the extreme point their center and with two level lines
actually crossing at the saddle point.

There is an intermediate case between these two, also shown in (14.1)Fig-
ure, in which the level lines are parallel lines and, correspondingly, there is a
whole line of critical points. In this case, the quadratic form is semidefinite.
Note, however, that the definition of semidefiniteness does not exclude the
possibility that the quadratic form is actually definite.

Since, near any critical point x, a smooth f behaves like its quadratic
term h 7→ ht(D2f(x)/2)h, we can be sure that a contour plot for f near
an extremum would approximately look like concentric ellipses while, near a
saddle point, it would look approximately like concentric hyperbolas.
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(14.1) Figure. Local behavior near a critical point.

These two patterns turn out to be the only possible ones for quadratic
forms on R2 with a unique critical point. On Rn, there are only ⌈(n+ 1)/2⌉
possible distinct patterns, as follows from the fact about to be proved that,
for every quadratic form qA, there are o.n. coordinate systems U for which

qA(x) =
n∑

i=1

di (U
cx)2i .

14.1 For each of the following three functions on R2, compute the Hessian D2f(0)
at 0 and use it to determine whether 0 is a (local) maximum, minimum, or neither. (In an
effort to make the derivation of the Hessians simple, I have made the problems so simple
that you could tell by inspection what kind of critical point 0 = (0, 0) ∈ R2 is; nevertheless,
give your answer based on the spectrum of the Hessian.)

(a) f(x, y) = (x− y) sin(x+ y);

(b) f(x, y) = (x+ y) sin(x+ y);

(c) f(x, y) = (x+ y) cos(x+ y).

14.2 Construct a bivariate quadratic form q for which the level lines are parabolas
and show that it has no critical point.

14.3 Discuss the 3 = ⌈(4 + 1)/2⌉ essentially different patterns near a unique critical
point of a quadratic form of 4 variables.

14.4 Why is 0 called a monkey saddle point for f(x) := x3
1 − 3x2

1x2 − 3x1x2
2 +

x3
2? (Draw a picture.) Why does this behavior, which matches none of the figures in
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(16.2)Figure, not contradict the earlier claim that, in the neighborhoof of a unique critical

point, a quadratic function has just two possible patterns?

Reduction of a quadratic form to a sum of squares

Consider the effects of a change of basis. Let V ∈ Rn be a basis for Rn and
consider the map

f := qA ◦ V.

We have f(x) = (V x)tAV x = xt(V tAV )x, hence

qA ◦ V = qV tAV .

This makes it interesting to look for bases V for which V tAV is as
simple as possible. Matrices A and B for which B = V tAV are said to be
congruent to each other. Note that congruent matrices are not necessarily
similar; in particular, their spectra can be different. However, by Sylvester’s
Law of Inertia (see (14.9) below), congruent hermitian matrices have the
same number of positive, of zero, and of negative, eigenvalues. This is not
too surprising in view of the following reduction to a sum of squares which is
possible for any quadratic form.

(14.2) Proposition: Every quadratic form qA on Rn can be written in
the form

qA(x) =
n∑

j=1

dj (uj
tx)2,

for some suitable o.n. basis U = [u1, . . . ,un] for which

U tAU = diag(d1, . . . , dn) ∈ Rn×n.

Proof: Since A is hermitian, there exists, by (12.2)Corollary, some
o.n. basis U = [u1,u2, . . . ,un] for IF

n for which U tAU = diag(d1, d2, . . . , dn)
∈ Rn×n. Now use the fact that U tU = idn and therefore qA(x) = qUtAU (U

tx)
to obtain for qA(x) the displayed expression.

What about the classification introduced earlier, into positive or negative
(semidefinite)? The proposition permits us to visualize qA(x) as a weighted
sum of squares (with real weights d1, . . . , dn) and U

tx an arbitrary n-vector
(since U is a basis), hence permits us to conclude that qA is definite if and
only if all the dj are strictly of one sign, semidefinite if and only if all the
dj are of one sign (with zero possible), and indefinite if and only if there are
both positive and negative dj .
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MATLAB readily provides these numbers dj by the command eig(A).

Consider specifically the case n = 2 for which we earlier provided some
pictures. Assume without loss that d1 ≤ d2. If 0 < d1, then A is positive
definite and, correspondingly, the contour line

cr := {x ∈ R2 : qA(x) = r} = {x ∈ R2 : d1(u1
tx)2 + d2(u2

tx)2 = r}

for r > 0 is an ellipse, with axes parallel to u1 and u2. If 0 = d1 < d2, then
these ellipses turn into parallel straight lines. Similarly, if d2 < 0, then the
contour line

cr := {x ∈ R2 : qA(x) = r} = {x ∈ R2 : d1(u1
tx)2 + d2(u2

tx)2 = r}

for r < 0 is an ellipse, with axes parallel to u1 and u2. Finally, if d1 < 0 < d2,
then, for any r, the contour line

cr := {x ∈ R2 : qA(x) = r} = {x ∈ R2 : d1(u1
tx)2 + d2(u2

tx)2 = r}

is a hyperbola, with axes parallel to u1 and u2.

Note that such an o.n. basis U is Cartesian, i.e., its columns are orthogo-
nal to each other (and are normalized). This means that we can visualize the
change of basis, from the natural basis to the o.n. basis U , as a rigid motion,
involving nothing more than rotations and reflections.

Rayleigh quotient

This section is devoted to the proof and exploitation of the following remark-
able

Fact: The eigenvectors of a hermitian matrix A are the critical points
of the corresponding Rayleigh quotient

RA(x) := ⟨Ax,x⟩/⟨x,x⟩,

and RA(x) = µ in case Ax = µx.

This fact has many important consequences concerning how the eigen-
values of a hermitian matrix depend on that matrix, i.e., how the eigenvalues
change when the entries of the matrix are changed, by round-off or for other
reasons.

This perhaps surprising connection has the following intuitive explana-
tion: Suppose that Ax ̸∈ ran[x]. Then x ̸= 0 and the error h := Ax−RA(x)x
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in the least-squares approximation to Ax from ran[x] is not zero, and is per-
pendicular to ran[x]. Consequently, ⟨Ax,h⟩ = ⟨h,h⟩ > 0, and therefore the
value

⟨A(x+ th),x+ th⟩ = ⟨Ax,x⟩+ 2t⟨Ax,h⟩+ t2⟨Ah,h⟩

of the numerator of RA(x+ th) grows linearly for t near 0, while its denom-
inator

⟨x+ th,x+ th⟩ = ⟨x,x⟩+ t2⟨h,h⟩

grows only quadratically, i.e., much less fast for t near zero. It follows that,
more precisely, the derivative of f(t) := RA(x+th) at t = 0 is ⟨h,h⟩/⟨x,x⟩ ̸=
0, hence x cannot be a critical point for RA. – To put it differently, for any
critical point x for RA, we necessarily have Ax ∈ ran[x], therefore Ax =
RA(x)x. Of course, that makes any such x an eigenvector with corresponding
eigenvalue RA(x).

Next, recall from (12.2) that a hermitian matrix is unitarily similar to a
real diagonal matrix. This means that we may assume, after some reordering
if necessary, that

A = UMU c

with U unitary and with M = diag(µ1, . . . , µn) where

µ1 ≤ µ2 ≤ · · · ≤ µn.

At times, we will write, more explicitly,

µj(A)

to denote the jth eigenvalue of the hermitian matrix A in this ordering. Note
that there may be coincidences here, i.e., µj(A) is the jth smallest eigenvalue
of A counting multiplicities. Note also that, in contrast to the singular val-
ues (and in contrast to most books), we have put here the eigenvalues in
increasing order.

Now recall that a unitary basis has the advantage that it preserves angles
and lengths since ⟨Ux, Uy⟩ = ⟨x,y⟩ for any orthonormal U . Thus

⟨Ax,x⟩ = ⟨UMU cx,x⟩ = ⟨M(U cx), U cx⟩,

and ⟨x,x⟩ = ⟨U cx, U cx⟩. Therefore

RA(x) = ⟨Ax,x⟩/⟨x,x⟩ = ⟨M(U cx), U cx⟩/⟨U cx, U cx⟩ = RM(U cx).

This implies that
maxx
minx

RA(x) =
maxy
miny

RM(y).
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On the other hand, since M is diagonal, ⟨My,y⟩ =
∑

j µj |yj |2, therefore

RM(y) =
∑
j

µj |yj |2/
∑
j

|yj |2,

and this shows that

min
x
RA(x) = min

y
RM(y) = µ1(A), max

x
RA(x) = max

y
RM(y) = µn(A).

This is Rayleigh’s Principle. It characterizes the extreme eigenvalues of
a hermitian matrix. The intermediate eigenvalues µj(A), 1 < j < n, are
the solution of more subtle extremum problems. This is the content of the
Courant-Fischer Minimax Theorem and its companion Maximin The-
orem. It seems most efficient to combine both in the following

(14.3) MMM (or, Maximinimax) Theorem: Let A be a hermitian
matrix of order n, hence A = UMU c for some unitary U and some real
diagonal matrix M = diag(· · · , µj(A), . . .) with µ1(A) ≤ · · · ≤ µn(A).
Then, for j = 1:n,

max
dimG<j

min
x⊥G

RA(x) = µj(A) = min
j≤dimH

max
x∈H

RA(x),

with G and H otherwise arbitrary linear subspaces.

Proof: If dimG < j ≤ dimH, then one can find y ∈ H\0 with
y ⊥ G (since, with V a basis for G and W a basis for H, this amounts to
finding a nontrivial solution to the equation V cW? = 0, and this system is
homogeneous with more unknowns than equations). Therefore

min
x⊥G

RA(x) ≤ RA(y) ≤ max
x∈H

RA(x).

Hence,

sup
dimG<j

min
x⊥G

RA(x) ≤ inf
j≤dimH

max
x∈H

RA(x).

On the other hand, for G = ran[u1, . . . ,uj−1] and H = ran[u1, . . . ,uj ],

min
x⊥G

RA(x) = µj(A) = max
x∈H

RA(x).
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The MMM theorem has various useful (and immediate) corollaries.

(14.4) Interlacing Theorem: If the matrix B is obtained from the
hermitian matrix A by crossing out the kth row and column (i.e., B =
AI,I with I := (1:k − 1, k + 1:n) ), then

µj(A) ≤ µj(B) ≤ µj+1(A), j < n.

Proof: It is sufficient to consider the case k = n, since we can always
achieve this situation by interchanging rows k and n, and columns k and n, of
A, and this will not change spct(A). Let J : IFn−1 → IFn : x 7→ (x, 0). Then
RB(x) = RA(Jx) and ran J = ran[en]⊥, therefore also J(G⊥) = (JG +

ran[en])⊥ and {JG + ran[en] : dimG < j,G ⊂ IFn−1} ⊂ {G̃ : dim G̃ <

j + 1, G̃ ⊂ IFn}. Hence

µj(B) = max
dimG<j

min
x⊥G

RA(Jx) = max
dimG<j

min
y⊥JG+ran[en]

RA(y)

≤ max
dim G̃<j+1

min
y⊥G̃

RA(y) = µj+1(A).

Also, since {JH : j ≤ dimH,H ⊂ IFn−1} ⊂ {H̃ : j ≤ dim H̃, H̃ ⊂ IFn},

µj(B) = min
j≤dimH

max
x∈H

RA(Jx) = min
j≤dimH

max
y∈JH

RA(y)

≥ min
j≤dim H̃

max
y∈H̃

RA(y) = µj(A).

(14.5) Corollary: If A =

[
B C
D E

]
∈ IFn×n is hermitian, and B ∈

IFr×r, then at least r eigenvalues of A must be ≤ max spct(B) and at
least r eigenvalues of A must be ≥ min spct(B).

In particular, if the spectrum of B is negative and the spectrum of E
is positive, then A has exactly r negative, and n−r positive, eigenvalues.

A different, simpler, application of the MMM theorem is based on the
following observation: If

∀t, f(t) ≤ g(t),
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then this inequality persists if we take on both sides the maximum or mini-
mum over the same set T , i.e., then

max
t∈T

f(t) ≤ max
t∈T

g(t), min
t∈T

f(t) ≤ min
t∈T

g(t).

It even persists if we further take the minimum or maximum over the same
family T of subsets T , e.g., then also

max
T∈T

min
t∈T

f(t) ≤ max
T∈T

min
t∈T

g(t).

Consequently,

(14.6) Corollary: If A, B are hermitian, and RA(x) ≤ RB(x) + c for
some constant c and all x, then

∀j, µj(A) ≤ µj(B) + c.

This gives

(14.7) Weyl’s Inequalities: If A = B + C, with A,B,C hermitian,
then

∀j, µj(B) + µ1(C) ≤ µj(A) ≤ µj(B) + µn(C).

Proof: Since µ1(C) ≤ RC(x) ≤ µn(C) (by Rayleigh’s principle),
while RB(x)+RC(x) = RA(x), the preceding corollary provides the proof.

A typical application of Weyl’s Inequalities is the observation that, for
A = BBc + C ∈ IFn×n with B ∈ IFn×k and A hermitian (hence also C
hermitian), µ1(C) ≤ µj(A) ≤ µn(C) for all j < (n − k), since rankBBc ≤
rankB ≤ k, hence µj(BB

c) must be zero for j < (n− k).

Since C = A−B, Weyl’s Inequalities imply that

|µj(A)− µj(B)| ≤ max{|µ1(A−B)|, |µn(A−B)|} = ρ(A−B).

Therefore, with the substitutions A← A+ E, B ← A, we obtain

(14.8) max-norm Wielandt-Hoffman: If A and E are both hermi-
tian, then

max
j
|µj(A+ E)− µj(A)| ≤ max

j
|µj(E)|.
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A corresponding statement involving 2-norms is valid but much harder
to prove.

Finally, a totally different application of the MMM Theorem is

(14.9) Sylvester’s Law of Inertia: Any two congruent hermitian ma-
trices have the same number of positive, zero, and negative eigenvalues.

Proof: It is sufficient to prove that if B = V cAV for some hermitian
A and some invertible V , then µj(A) > 0 implies µj(B) > 0. For this, we
observe that, by the MMM Theorem, µj(A) > 0 implies that RA is posi-
tive somewhere on every j-dimensional subspace, while (also by the MMM
Theorem), for some j-dimensional subspace H,

µj(B) = max
x∈H

RB(x) = max
x∈H

RA(V x)RV cV (x),

and this is necessarily positive, since dimV H = j and

RV cV (x) = ∥V x∥2/∥x∥2

is positive for any x ̸= 0.

It follows that we don’t have to diagonalize the real symmetric matrix
A (as we did in the proof of (14.2)Proposition) in order to find out whether
or not A or the corresponding quadratic form qA is definite. Assuming that
A is invertible, hence has no zero eigenvalue, it is sufficient to use Gauss
elimination without pivoting to obtain the factorization A = LDLc, with L
unit lower triangular. By Sylvester’s Law of Inertia, the number of positive
(negative) eigenvalues of A equals the number of positive (negative) diagonal
entries of D.

This fact can be used to locate the eigenvalues of a real symmetric matrix
by bisection. For, the number of positive (negative) diagonal entries in the
diagonal matrix Dµ obtained in the factorization LµDµLµ

c for (A − µ id)
tells us the number of eigenvalues of A to the right (left) of µ, hence makes
it easy to locate and refine intervals that contain just one eigenvalue of A.
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Determinants are often brought into courses such as this quite unnec-
essarily. But when they are useful, they are remarkably so. The use of
determinants is a bit bewildering to the beginner, particularly if confronted
with the classical definition as a sum of signed products of matrix entries.

I find it more intuitive to follow Weierstrass and begin with a few im-
portant properties of the determinant, from which all else follows, including
that classical definition (which is practically useless anyway).

As to the many determinant identities available, in the end I have almost
always managed with just one nontrivial one, viz. Sylvester’s determinant
identity , and this is a direct consequence of Gauss elimination The only other
one I have used at times is the Binet-Cauchy Formula. Both are stated and
derived at the end of this chapter.

Definition and basic properties

The determinant is a map,

det : IFn×n → IF : A 7→ detA,

with various properties. The first one in the following list is perhaps the
most important one; the second one serves as a normalization and, along
with properties (iv) and (v), uniquely defines the map, as we will show by,
eventually, deriving all the properties listed here, including the property (i),
from the three properties (ii), (iv) and (v).

(i) det(AB) = det(A) det(B).

(ii) det id = 1.

Consequently, for any invertible A,

1 = det id = det(AA−1) = det(A) det(A−1).

223
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Hence,

(iii) If A is invertible, then detA ̸= 0 and, det(A−1) = 1/detA.

While the determinant is defined as a map on matrices, it is very useful
to think of detA = det[a1, . . . ,an] as a function of the columns a1, . . . ,an of
A. The next two properties are in those terms:

(iv) The determinant is a multilinear form, i.e., for every j, the map x 7→
det[. . . ,aj−1,x,aj+1, . . .] is linear, meaning that, for any n-vectors x and
y and any scalar α (and arbitrary n-vectors ai),

det[. . . ,aj−1,x+ αy,aj+1, . . .]

= det[. . . ,aj−1,x,aj+1, . . .] + α det[. . . ,aj−1,y,aj+1, . . .].

(v) The determinant is an alternating form, i.e.,

det[. . . ,ai, . . . ,aj , . . .] = − det[. . . ,aj , . . . ,ai, . . .].

In words: Interchanging two columns changes the sign of the determinant
but not its absolute value.

It can be shown (see page 229) that (ii) + (iv) + (v) implies (i) (and
anything else you may wish to prove about determinants). Here are some
basic consequences first.

Since 0 is the only scalar α with the property that α = −α, it follows
from (v) that

(vi) detA = 0 if two columns of A are the same.

Using first (iv) and then the consequence (vi) of (v), we compute

det[. . . ,ai, . . . ,aj + αai, . . .]

= det[. . . ,ai, . . . ,aj , . . .] + α det[. . . ,ai, . . . ,ai, . . .]

= det[. . . ,ai, . . . ,aj , . . .].

This proves

(vii) Adding a multiple of one column of A to another column of A doesn’t
change the determinant.

Here comes a very important use of (vii): Assume that y = Ax and
consider

det[. . . ,aj−1,y,aj+1, . . .].

Since y = x1a1 + · · ·+ xnan, subtraction of xi times column i from column
j, i.e., subtraction of xiai from y here, for each i ̸= j is, by (vii), guaranteed
not to change the determinant, yet changes the jth column to xjaj ; then,
pulling out that scalar factor xj (permitted by (iv)), leaves us finally with
xj detA. This proves

(viii) If y = Ax, then det[. . . ,aj−1,y,aj+1, . . .] = xj detA.
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Hence, if detA ̸= 0, then y = Ax implies

xj = det[. . . ,aj−1,y,aj+1, . . .]/detA, j = 1, . . . , n.

This is Cramer’s rule.

In particular, if detA ̸= 0, then Ax = 0 implies that xj = 0 for all j, i.e.,
then A is 1-1, hence invertible (since A is square). This gives the converse to
(iii), i.e.,

(ix) If detA ̸= 0, then A is invertible.

In old-fashioned mathematics, a matrix was called singular if its deter-
minant is 0. So, (iii) and (ix) combined say that a matrix is nonsingular iff
it is invertible.

The suggestion that one actually construct the solution to A? = y by
Cramer’s rule is ridiculous under ordinary circumstances since, even for a lin-
ear system with just two unknowns, it is more efficient to use Gauss elimina-
tion. On the other hand, if the solution is to be constructed symbolically (in a
symbol-manipulating system such as Maple or Mathematica), then Cramer’s
rule is preferred to Gauss elimination since it treats all unknowns equally. In
particular, the number of operations needed to obtain a particular unknown
is the same for all unknowns.

We have proved all these facts (except (i)) about determinants from
certain postulates (namely (ii), (iv), (v)) without ever saying how to compute
detA. Now, it is the actual formula for detA that has given determinants
such a bad name. Here is the standard one, which (see page 229) can be
derived from (ii), (iv), (v), in the process of proving (i):

(x)

detA =
∑
σ∈SSn

(−1)σ
n∏

j=1

Aσ(j),j .

Once we have proved this formula, we have also proved uniqueness of
the map satisfying (ii), (iv), and (v).

In the formula, σ ∈ SSn is shorthand for: σ is a permutation of the
first n integers, i.e.,

σ = (σ(1), σ(2), . . . , σ(n)),

where σ(j) ∈ {1, 2, . . . , n} for all j, and σ(i) ̸= σ(j) if i ̸= j. In other words,
σ is a 1-1 and onto map from {1, . . . , n} to {1, . . . , n}. Also,

(15.1) (−1)σ := signum∆(σ), with ∆(σ) :=
∏
i<j

(σ(j)− σ(i)),

is the sign of the permutation σ. It equals 1 or −1 depending on whether
the number of out-of-order pairs, i.e., (σ(i), σ(j)) with i < j yet σ(i) > σ(j),



226 15 More on determinants

is even or odd, and the parity of this number is therefore called the parity
of σ. This parity can also be determined as the parity of the number of
interchanges needed, starting with σ = (σ(1), . . . , σ(n)), to end up with the
sequence (1, 2, . . . , n). To be sure, if you and I both try to bring the entries
of σ into increasing order by interchanges, the number of steps taken may
differ, but their parity never will; if it takes me an even number of steps, it will
take you an even number of steps, due to the fact that any one interchange
will change ∆(σ) to its negative (see Problem 15.1) while ∆((1, 2, . . . , n)) is
positive.

15.1∗ Let σ# denote the number of out-of-order pairs in the permutation σ (hence

∆(σ) = (−1)σ
#
), and let τ be the permutation obtained from σ by interchange of the ith

and jth entry. (a) Prove: If σ(i) and σ(j) are out of order, then σ# − τ# is positive and

odd. (b) Conclude that σ#−τ# is negative and odd in case σ(i) and σ(j) are in order. (c)

Conclude that any permutation σ can be brought into order by at most σ# interchanges,

and give an example of a permutation for which fewer than σ# interchanges suffice.

Here is a simple example: σ = (3, 1, 4, 2) has the pairs (3, 1), (3, 2), and
(4, 2) out of order, hence (−1)σ = −1. Equivalently, the following sequence
of 3 interchanges gets me from σ to (1, 2, 3, 4):

(3, 1, 4, 2)

(3, 1, 2, 4)

(1, 3, 2, 4)

(1, 2, 3, 4)

Therefore, again, (−1)σ = −1.
Now, fortunately, we don’t really ever have to use this stunning formula

(x) in calculations, nor is it physically possible to use it for nmuch larger than
8 or 10. For n = 1, 2, 3, one can derive from it explicit rules for computing
detA:

det [ a ] = a, det

[
a b
c d

]
= ad− bc,

det

 a b c
d e f
g h i

 = aei+ bfg + cdh− (ceg + afh+ bdi);

the last one can be remembered easily by the following mnemonic:

a ab bc

d de ef

g gh hi

For n > 3, this mnemonic does not work, and one would not usually make
use of (x), but use instead (i) and the following immediate consequence of
(x):
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(xi) The determinant of a triangular matrix equals the product of its diagonal
entries.

Indeed, when A is upper triangular, then Aij = 0 whenever i > j.
Now, if σ(j) > j for some j, then the factor Aσ(j),j in the corresponding
summand (−1)σ

∏n
j=1Aσ(j),j is zero. This means that the only possibly

nonzero summands correspond to σ with σ(j) ≤ j for all j, and there is only
one permutation that manages that, the identity permutation (1, 2, . . . , n),
and its parity is even (since it takes no interchanges to bring it into increasing
order). Therefore, the formula in (x) gives detA = A11 · · ·Ann in this case.
– The proof for a lower triangular matrix is analogous; else, use (xiii) below.

Consequently, if A = LU with L unit triangular and U upper triangular,
then

detA = detU = U11 · · ·Unn.

If, more generally, A = PLU , with P some permutation matrix, then

detA = det(P )U11 · · ·Unn,

i.e.,

(xii) detA is the product of the pivots used in elimination, times (−1)i, with
i the number of row interchanges made.

Since, by elimination, any A ∈ IFn×n can be factored as A = PLU , with
P a permutation matrix, L unit lower triangular, and U upper triangular,
(xii) provides the standard way to compute determinants.

Note that, then, At = U tLtP t, with U t lower triangular, Lt unit upper
triangular, and P t the inverse of P , hence

(xiii) detAt = detA.

This can also be proved directly from (x). Note that this converts all our
statements about the determinant in terms of columns to the corresponding
statements in terms of rows.

(xiv) “expansion by minors”:

Since, by (iv), the determinant is slotwise linear, and x = x1e1 +x2e2 +
· · ·+ xnen, we obtain, for any j ∈ n,

(15.2) det[. . . ,aj−1,x,aj+1, . . .] = x1C1j + x2C2j + · · ·+ xnCnj ,

with
Cij := det[. . . ,aj−1, ei,aj+1, . . .]

the socalled cofactor of Aij . With the choice x = ak, this implies

A1kC1j +A2kC2j + · · ·+AnkCnj = det[. . . ,aj−1,ak,aj+1, . . .]

=
{
detA if k = j;
0 otherwise.
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The case k = j gives the expansion by minors for detA (and justifies the
name ‘cofactor’ for Cij). The case k ̸= j is justified by (vi). In other words,
with

adjA :=


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

... · · ·
...

C1n C2n · · · Cnn


the socalled adjugate of A (note that the subscripts appear reversed), we
have

(15.3) adj(A)A = (detA) id.

This provides another proof of (ix), since it shows that, for a nonsingular A,

A−1 = (adjA)/ detA.

The expansion by minors is useful since, as follows from (x), the cofactor
Cij equals (−1)i+j times the determinant of the matrix A(n\i | n\j) obtained
from A by removing row i and column j, i.e.,

Cij = (−1)i+j det


. . . . . . . . . . . .
. . . ai−1,j−1 ai−1,j+1 . . .
. . . ai+1,j−1 ai+1,j+1 . . .
. . . . . . . . . . . .

 ,
and this is a determinant of order n − 1, and so, if n − 1 > 1, can itself be
expanded along some column (or row).

As a practical matter, for [a,b, c] := A ∈ R3, the formula adj(A)A =
(detA) id implies that

(a× b)tc = det[a,b, c],

with
a× b := (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

the cross product of a with b. In particular, a×b is perpendicular to both a
and b. Also, if [a,b] is o.n., then so is [a,b,a×b] but, in addition, det[a,b,a×
b] = 1, i.e., [a,b,a×b] provides a right-handed cartesian coordinate system
for R3.

(xv) detA is the n-dimensional (signed) volume of the parallelepiped

{Ax : 0 ≤ xi ≤ 1, all i}

spanned by the columns of A.

For n > 3, this is a definition, while, for n ≤ 3, one works it out (see
below). This is a very useful geometric way of thinking about determinants.
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Also, it has made determinants indispensable in the definition of multivariate
integration and the handling therein of changes of variable.

Since det(AB) = det(A) det(B), it follows that the linear map T : IFn →
IFn : x 7→ Ax changes volumes by a factor of detA, meaning that, for any
set M in the domain of T ,

vol n(T (M)) = det(A) vol n(M).

As an example, consider det[a,b], with a, b vectors in the plane linearly

independent, and assume, wlog, that a1 ̸= 0. By (iv), det[a,b] = det[a, b̃],

with b̃ := b − (b1/a1)a having its first component equal to zero, and so,

again by (iv), det[a,b] = det[ã, b̃], with ã := a− (a2/b̃2)b̃ having its second

component equal to zero. Therefore, det[a,b] = ã1b̃2 = ±∥ã∥ ∥b̃∥ equals

± the area of the rectangle spanned by ã and b̃. However, following the
derivation of ã and b̃ graphically, we see, by matching congruent triangles,
that the rectangle spanned by ã and b̃ has the same area as the parallelepiped
spanned by a and b̃, and, therefore, as the parallelepiped spanned by a and
b. Thus, up to sign, det[a,b] is the area of the parallelepiped spanned by a
and b.

b

a

b
b̃

a

b̃

a

ã

Here, finally, for the record, is a proof that (ii) + (iv) + (v) implies (i),
hence everything else we have been deriving so far. Let A and B be arbitrary
matrices (of order n). Then the multilinearity (iv) implies that

det(BA) = det[Ba1, . . . , Ban]

= det[. . . ,
∑
i

biAij , . . .]

=
∑

σ∈{1,...,n}n

det[bσ(1), . . . ,bσ(n)]
∏
j

Aσ(j),j .

By the consequence (vi) of the alternation property (v), most of these sum-
mands are zero. Only those determinants det[bσ(1), . . . ,bσ(n)] for which all
the entries of σ are different are not automatically zero. But that are exactly
all the σ ∈ SSn, i.e., the permutations of the first n integers. Further, for such
σ,

det[bσ(1), . . . ,bσ(n)] = (−1)σ detB
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by the alternation property (v), with (−1)σ = 1 or −1 depending on whether
it takes an even or an odd number of interchanges to change σ into a strictly
increasing sequence. Thus

det(BA) = det(B)
∑
σ∈SSn

(−1)σ
∏
j

Aσ(j),j .

Choosing, in particular, B = id, we obtain formula (x) since idA = A
while, by the defining property (ii), det id = 1, and, with that, det(BA) =
det(B) det(A) for arbitrary B and A.

On the other hand, starting with the formula in (x) as a definition, one
may verify (see Problem 15.2) that det so defined satisfies the three properties
(ii) (det( id) = 1), (iv) (multilinear), and (v) (alternating) claimed for it. In
other words, there actually is such a function (necessarily given by (x)).

Sylvester

Here, for the record, is the statement and a proof of Sylvester’s Determinant
Identity. For it, the following notation will be useful: If i = (i1, . . . , ir) and
j = (j1, . . . , js) are suitable integer sequences, then Aij = A(i | j) is the r× s-
matrix whose (p, q) entry is Aip,jq , p = 1, . . . , r, q = 1, . . . , s. This is just as
in MATLAB except for the vertical bar used here at times, for emphasis and in
order to list, on either side of it, a sequence without having to encase it in
parentheses. Also, A(i) := A(i | i).

With
k := 1:k

now the sequence (1, 2, . . . , k), consider the matrix C with entries

Cij := detA(k, i | k, j).

Note that Cij = 0 whenever i ∈ k or j ∈ k since then A(k, i | k, j) has
two rows the same or two columns the same. If A(k) is invertible, then the
nontrivial part of C, i.e., the submatrix C(\k), gives rise to the matrix

A/A(k) := C(\k)/detA(k)

which is the Schur complement in A of the pivot block A(k). This terminol-
ogy, already mentioned in Problem 4.33, derives from the fact (to be proved
in a moment) that C(\k)/detA(k) can be viewed as having been obtained
by block elimination, as the (2,2)-block in the 2-by-2 block matrix[

A(k) A(k, \k)
0 A(\k)−A(\k, k)A(k)−1A(k, \k)

]
that results when we use the first k rows of A to zero out the first k entries
in every row i > k.
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To prove this claim, expand Cij = detA(k, i | k, j) by entries of its last
column (using property (xiv)) to get

Cij = Aij detA(k)−
∑
r≤k

Arj (−1)k−r detA((k\r), i | k).

This shows that, for i > k,

Ci:: ∈ Ai:: detA(k)− ranA(k | :),

while Cij = 0 for j ∈ k as already observed earlier. Hence, if detA(k) ̸= 0,
then Ci::/detA(k) is the result of subtracting a weighted sum of the first k
rows of A from the ith row of A in such a way that the first k entries of the
resulting row are zero.

In other words, for i > k, Ci::/detA(k) is the ith row of the work-array
B after k steps of elimination without pivoting, or even with row pivoting as
long as only rows with index ≤ k are interchanged.

This provides the following useful

(15.4) Determinantal Expressions For LDU Factors: Assume
that elimination without pivoting can be carried out on the matrix A,
resulting in the factorization A = LDU , with L unit lower triangular,
D diagonal and invertible, and U unit upper triangular. Then, with B
the work-array after k steps of elimination without pivoting applied to
A,

Dk+1,k+1 = Bk+1,k+1 = detA(k + 1)/detA(k)

is the pivot for the k + 1st elimination step, hence the k + 1st diagonal
entry of the diagonal factor D, therefore, for i > k,

Li,k+1 = Bi,k+1/Bk+1,k+1 = detA(k, i | k + 1)/ detA(k + 1)

is the (i, k + 1) entry of the resulting unit lower triangular left factor of
A and, correspondingly,

Uk+1,i = Bk+1,i/Bk+1,k+1 = detA(k + 1 | k, i)/detA(k + 1)

is the (k + 1, i) entry of the resulting unit upper triangular right factor
of A.

Since such row elimination is done by elementary matrices with deter-
minant equal to 1, we get
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detA = det

[
A(k) A(k | \k)
0 A/A(k)

]
= detA(k) det(A/A(\k)),

hence

det(A/A(k)) = detA/ detA(k)

which is Schur’s determinant identity and is the reason for the somewhat
unusual notation A/A(k) for the Schur complement.

Now note that we are free to replace A in Schur’s determinant identity
by A(k, i | k, j) for any #i = #j, hence obtain

(15.5) Sylvester’s determinant identity. If

∀i, j, Bij := detA(k, i | k, j)/detA(k),

then
detB(i | j) = detA(k, i | k, j)/detA(k).

Binet-Cauchy

(15.6) Binet-Cauchy Formula. If BA is defined, then, for #i = #j,

det(BA)(i | j) =
∑

#h=#i

detB(i | h) detA(h | j).

Even the special case #i = #A of this, i.e., the most important deter-
minant property (i),

det(BA) = detB detA,

Binet and Cauchy were the first to prove. Not surprisingly, the proof of the
formula follows our earlier proof of that identity.

Proof: Since (BA)(i | j) = B(i | :)A(: | j), it is sufficient to consider
the case B,At ∈ IFm×n for some m and n. If m > n, then B cannot be onto,
hence BA must fail to be invertible, while the sum is empty, hence has value
0. It is therefore sufficient to consider the case m ≤ n.
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For this, using the linearity of the determinant in each slot,

det(BA) = det[BA::,1, . . . , BA::,m]

=
∑
h1

· · ·
∑
hm

det[B::,h1Ah1,1, . . . , B::,hmAhm,m]

=
∑
h1

· · ·
∑
hm

det[B::,h1 , . . . , B::,hm ]Ah1,1 · · ·Ahm,m

=
∑

h1<···<hm

detB(: | h)
∑

σ∈SSm

(−1)σAhσ(1),1 · · ·Ahσ(m),m

=
∑

h1<···<hm

detB(: | h) detA(h | :).

15.2∗ Prove that the function det : Fn×n → F given by the formula in (x) necessarily
satisfies (ii), (iv), and (v).

15.3 Prove: For any A ∈ Fn×n+1, the vector ((−1)k detA( : , \k) : k = 1:n+ 1) is in
nullA.

15.4 Let A ∈ Zn×n, i.e., a matrix of order n with integer entries, and assume that
A is invertible. Prove: A−1 ∈ Zn×n if and only if |detA| = 1. (Hint: Use Cramer’s Rule
to prove that such A maps Zn onto itself in case detA = ±1.)

15.5 Prove: |detA| =
√

det(AcA)).

15.6 Prove Hadamard’s inequality: | det[a1, . . . , an]| ≤ ∥a1∥ · · · ∥an∥.
15.7 Let R be a ring (see page 278). Prove the following claim, of use in ideal theory:

If Ax = 0 for A ∈ Rn×n and x ∈ Rn, then xi detA = 0 for all i.

15.8 Use the previous homework to prove the following (see page 278 for background
on rings): If R is a commutative ring with identity, s1, . . . , sn ∈ R,

F := [s1, . . . , sn](R
n) = {

∑
j

sjrj : (rj) ∈ Rn}

and H is an ideal in R for which F ⊂ HF := {hf : h ∈ H, f ∈ F}, then, for some h ∈ H,
(1− h)F = 0.

15.9 Prove that the elementary matrix A := idn− qrt has a factorization A = LDU
with L unit lower triangular, D diagonal, and U unit upper triangular provided the numbers

pi := 1−
∑
j≤i

qjrj

are nonzero for i < n, and verify that then D = diag(pi/pi−1 : i = 1:n) and

L(i, j) = −qirj/pj = U(j, i), i > j.

15.10 T/F

(a) If A and B are matrices for which both AB and BA are defined, then det(AB) =
det(BA).

(b) If A ∈ Zn×n then detA ∈ Z.

(c) detAc = detA−1 if A is invertible.



16 Some applications

The cross product in 3-space

In the vector space X = R3, the standard inner product is also called the
dot product, because of the customary notation

ytx = ⟨x,y⟩ =: x · y, x,y ∈ R3.

In this most familiar vector space, another vector ‘product’ is of great
use, the so-called cross product x×y. It is most efficiently defined implic-
itly, i.e., by

(16.1) ∀x,y, z ∈ R3, (x× y)tz := det[x,y, z].

From (13.14) (see also page 226), we work out that

det[x,y, z] = (x2y3 − x3y2)z1 + (x3y1 − x1y3)z2 + (x1y2 − x2y1)z3,

hence
x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

Given what you already know about determinants, the definition (16.1),
though implicit, makes all the basic facts about the cross product immediate:

(i) The cross product x× y is linear in its two arguments, x and y.

(ii) The cross product x×y is alternating, meaning that y×x = −(x×y).

(iii) Perhaps most importantly, x×y is a vector perpendicular to both x and
y.

(iv) x× y = 0 if and only if [x,y] is not 1-1.

Indeed, if [x,y] is 1-1, then we can always extend it to a basis [x,y, z] for
R3, and then (x× y)tz is not zero, hence then x× y ̸= 0. If [x,y] fails to be

234
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1-1, then [x,y,x×y] fails to be 1-1, hence then ∥x×y∥2 = det[x,y,x×y] = 0,
therefore x× y = 0. In particular, x× x = 0.

So, assuming that [x,y] is 1-1, we can compute the direction vector

u := (x× y)/∥x× y∥,

and so conclude that

∥x× y∥22 = det[x,y,x× y] = ∥x× y∥ det[x,y,u].

In other words,

(v) the Euclidean length of x × y gives the (unsigned) area of the paral-
lelepiped spanned by x and y.

This also holds when [x,y] fails to be 1-1 since then that area is zero.

When [x,y] is 1-1, then there are exactly two directions perpendicular
to the plane ran[x,y] spanned by x and y, namely u := (x×y)/∥x×y∥ and
(y× x)/∥y× x∥ = −u, with u the choice that makes det[x,y,u] positive. If
you imagine the thumb of your right hand to be x, and the pointer of that
hand to be y, then the middle finger, bent to be perpendicular to both thumb
and pointer, would be pointing in the direction of x × y. For that reason,
any basis [x,y, z] for R3 with det[x,y, z] > 0 is said to be right-handed.

16.1 Relate the standard choice (x2,−x1) for a vector perpendicular to the 2-vector
x to the above construction.

16.2 Give a formula for an n-vector x1 × · · · × xn−1 that is perpendicular to the

n− 1 n-vectors x1, . . . ,xn−1 and whose Euclidean length equals the (unsigned) volume of

the parallelepiped spanned by the vectors x1, . . . ,xn−1.

Rotation in 3-space

A particularly useful transformation of 3-space is counter-clockwise rotation
by some angle θ around some given axis-vector a. Let R = Rθ,a be this
rotation. We are looking for a computationally efficient way to represent this
map.

This rotation leaves its axis, i.e., ran[a], pointwise fixed, and rotates any
vector in the plane H := a⊥ by an angle of θ radians counterclockwise with
respect to the direction of a; see (16.2)Figure. In other words, with

p = q+ r, where q := Pran[a]p, hence r = p− q,

we have
Rp = q+Rr,

by the linearity of the rotation. To compute Rr, let s be the vector in H
obtained by rotating r counterclockwise π/2 radians. Then

Rr = cos(θ)r+ sin(θ)s,
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and that’s it.

a

r

p

Rp

Pran[a]p
s

∥r∥θ

(16.2) Figure. Rotation of the point p counterclockwise θ radians
around the axis spanned by the vector a. The orthogonal projection
r of p into the plane H with normal a, together with its rotation s
counterclockwise π/2 radians around that axis, serve as a convenient
orthogonal coordinate system in H.

It remains to construct s, and this is traditionally done with the aid of
the cross product a × r since (see (16.1)) it is a vector perpendicular to a
and r. Hence, assuming without loss that a is normalized, we now know that
a× r is in the plane H and perpendicular to r and of the same length as r.
Of the two vectors in H that have this property, it also happens to be the
one obtained from r by a (π/2)-rotation that appears counterclockwise when
looking down on H from the side that the vector a points into. (Just try it
out.)

The calculations can be further simplified. The map

r 7→ a× r

is linear and, by inspection, a× a = 0. Since a is normalized by assumption,
we compute

r = p− (atp)a,

hence

a× r = a× p.
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So, altogether

Rp = (atp)a+ cos(θ)(p− (atp)a) + sin(θ)(a× p)

= cos(θ)p+ (1− cos(θ))(atp)a+ sin(θ)(a× p).

This is the formula that is most efficient for the calculation of Rp. How-
ever, if the matrix for R = R id3 (with respect to the natural basis) is wanted,
we read it off as

R = cos(θ) id3 + (1− cos(θ))[a][a]t + sin(θ)(a×),

with

a× :=

 0 −a3 a2
a3 0 −a1
−a2 a1 0


the matrix for the linear map r 7→ a× r.

Flats: points, vectors, barycentric coordinates, differentiation

In CAGD and Computer Graphics, Linear Algebra is mainly used to change
one’s point of view, that is, to change coordinate systems. In this, even the
familiar 3-space, R3, is often treated as an ‘affine space’ or ‘flat’ rather than
a vector space, in order to deal simply with useful maps other than linear
maps, namely the affine maps.

For example, the translation

τv : R3 → R3 : p 7→ p+ v

of R3 by the vector v is not a linear map (since it fails to map 0 to 0).
Nevertheless, it can be represented by a matrix, using the following trick.
Embed R3 into R4 by the 1-1 map

R3 → R4 : x 7→ (x, 1).

The image of R3 under this map is the ‘flat’

F := R3 × {1} = {(x, 1) : x ∈ R3} ⊂ R4.

Consider the linear map on R4 given by

Tv :=

[
id3 v
0 1

]
.

Then, for any x ∈ R3,

Tv(x, 1) = ( id3x + v, 0tx+ 1) = (x+ v, 1).
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In other words, the linear map Tv carries F into itself in such a way that the
point p = (x, 1) is carried to its ‘translate’ (x+ v, 1) = p+ (v, 0).

Let, now, A ∈ R4×4 be an arbitrary linear map on R4 subject only to
the condition that it map F into itself. Breaking up A in the same way as
we did Tv, i.e.,

A =:

[
A0 w
[u]t t

]
,

we get
A (x, 1) = (A0x +w,utx+ t),

hence want utx + t = 1 for all x ∈ R3, and this holds if and only if u = 0
and t = 1, i.e.,

A =

[
A0 w
0 1

]
is the most general such map. Its action on R3 is an arbitrary linear trans-
formation, A0, followed by translation by an arbitrary w.

Such a description of an affine map on R3 is used in MATLAB graphics, as
follows. Three-dimensional plots in MATLAB plot, in fact, the orthogonal projection
onto the (x,y)-plane after an affine transformation of R3 that makes the center of
the plotting volume the origin and a rotation that moves a line through that center,
specified by azimuth and elevation, to the z-axis. This affine map is recorded in a
matrix of order 4, obtainable by the command view, and also changeable by that
command, but, fortunately, in down-to-earth terms like azimuth and elevation, or
viewing angle.

As an example, let us so plot the unit cube. Its edges are traversed by the
piecewise linear path through the points specified by the columns of the following
matrix:

cube = [0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0;

0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1;

0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0];

Its center is the point (1,1,1)/2, and translating that point to the origin is
handled by the affine map described by

τ =


1 0 0 −1/2
0 1 0 −1/2
0 0 1 −1/2
0 0 0 1

 .
The default azimuth angle is α := −37.5π/180 radians, and the corresponding
affine map (i.e., the rotation in the (x, y)-plane that carries the default viewpoint
to a point with x-coordinate 0 and a nonpositive y-coordinate) is given by

A =


− sin(a) cos(a) 0 0
− cos(a) − sin(a) 0 0

0 0 1 0
0 0 0 1

 ,
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with a := 3π/2+α. As a check, note that this map is the identity in case α = 0,
i.e., a = 3π/2, and, in general, carries the vector (cos(a), sin(a), z, 1) to the vector
(0,−1, z, 1). Finally, the default elevation angle is ε := 30π/180 radians, and the
corresponding map (i.e., the rotation in the (y, z)-plane that further carries the
view point to a point with y-coordinate 0 and nonnegative z-coordinate) is given
by

E =


1 0 0 0
0 sin(e) − cos(e) 0
0 cos(e) sin(e) 0
0 0 0 1

 ,
with e := π − ε. As a check, note that this map is the identity in case ε = π/2,
i.e, e = π/2, and, in general, carries the vector (x, cos(e), sin(e), 1) to the vector
(x, 0, 1, 1).

To check these formulæ, we compare the resulting product for this case

EAT =

with the transformation matrix

obtained in MATLAB via

plot3(cube(1,:), cube(2,:), cube(3,:))

view

which produces the following plot

The “flat” F is not a vector subspace of R4, i.e., it is not closed under
vector addition or scalar multiplication. However, it is closed under formation
of so-called affine combinations, i.e., weighted sums of the form

r∑
j=0

pjαj

with p0, . . . ,pr ∈ F , and α0, . . . , αr ∈ R such that

r∑
j=0

αj = 1.

Thus, as far as the set F is concerned, these are the only weighted sums
allowed. Note that such an affine sum can always be rewritten as

p0 +

r∑
j=1

(pj − p0)βj ,
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where now the weights βj , j = 1:r, are arbitrary. In other words, an affine
sum in F is obtained by adding to some point in F an arbitrary weighted
sum of elements in the vector space F−F .

An affine map on F is any map A from F to F that preserves affine
combinations, i.e., for which

A(p0 +
∑
j

(pj − p0)αj) = Ap0 +
∑
j

(Apj −Ap0)αj

for all pj ∈ F , αj ∈ R. It follows that the map on F−F defined by

A0 : F−F → F−F : p− q 7→ Ap−Aq

must be well-defined and linear, hence A is necessarily the restriction to F of
some linear map Ã on R4 that carries F into itself and therefore also carries
the linear subspace F−F into itself.

The main pay-off, in CAGD and in Computer Graphics, of these consid-
erations is the fact that one can represent the composition of affine maps by
the product of their corresponding matrices.

This concrete example has led to the following abstract definition of a
flat, whose notational conventions strongly reflect the concrete example. You
should verify that the standard example is, indeed, a flat in the sense of this
abstract definition.

(16.3) Definition: A flat or affine space or linear manifold is a
nonempty set F of points, a vector space T of translations, and a
map

(16.4) φ : F × T→ F : (p, τ) 7→ τ(p) =: p+ τ

satisfying the following:

(a) ∀(p, τ) ∈ F × T, p+ τ = p ⇐⇒ τ = 0.

(b) ∀τ, σ ∈ T, (·+ τ) + σ = ·+ (τ + σ).

(c) ∃p0 ∈ F, φ(p0, ·) is onto.

Translations are also called vectors since (like ‘vehicles’ or ‘conveyors’,
words that have the same Latin root as ‘vector’) they carry points to points.

Condition (a) ensures the uniqueness of the solution of the equation
p+? = q whose existence (see the proof of (3) below) is guaranteed by (c).

Condition (b) by itself is already satisfied, for arbitrary F and T, by,
e.g., φ : (p, τ) 7→ p.



Flats: points, vectors, barycentric coordinates, differentiation 241

Condition (c) is needed to be certain that T is rich enough. (a)&(b) is
already satisfied, e.g., by T = {0}, φ(·, 0) = id. As we will see in a moment,
(a)&(b)&(c) implies that φ(p, ·) is onto for every p ∈ F . In other words,
there is nothing special about the p0 that appears in (c). In fact, the notion
of a flat was developed explicitly as a set that, in contrast to a vector space
which has an origin, does not have a distinguished point.

Consequences

(1) φ(·, 0) = id (by (a)).

(2) For any τ ∈ T, φ(·, τ) is invertible; its inverse is φ(·,−τ) (by (1) and
(b)). The corresponding abbreviation

p− τ := p+ (−τ)

is helpful and standard.

(3) ∀p, q ∈ F , ∃τ ∈ T, p + τ = q. This unique τ is correspondingly
denoted

q − p.

Proof: If p + τ = q = p + σ, then, by (2) and (b), p = q + (−σ) =
(p + τ) + (−σ) = p + (τ − σ), therefore, by (1), τ − σ = 0, showing the
uniqueness of the solution to p+? = q, regardless of p and q. The existence
of a solution is, offhand, only guaranteed, by (c), for p = p0. However, with
the invertibility of φ(p0, ·) : T → F thus established, hence with p − p0 and
q − p0 well-defined, we have q = p0 + (q − p0) and p = p0 + (p − p0), hence
p0 = p− (p− p0), therefore

q = p− (p− p0) + (q − p0),

showing that the equation p+? = q has a solution (namely the vector (q −
p0)− (p− p0)).

16.3 Prove that the map Φ : T → FF , given by the rule Φ(τ) : p 7→ φ(p, τ), is a

semi-homomorphism, from the additive group of the vector space T into the semi-group

FF with composition the semi-group action.

(4) Note that (3) provides a 1-1 correspondence (in many different ways)
between F and T. Specifically, for any particular o ∈ F ,

F → T : p 7→ p− o

is an invertible map, as is its inverse,

T→ F : τ 7→ o+ τ.

However, the wish to avoid such an arbitrary choice of an ‘origin’ o in F
provided the impetus to define the concept of flat in the first place. The
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dimension of a flat is, by definition, the dimension of the associated vector
space of translations. Also, since the primary focus is usually the flat, F , it
is very convenient to write its vector space of translations as

F−F.

(5) The discussion so far has only made use of the additive structure of T.
Multiplication by scalars provides additional structure. Thus, for arbitrary
Q ⊂ F , the affine hull of Q, or the flat spanned by Q is, by definition,

♭(Q) := q + span(Q− q),

with the right side certainly independent of the choice of q ∈ Q, by (4). The
affine hull of Q is, itself, a flat, with span(Q − q) the vector space of its
translations.

(6) In particular, the affine hull of a finite subset Q of F is

♭(Q) = q0 + ran[q − q0 : q ∈ Q\q0], q0 ∈ Q.

Let
q0 +

∑
q ̸=q0

(q − q0)αq

be one of its elements. In order to avoid singling out q0 ∈ Q, it is customary
to write instead ∑

q

qαq, with αq0 := 1−
∑
q ̸=q0

αq.

This makes ♭(Q) the set of all affine combinations∑
q∈Q

qαq,
∑
q

αq = 1,

of the elements of Q. The affine hull ♭(q0, . . . , qr) of a sequence q0, . . . , qr in
F is defined analogously. But I prefer to work here with the set Q in order
to stress the point of view that, in a flat, all points are of equal importance.

A special case is the straight line through p ̸= q, i.e.,

♭(p, q) = p+ R(q − p) = q + R(p− q) = {(1− α)p+ αq : α ∈ R}.

(7) The finite set Q ⊂ F is called affinely independent in case, for
some (hence for every) o ∈ Q, [q − o : q ∈ Q\o] is 1-1. In that case, each
p ∈ ♭(Q) can be written in exactly one way as an affine combination

p =:
∑
q

qℓq(p),
∑
q

ℓq(p) = 1,
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of the q ∈ Q. Indeed, in that case, for any particular o ∈ Q, Vo := [q − o :
q ∈ Q\o] is a basis for the vector space of translations on ♭(Q), hence, for all
p ∈ ♭(Q),

p = o+ (p− o) = o+ VoV
−1
o (p− o) =

∑
q∈Q

qℓq(p),

with
(ℓq(p) : q ∈ Q\o) := V −1

o (p− o), ℓo(p) := 1−
∑
q ̸=o

ℓq(p).

The ‘affine’ vector ℓ(p) = (ℓq(p) : q ∈ Q) ∈ RQ constitutes the barycentric
coordinates of p with respect to Q.

It follows that, for arbitrary pi ∈ ♭(Q) and arbitrary αi ∈ R with
∑

i αi =
1, we have ∑

i

αipi =
∑
i

αi

∑
q

λq(pi)q =
∑
q

(
∑
i

αiλq(pi))q,

with ∑
i

αi(
∑
q

λq(pi)) =
∑
i

αi = 1.

Hence, by the uniqueness of the barycentric coordinates, the map

λ : ♭(Q)→ RQ : p 7→ (λq(p) : q ∈ Q)

is affine, meaning that

λ(
∑
i

αipi) =
∑
i

αiλ(pi).

It is also 1-1, of course, and so is, for our flat ♭(Q), what a coordinate map
is for a vector space, namely a convenient structure-preserving numerical
representation of the flat.

It follows that, with f0 : Q → G an arbitrary map on Q into some flat
G, the map

f : ♭(Q)→ G :
∑
q∈Q

λq(p)q 7→
∑
q∈Q

λq(p)f0(q)

is affine. Hence, if A : f → G is an affine map that agrees with f0 on Q, then
it must equal f .

(8) Let the r + 1-subset Q of the r-dimensional flat F be affinely inde-
pendent. Then, for any o ∈ Q, [q − o : q ∈ Q\o] is a basis for F−F , and the
scalar-valued map

ℓo : F → R : p 7→ ℓo(p)
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is a linear polynomial on F . Some people prefer to call it an affine poly-
nomial since, after all, it is not a linear map. However, the adjective ‘linear’
is used here in the sense of ‘degree ≤ 1’, in distinction to quadratic, cubic,
and higher-degree polynomials. A description for the latter can be obtained
directly from the ℓq, q ∈ Q, as follows. The column map

[ℓα :=
∏
q∈Q

(ℓq)
α(q) : α ∈ ZQ

+, |α| = k]

into RF is a basis for the (scalar-valued) polynomials of degree ≤ k on F .

(9) An affine combination with nonnegative weights is called a convex
combination. The weights being affine, hence summing to 1, they must also
be no bigger than 1. The set

[p . . q] := {(1− α)p+ αq : α ∈ [0 . . 1]}

of all convex combinations of the two points p, q is called the interval with
endpoints p, q. The set

σQ := {
∑
q∈Q

qαq : α ∈ [0 . . 1]Q,
∑
q

αq = 1}

of all convex combinations of points in the finite set Q is called the simplex
with vertex set Q in case Q is affinely independent.

(10) Flats are the proper setting for differentiation. Assume that the
flat F is finite-dimensional. Then there are many ways to introduce a vec-
tor norm on the corresponding vector space F−F of translations, hence a
notion of convergence, but which vector sequences converge and which don’t
is independent of the choice of that norm. This leads in a natural way to
convergence on F : The point sequence (pn : n ∈ N) in F converges to
p ∈ F exactly when limn→∞ ∥pn − p∥ = 0. Again, this characterization of
convergence does not depend on the particular vector norm on F−F chosen.

With this, the function f : F → G, on the finite-dimensional flat F to
the finite-dimensional flat G, is differentiable at p ∈ F in case the limit

Dτf(p) := lim
h↘0

(f(p+ hτ)− f(p))/h

exists for every τ ∈ (F−F )\0. In that case, Dτf(p) is called the derivative
of f at p in the direction τ .

Notice that Dτf(p) is a vector, in G−G. It tells us the direction into
which f(p) gets translated as we translate p to p+ τ . Further, its magnitude
gives an indication of the size of the change as a function of the size of the
change in p. Exactly,

f(p+ hτ) = f(p) + hDτf(p) + o(∥τ∥h), h ≥ 0.



An example from CAGD 245

In particular, if f is differentiable at p, then

Df(p) : F−F → G−G : τ 7→ Dτf(p)

is a well-defined map, from F−F to G−G. This map is positively homoge-
neous, i.e.,

Dhτf(p) = hDτf(p), h ≥ 0.

If this map Df(p) is linear, it is called the derivative of f at p. Note that
then

(16.5) f(p+ τ) = f(p) +Df(p)τ + o(∥τ∥), τ ∈ F−F.

If V is any particular basis for F−F and W is any particular basis for G−G,
then the matrix

Jf(p) :=W−1Df(p)V

is the Jacobian of f at p. Its (i, j) entry tells us how much f(p+ τ) moves
in the direction of wi because of a unit change in τ in the direction of vj .
More precisely, if τ = V α, then Df(p)τ =W Jf(p)α.

A practical high-point of these considerations is the chain rule, i.e., the
observation that if g : G→ H is a ‘uniformly’ differentiable map, then their
composition, gf , is differentiable, and

D(gf)(p) = Dg(f(p))Df(p).

In most applications, both F and G are coordinate spaces and, corre-
spondingly, the bases V and W are the standard ones.

If, in particular, F = Rn and G = R, i.e., if f is a scalar-valued function
of n real variables, then the Jacobian Df is a 1-row matrix or vector, called
the gradient of f , and denoted

gradf = ∇f = (D1f, . . . , Dnf),

with Dif the directional derivative of f in the direction of ei. Then, directly
from (16.5), the gradient ∇f(p) gives the direction of steepest ascent at p.

An example from CAGD

In Computer-Aided Geometric Design, one uses repeated corner-cutting to
refine a given polygon into a smooth curve of approximately the same shape.
The best-known example is theChaikin algorithm. This algorithm consists
in applying repeatedly, until satisfied, the following step:

input: the vertices x1,x2, . . . ,xn,xn+1 := x1 ∈ R2 of a closed polygon.
for j = 1:n, do: y2j−1 ← (3xj + xj+1)/4; y2j ← (xj + 3xj+1)/4; enddo

output: the vertices y1,y2, . . . ,y2n,y2n+1 := y1 ∈ R2 of a closed poly-
gon that is inscribed into the input polygon.
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In other words,

[y1, . . . ,y2n] = [x1, . . . ,xn]Cn,

with Cn the n× (2n)-matrix

Cn :=



3 1 0 0 0 0 · · · 1 3
1 3 3 1 0 0 · · · 0 0
0 0 1 3 3 1 · · · 0 0
0 0 0 0 1 3 · · · 0 0
...

...
...

...
...

... · · ·
...

...
0 0 0 0 0 0 · · · 0 0
0 0 0 0 0 0 · · · 3 1


/4.

It is possible to show that, as k →∞, the polygon with vertex sequence

[x
(k)
1 , . . . ,x

(k)

2kn
] := [x1, . . . ,xn]CnC2n · · ·C2kn

converges to a smooth curve, namely the curve

t 7→
∑
j

xjB2(t− j),

with B2 a certain smooth piecewise quadratic function, a so-called quadratic
B-spline (see, e.g., page “pageBspline ).

Here, we consider the following much simpler and more radical corner-
cutting:

[y1, . . . ,yn] = [x1, . . . ,xn]A,

with

(16.6) A :=



1 0 0 · · · 0 1
1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 1 0
0 0 0 · · · 1 1


/2.

In other words, the new polygon is obtained from the old by choosing as the
new vertices the midpoints of the edges of the old.

Simple examples, hand-drawn, quickly indicate that the sequence of
polygons, with vertex sequence

[x
(k)
1 , . . . ,x(k)

n ] := [x1, . . . ,xn]A
k
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seem to shrink eventually into a point. Here is the analysis that this is, in
fact, the case, with that limiting point equal to the average,

∑
j xj/n, of the

original vertices.

(i) The matrix A, defined in (16.6), is a circulant, meaning that each
row is obtainable from its predecessor by shifting everything one to the right,
with the right-most entry in the previous row becoming the left-most entry
of the next row. All such matrices have (see Problem 16.4) eigenvectors of
the form

(16.7) uλ := (λ1, λ2, . . . , λn),

with the scalar λ chosen so that λn = 1, hence λn+1 = λ.

For our A, we compute

Auλ = (λn + λ1, λ1 + λ2, . . . , λn−1 + λn)/2.

Hence, if λn = 1, therefore λ−1 = λn−1, we get

Auλ =
λn−1 + 1

2
uλ.

(ii) The equation λn = 1 has exactly n distinct solutions, namely the n
roots of unity

λj := exp(2πij/n) = ωj , j = 1:n.

Here,
ω := ωn := exp(2πi/n)

is a primitive nth root of unity. Note that

ω = 1/ω.

Let
V = [v1, . . . ,vn] := [uλ1 , . . . ,uλn ]

be the column map whose jth column is the eigenvector

vj := (ωj , ω2j , . . . , ωnj)

of A, with corresponding eigenvalue

µj := (λn−1
j + 1)/2 = (ω−j + 1)/2, j = 1:n.

Since these eigenvalues are distinct, V is 1-1 (by (10.10)Lemma), hence V is
a basis for Cn. In particular,

A = V diag(. . . , µj , . . .)V
−1.
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(iii) It follows that

Ak = V diag(. . . , µk
j , . . .)V

−1
k→∞−−−−−→ V diag(0, . . . , 0, 1)V −1

since |µj | < 1 for j < n, while µn = 1. Hence

lim
k→∞

Ak = [vn]V
−1(n, : ).

(iv) In order to compute (V −1)n::, we compute V cV (recalling that ω =
ω−1):

(V cV )jk = vj
cvk =

n∑
r=1

ω−rj ωrk =

n∑
r=1

ω(k−j)r.

That last sum is a geometric series, of the form
∑n

r=1 ν
r with ν := ωk−j ,

hence equals n in case k = j, and otherwise ν ̸= 1 and the sum equals
(νn+1 − ν)/(ν − 1) = 0 since νn = 1, hence νn+1 − ν = 0. It follows that

V cV = n idn,

i.e., V/
√
n is unitary, i.e., an o.n. basis for Cn. In particular, V −1 = V c/n,

therefore

(V −1)n:: = vn
c/n.

(v) It follows that

lim
k→∞

Ak = vnvn
c/n,

with

vn = (1, 1, . . . , 1).

Consequently,

lim
k→∞

[. . . , x
(k)
j , . . .] =

∑
j

xj/n vn
c = [. . . ,

∑
j

xj/n, . . .],

i.e., the rank-one matrix all of whose columns equal the average
∑

j xj/n of
the vertices of the polygon we started out with.

16.4∗ Prove that any circulant matrix of order n has eigenvectors in Cn of the form

(16.7) with λn = 1. Conclude that any circulant is diagonalizable, with an orthogonal

basis of eigenvectors.



Markov Chains 249

Tridiagonal Toeplitz matrix

Circulants are a special case of Toeplitz matrices, i.e., of matrices that are
constant along diagonals. Precisely, the matrix A is Toeplitz if

∀i, j, Aij = ai−j

for some sequence (. . . , a−2, a−1, a0, a1, a2, . . .) of appropriate domain. Cir-
culants are special in that the determining sequence a for them is periodic,
i.e., ai+n = ai, all i, if A is of order n.

Consider now the case of a tridiagonal Toeplitz matrix A. For such
a matrix, only the (main) diagonal and the two next-to-main diagonals are
(perhaps) nonzero; all other entries are zero. This means that only a−1, a0,
a1 are, perhaps, nonzero, while ai = 0 for |i| > 1. If also a−1 = a1 ̸= 0,
then the circulant trick, employed in the preceding section, still works, i.e.,
we can fashion some eigenvectors from vectors of the form uλ = (λ1, . . . , λn).
Indeed, now

(Auλ)j =

 a0λ+ a1λ
2 for j = 1;

a1λ
j−1 + a0λ

j + a1λ
j+1 for j = 2:n−1;

a1λ
n−1 + a0λ

n for j = n.

Hence,
Auλ = (a1/λ+ a0 + a1λ)uλ − a1(e1 + λn+1en).

At first glance, this doesn’t look too hopeful since we are after eigenvectors.
However, recall that, for a unimodular λ, i.e., for λ = exp (iφ) for some real
φ, we have 1/λ = λ, hence a1/λ+ a0 + a1λ = a1/λ+ a0 + a1λ and therefore

Auλ = (a1/λ+ a0 + a1λ)uλ − a1(e1 + λn+1en).

It follows that, with λ =: exp(iφ) and

vλ := (uλ − uλ)/(2i) = (sin(kφ) : k = 1:n),

we obtain
Avλ = µλvλ + a1 sin((n+ 1)φ)en

where
µλ := a0 + a1(λ+ λ) = a0 + a12 cos(φ).

Thus, with λk := exp(ik/(n+ 1)), k = 1:n, vk := vλk
is an eigenvector of A

with corresponding eigenvalue µk := µλk
and, since we assumed that a1 ̸= 0,

these n numbers µk are pairwise distinct, hence V =: [v1, . . . ,vn] is 1-1 by
(10.10)Lemma, hence a basis for Cn. In fact, since V maps Rn to Rn, V is a
basis for Rn. Hence if both a0 and a1 are real, then also each µj is real and
then, A is diagonalizable even over IF = R.
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Markov Chains

Recall from page 151 our example of a random walk on some graph. There
we were interested in the matrices Mk, k = 1, 2, 3, . . ., with the entries of
the matrix M of order n all nonnegative and all entries in any particular row
adding up to 1. In other words, M ≥ 0 and Me = e, with

e := (1, 1, . . . , 1) ∈ Rn.

In particular, 1 ∈ spct(M). Further, since ∥M∥∞ = 1, we conclude from
(13.1) that ρ(M) ≤ 1. Hence, 1 is an absolutely largest eigenvalue for M .
Assume, in addition, that M is irreducible. This is certainly guaranteed if
M > 0. Then, by the Perron-Frobenius theory, 1 is a nondefective eigenvalue
of M , and is the unique absolutely largest eigenvalue. By (11.10)Theorem,
this implies that, with Y := ran(M − id), ρ(M Y ) < 1, hence, for any basis
W for Y , V := [e,W ] is a basis for Rn, and

MV = [e,MW ] = V diag(1, B)

with B := W−1MW the matrix representation of M Y with respect to W ,
hence ρ(B) < 1. Therefore,

Mk = V diag(1, Bk)V −1
k→∞−−−−−→ V diag(1, 0)V −1.

In other words,
lim
k→∞

Mk = eut,

with u the first row of V −1, hence (see, e.g., Problem 11.6) M tu = u, i.e., u
is an eigenvector of M t belonging to the eigenvalue 1. In particular, all rows
of Mk converge to this particular nonnegative vector whose entries sum to 1
since ute = (V −1V )1,1 = 1.

Polynomial interpolation and divided differences

Polynomial interpolation is a fundamental topic, particularly for Numerical
Analysis and Scientific computing. We discussed it briefly in (3.37)Example
in Chapter 3, to illustrate the use of the fact that triangular matrices with
nonzero diagonal entries are invertible.

To recall, polynomial interpolation involves the construction of a poly-
nomial of degree < k that matches given scalar values at a given k-sequence
τττττ := (τh : h = 1:k).

In this section, we look in some detail at the Newton form wrto τττττ , i.e.,
the expansion

(16.8) p =:
∑
j

wj−1,τaj
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of the resulting interpolating polynomial in terms of the so-called Newton
polynomials

wj,τττττ : t 7→
∏

0<h≤j

(t− τh), j = 0, 1, 2, . . .

introduced in (3.37)Example for an arbitrary sequence τττττ = (τh : h ∈ N) of
scalars.

Consider the linear map

Wτττττ : IFN0 → Π : a 7→
∑
j

wj−1,τττττ aj

from infinite scalar sequences with only finitely many nonzero entries into
the space

Π = Π(IF)

of (univariate) scalar-valued polynomials.

(16.9) Proposition. Wτττττ is 1-1 and onto, hence a basis for Π.

Proof: By Problem 3.31, for any k ∈ N,

Wk,τττττ := [w0,τττττ , . . . , wk−1,τττττ ]

is a basis for Π<k.

Since Π = ∪kΠ<k, this proves that Wτττττ is invertible.

It follows that each coefficient aj in (16.8) is a linear function of p, i.e.,

(16.10) aj = (W−1
τττττ p)j , p ∈ Π, j ∈ N,

and depends, in particular, on τττττ . We now investigate that dependence in
some detail, based on the simple observation that, for k < j, wk,τττττ is a factor
of wj,τττττ . This permits us to write, for p ∈ Π and k ∈ N,

p =
∑
j∈N

wj−1,τττττaj =: pk,τττττ + wk,τττττqk,τττττ ,

with

pk,τττττ :=
k∑

j=1

wj−1,τττττaj

the sum of the first k terms, and with qk,τττττ some polynomial which we will
look at more closely in a moment.

Since deg pk,τττττ < k = degwk,τττττ , it follows (see page 281) from

(16.11) p = pk,τττττ + wk,τττττqk,τττττ
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that pk,τττττ is the remainder after division of p by wk,τττττ = (· − τ1) · · · (· − τk),
hence depends only on p and τk := (τ1, . . . , τk). This is reflected in the
notation

(16.12) ∆(τk)p := (W−1
τττττ p)k, p ∈ Π, k ∈ N

we adopt from now on for the coefficient ak of wk−1,τττττ in the Newton form
(16.8) for p ∈ Π. In effect, we use the definition

(16.13) p =:
∑
k

wk−1,τττττ∆(τk)p, p ∈ Π.

This definition is quite powerful. For example, since the wj,τττττ depend contin-
uously on τττττ , so does Wτττττ , hence so does (Wτττττ )

−1 (see Problem 7.11), therefore
∆(τk)p is a continuous function of τk = (τ1, . . . , τk).

This continuity is particularly useful to know since

p =
∑
k

(· − t)k(Dkp)(t)/k!

(the Taylor expansion for p ∈ Π at t), while, for τττττ the constant sequence
(t, t, . . .), wk,τττττ = (· − t)k, all k, hence we conclude that

(16.14) ∆([t[k+1])p := ∆( t, . . . , t︸ ︷︷ ︸
k+1 terms

)p = Dkp(t)/k!,

and therefore

lim
(τ0,...,τk)→t[k+1]

∆(τ0, . . . , τk)p = Dkp(t)/k!.

It follows that ∆(t) is a colorful symbol for the linear functional p 7→ p(t) of
evaluation at t.

The symbol ∆(...) is read divided difference at ..., and the reason for
this terminology is the following.

For k = 2, (16.13) says that

p(τ2) = p(τ1) + (τ2 − τ1)∆(τ1, τ2)p,

hence, in case τ2 ̸= τ1,

∆(τ1, τ2)p =
p(τ2)− p(τ1)
τ2 − τ1

,

a ratio of differences, i.e., a divided difference, and this is true for every k,
as the following argument shows.
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Since pk+1,τττττ = pk,τττττ + wk,τττττ∆(τ1, . . . , τk+1)p, while p = pk,τττττ + wk,τττττqk,τττττ
and pk+1,τττττ (τk+1) = p(τk+1), we have

wk,τττττ (τk+1)∆(τ1, . . . , τk+1)p = wk,τττττ (τk+1)qk,τττττ (τk+1),

therefore
qk,τττττ (τk+1) = ∆(τ1, . . . , τk+1)p,

at least for any τk+1 for which wk,τττττ (τk+1) ̸= 0, hence for every τk+1 ∈ IF, by
the continuity of qk,τττττ and the continuous dependence of ∆(τ1, . . . , τk+1) on
τk+1. In short,

qk,τττττ = ∆(τk, ·)p.

More than that, since wk,τττττ is symmetric in the τi, i ∈ k, pk,τττττ also does
not depend on the order of the τi, i ∈ k

We describe this by saying that pk,τττττ agrees with p at τk := (τh : h ∈ k)
and observe that this means (see Problem 16.6) that

Drp(z) = Drpk,τττττ (z), 0 ≤ r < mi := #{i ∈ k : τi = z}, z ∈ IF.

This is called Hermite interpolation in case some of the τi coincide, and
is called Lagrange interpolation otherwise.

16.5∗ Prove that, for fixed p ∈ Π, (Wτττττ )−1p depends continuously on τττττ .

16.6∗ Prove that,for f ∈ Π,

Dif(z) = 0, 0 ≤ i < m ⇐⇒ f ∈ (· − z)mΠ,

i.e, iff f has an m-fold zero at z.

Linear Programming

This application can serve as a reinforcement of the discussion of Elimination
in Chapter 3.

In Linear Programming, one seeks a minimizer for a linear cost function

x 7→ ctx

on the set
F := {x ∈ Rn : Ax ≤ y}

of all n-vectors x that satisfy the m linear constraints

A(i, : )x ≤ yi, i = 1:m,

with c ∈ Rn, A ∈ Rm×n, y ∈ Rm given. Here and below, for y, z ∈ Rm,

y ≤ z := z− y ∈ Rm
+ := {u ∈ Rm : 0 ≤ uj , j = 1:m},
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i.e., the inequality is to hold pointwise (or, entry-wise).

The set F , also called the feasible set, is the intersection of m half-
spaces, i.e., sets of the form

H(a, y) := {x ∈ Rn : atx ≤ y}.

Such a halfspace consists of all the points that lie on that side of the corre-
sponding hyperplane

h(a, y) := {x ∈ Rn : atx = y}

that the normal a of the hyperplane points away from; see (2.9)Figure, or
(16.16)Figure.

Here is a simple example: Minimize

2x1 + x2

over all x ∈ R2 for which

x2 ≥ −2, 3x1 − x2 ≤ 5, x1 + x2 ≤ 3,

x1 − x2 ≥ −3, 3x1 + x2 ≥ −5.

In matrix notation, and more uniformly written, this is the set of all x ∈ R2

for which Ax ≤ y with

(16.15) A :=


0 −1
3 −1
1 1
−1 1
−3 −1

 , [y] :=


2
5
3
3
5

 .
In this simple setting, you can visualize the set F by drawing each of the
hyperplanes h(Ai::, yi) along with a vector ∥Ai:: parallel to Ai::, i.e., pointing
in the same direction as its normal vector, Ai::; the set F lies on the side that
the normal vector points away from; see (16.16)Figure.
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x
∥A3::

∥A2::

∥A1::

A5::∥

A4::∥

(16.16) Figure. The feasible set for five linear constraints in the plane,
as filled out by some level lines of the cost function. Since the gradient
of the cost function is shown as well, the location of the minimizer is
clear.

x

r2 = 0

r5 = 0

r1 = 0

r4 = 0

r3 = 0

(a)

x

r1 = 0

r3 = 0

r2 = 0

r4 = 0

r5 = 0

(b)

(16.17) Figure. The same setting as in (16.16)Figure but viewed in
terms of the (nonbasic) variables (a) r3, r4; (b) r5, r4.

In order to provide a handier description for F , one introduces the so-
called slack variables

r := y −Ax;

earlier, we called this the residual. With their aid, we can describe F as

F = {x ∈ Rn : ∃r ∈ Rm
+ s.t. (x, r,−1) ∈ null[A, idm,y]},

and use elimination to obtain a concise description of null[A, idm,y].
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For this, assume that A is 1-1. Then, each column of A is bound, hence
is also bound in [A, idm,y]. Therefore, after n steps of the (4.2)Elimination
Algorithm applied to [A, idm,y], we will arrive at a matrix B, with the same
nullspace as [A, idm,y], and an n-vector f (with fk the row used as pivot
row for the kth unknown or column for k = 1:n), for which

B(f, 1:n)

is upper triangular with nonzero diagonals while, with b the m− n rows not
yet used as pivot rows,

B(b, 1:n) = 0.

Further, since the columns (n+1):m of [A, idm,y] have nonzero entries
in these pivot rows f only in columns n+ f, the other columns, i.e., columns
n + b, will remain entirely unchanged. It follows that if we choose, as we
may, b to be increasing, then

B(b, n+ b) = idm−n.

Therefore, after dividing each of the n pivot rows by their pivot el-
ement and then using each pivot row to eliminate its unknown also from
all other pivot rows, we will arrive at a matrix, still called B and with
nullB = null[A, idm,y], for which now also

B(f, 1:n) = idn.

For our particular example, n = 2, hence this matrix B will be reached
after just two steps (in which I chose the pivot rows capriciously):

[A, idm,y] =


0 −1 1 0 0 0 0 2
3 −1 0 1 0 0 0 5
1 1 0 0 1 0 0 3
−1 1 0 0 0 1 0 3
−3 −1 0 0 0 0 1 5

 →

0 −1 1 0 0 0 0 2
0 −4 0 1 −3 0 0 −4
1 1 0 0 1 0 0 3
0 2 0 0 1 1 0 6
0 2 0 0 3 0 1 14

 →

0 0 1 0 1/2 1/2 0 5
0 0 0 1 −1 2 0 8
1 0 0 0 1/2 −1/2 0 0
0 1 0 0 1/2 1/2 0 3
0 0 0 0 2 −1 1 8

 =: B,
f = (3, 4),

b = (1, 2, 5).
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The columns n+f of B are free in the sense that we can freely choose rf,
i.e., the slack variables associated with the n pivot rows (in Linear Program-
ming, they are called the nonbasic variables), and, once they are chosen,
then x as well as the bound slack variables, rb (called the basic variables
in Linear Programmming), are uniquely determined by the requirement that
(x, r,−1) ∈ nullB.

This suggests eliminating x altogether, i.e., using the pivot rows B(f, : )
to give

(16.18) x = Bf,end −B(f, n+ f) rf,

(with end being MATLAB’s convenient notation for the final row or column
index) and, with that, rewrite the cost function x 7→ ctx in terms of rf:

(16.19) rf 7→ ctBf,end − ctB(f, n+ f) rf.

This formulation of the cost function does not involve x, hence we can
now ignore the pivot rows f (which are the only rows involving x) and con-
centrate on finding an rf that minimizes the cost function (16.19) subject
only to the restriction that B(b, n + (1:m+1)) (r,−1) = 0. These equations
have a unique solution r for given rf, and the condition that r ≥ 0 is the
only restriction on the possible choices of rf.

Correspondingly, we simplify the work-array B in the following two ways:

(i) We append the row B(m+1, : ) := ctB(f, : ) which then permits us to
write the cost function in the form (16.22).

(ii) Then, we drop entirely the n rows f (storing those rows perhaps in some
other place against the possibility that we need to compute x from rf
at some later date), and also drop the first n columns.

In our example, the equation (16.18) becomes

(16.20) x = (0, 3)−
[
1/2 −1/2
1/2 1/2

]
(r3, r4)

and the changes to B leave us with the following, smaller, array B:

(16.21) B =


1 0 1/2 1/2 0 5
0 1 −1 2 0 8
0 0 2 −1 1 8
0 0 3/2 −1/2 0 3

 , b = (1, 2, 5), f = (3, 4),

in which the columns f are what is left of the former columns n + f after
deletion of the rows f. Also, B(1:#b, b) is an identity matrix. In particular,
each column bi, associated with the basic variable rbi , has only one nonzero
entry and that entry is 1 and sits in row i.
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This change of independent variables, from x to the nonbasic (slack)
variables rf, turns the n hyperplanes h(Ak::, yk), k ∈ f, into coordinate
planes; see (16.17)Figure. In particular, the choice rf = 0 places us at a
point of intersection of these n hyperplanes. In our example, r3 = 0 = r4,
that point is x = (0, 3) (see (16.18)), and it is marked in (16.16)Figure and
(16.17)Figure, and functions as the origin in (16.17)Figure(a).

In terms of the reduced work-array B (reproduced here

B =


1 0 1/2 1/2 0 5
0 1 −1 2 0 8
0 0 2 −1 1 8
0 0 3/2 −1/2 0 3

 , b = (1, 2, 5), f = (3, 4),

for our numerical example from (16.21) for ready reference), and with

m′ := m− n = #b,

our minimization problem now reads: Minimize the cost function

(16.22) rf 7→ Bend,end −B(end, f) rf

over all rf ∈ Rn
+ for which

B1:m′,end −B(1:m′, f) rf ≥ 0.

This is the canonical form in which linear programming problems are usu-
ally stated, and from which most textbooks start their discussion of such
problems.

Note how easily accessible various relevant information now is.

(i) Bend,end tells us the value of the cost function at the current point,
rf = 0.

(ii) Our current point is (in) the intersection of the n hyperplanes rk = 0,
k ∈ f.

(ii) Our current point is feasible if and only if the other slack variables are
nonnegative, i.e., rb = B1:m′,end ≥ 0. Assume that this is so. Then the
only way we can further decrease the cost function is to move one of
the nonbasic variables rk, k ∈ f, from its present value 0 to something
positive.

(iii) For any k ∈ f, rk enters the cost function (16.22) as −Bend,k rk. Since
feasibility requires us to move such rk from 0 to something positive, such
a move would therefore lower the cost function if and only if Bend,k > 0.

(iv) In particular, if Bend,f ≤ 0, then no permissible change will decrease the
cost function, i.e., we are at the minimum.

(v) If we were to change the nonbasic variable rk from zero to something
positive, then the basic variable rbi would change, from Bi,end to Bi,end−
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Bik rk. Hence, assuming Bi,end > 0 and Bik > 0, we could change rk
only to Bi,end/Bik before the bith constraint would be violated.

(vi) Thus, the maximal feasible change for rk would be the minimum of
Bi,end/Bik over all i with Bik and Bi,end positive. Assume that, for the
k we chose, i is chosen that way.

(vii) Such a maximal feasible change of rk, from 0 to Bi,end/Bik, would make
rbi zero, hence move our current point off the constraint hyperplane
rk = 0 and onto the constraint hyperplane rbi = 0, while leaving it on
all the other constraint hyperplanes rbj = 0, j ̸= i, making rbi = 0
nonbasic and rk basic. This change can be achieved by dividing row i
by Bik, then using that row to eliminate rk from all the other rows of
B, and correspondingly, interchanging bi (in b) with k in f. By also,
in this way, eliminating rk from the last row, we make certain that we
have in hand a description of the cost function in which only the (new)
rf occurs explicitly, hence Bend,end gives the value of the cost function
at the new current point rf = 0.

In our example (have a look at (16.17)Figure(a)), we already observed
that our current point, rf = 0, is, indeed, feasible. But we notice that
Bend,4 < 0, hence any feasible change of r4 would only increase the value of
the cost function (16.22). This is also evident from the gradient of the cost
function indicated by that arrow in the figure. On the other hand, Bend,3 is
positive, hence we can further decrease the cost function (16.22) by increasing
r3. Such a change is limited by concerns for the positivity of

rb = B1:#b,end −B1:#b,3r3.

As for rb1 = r1, we would reach r1 = 0 when r3 equals B1,end/B13 =
5/(1/2) = 10, while any positive change of r3 would make r2 = rb2 only
more positive since B23 < 0, and finally, rb3 = r5 we would reach 0 when
r3 equals B3,end/B33 = 8/2 = 4. We take the smaller change and thereby
end up at a new vector r, with r4 = 0 = r5, i.e., are now at the intersec-
tion of the constraint hyperplanes 4 and 5, with the cost further reduced by
Bend,3 ∗ 4 = (3/2)4 = 6, to −3. This is the basic step: we exchange one
nonbasic variable with a basic variable.

In other words, after this change, r4 and r5 are now the nonbasic vari-
ables. In order to have our B tell us about this new situation, and since
5 = b3, we merely divide its 3rd row by B33 then use that row to eliminate
r3 from all other rows of B. This ensures that r3 is now basic (i.e., column
3 is a coordinate direction), and the array B has changed to

B =


1 0 0 3/4 −1/4 3
0 1 0 3/2 1/2 12
0 0 1 −1/2 1/2 4
0 0 0 1/2 −3/4 −3

 , b = (1, 2, 3), f = (5, 4).

In particular, we see that the cost at r4 = 0 = r5 is, indeed, −3. We also
see that r3 = 4 and that Bend,4 > 0 > Bend,5, hence know that it is possible
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to reduce the cost feasibly only by changing r4 from 0 to something positive.
Such a change would only increase r3, but would reduce r1 to zero by the
choice r3 = B1,end/B14 = 3/(3/4) = 4 and would reduce r2 to zero by the
choice r3 = B2,end/B24 = 12/(3/2) = 8. Hence, this change is limited to the
smaller one, i.e., to the change r4 = 4 that makes r1 = 0.

We carry out this exchange, thus making r4 basic and r1 nonbasic, by
dividing row 1 by B14 and then using that row to eliminate r4 from all other
rows, to get the following B:

(16.23) B =


4/3 0 0 1 −1/3 4
−2 1 0 0 1 6
2/3 0 1 0 1/3 6
−1/3 0 0 0 −2/3 −4

 , b = (4, 2, 3), f = (1, 5).

In particular, now Bend,f ≤ 0, showing that no further improvement is possi-
ble, hence −4 is the minimum of the cost function on the feasible set. At this
point, r3:4 = B[3,1],end = (6, 4) (since b[3,1] = (3, 4)), hence, from the rows
used as pivot rows to eliminate x (and saved earlier, see (16.20)), we find that,

in terms of x, our optimal point is x = (0, 3)−(1/2)
[
1 −1
1 1

]
(6, 4) = −(1, 2),

and, indeed, ctx = (2, 1)t(−1,−2) = −4.

The steps just carried out for our example are the standard steps of the
Simplex Method. In this method (as proposed by Dantzig), one examines
the value of the cost function only at a vertex, i.e., at the intersection of
n of the constraint hyperplanes, i.e., at a point corresponding to rf = 0 for
some choice of the n-sequence f in {1, . . . ,m}. Assuming the corresponding
vertex feasible, i.e., that

rb = B1:m′,end ≥ 0

for the array B corresponding to this choice for f, one checks whether

Bend,f ≤ 0.

If it is, then one knows that one is at the minimum since one knows that,
at any feasible point, the cost function is Bend,end − B(end, f) rf for some
nonnegative rf. Otherwise, one moves to a neighboring vertex at which the
cost is less by exchanging a rk for which Bend,k > 0 (usually the one for which
Bend,k is as large as possible) with some rbi with i chosen as the minimizer
for Bi,end/Bik over all i with Bik > 0. This exchange is carried out by just
one full elimination step applied to B, by dividing row i by Bik and then
using this row to eliminate rk from all other rows, and then updating the
sequences b and f.

This update step is one full elimination step. It is sometimes called a
(Gauss-)Jordan step in order to distinguish it from the Gauss step, the
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step we used in the (4.2)Elimination Algorithm in which the unknown is
eliminated only from the rows not yet used as pivot rows.

Since all the information contained in the columns B( : , b) is readily
derivable from b and f, one usually doesn’t bother to carry these columns
along. This makes the updating of the matrix B( : , [f,m+1]) a bit more
mysterious.

Finally, there are the following points to consider:

unbounded feasible set If, for some k ∈ f, Bend,k is the only positive
entry in its column, then increasing rk will strictly decrease the cost and
increase all basic variables. Hence, if rf = 0 is a feasible point, then we
can make the cost function on the feasible set as close to −∞ as we wish.
In our example, this would be the case if we dropped constraints 1 and 5.
Without these constraints, in our very first Simplex Method step, we could
have increased r3 without bound and so driven the cost to −∞.

finding a feasible point In our example, we were fortunate in that
the very first vertex we focused on was feasible. In other words, we had
Bi,end ≥ 0 for all i ∈ b, hence rb ≥ 0 at the point rf = 0. However, if this
does not hold, then rf = 0 is not a feasible point. Yet, we can then use the
very Simplex Method to try to find a feasible point. The idea is quite simple.
Suppose Bi,end < 0, hence rbi < 0 at rf = 0. If, for some k ∈ f, Bik is
negative, then increasing rk will increase Bi,end = rbi . In the contrary case,
increasing any rk, k ∈ f, will only make Bi,end = rbi more negative. In other
words, then there are no feasible points.

For example, in the following situation, the point rf = 0 is not feasible
since r2 = B2,end = −12 < 0:

B =


2 0 1 1 0 10
−4 1 −3 0 0 −12
2 0 3 0 1 18
1 0 2 0 0 8

 , b = (4, 2, 5), f = (1, 3).

Fortunately, both B21 and B23 are negative, hence a positive change in either
r1 or r3 will increase B2,end. Since B21 is more negative than B23, we choose
to change r1 (rather than r3) to something positive. The limit on r1 from the
first row is B1,end/B11 = 10/2 = 5 and from the third row is B3,end/B31 =
18/2 = 9. So, we divide row 1 by B11 = 2, then use it to eliminate r1 from
all the other rows, and obtain

B =


1 0 1/2 1/2 0 5
0 1 −1 2 0 8
0 0 2 −1 1 8
0 0 3/2 −1/2 0 3

 , b = (1, 2, 5), f = (3, 4),

for which rf = 0 is a feasible point.
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In general, one may have to repeat this step until one either reaches a B
with B1:m′,end ≥ 0, hence the corresponding point rf is feasible, or else, for
some i, Bi,f ≥ 0 while Bi,end < 0 in which case there are no feasible points.

Note that, in this way, the Simplex Method can be used to solve any finite
set of linear inequalities in the sense of either providing a point satisfying
them all or else proving that none exists.

degeneracies We have behaved as if the m constraint hyperplanes were
in general position, meaning that any n of them have exactly one point in
common while any n + 1 of them have no point in common. The contrary
case is called degenerate. In a degenerate situation, it can happen that, at
the current point rf = 0, rbi = Bi,end = 0 for some i ∈ b, hence we could not
move any rk for which Bik > 0. Instead, we could exchange rk with rbi but
since that would not change the cost function, we might not be certain of a
finite termination.

convergence in finitely many steps If we can guarantee that, at
each step, we strictly decrease the cost, then we must reach the vertex with
minimal cost in finitely many steps since, after all, there are only finitely
many vertices. A complete argument has to deal with the fact that the cost
may not always strictly decrease because the current point may lie on more
than just n of the constraint hyperplanes.

16.7 Find the maximum of the cost function x 7→ 2x1 + x2 over F := {x ∈ R2 :
Ax ≤ y} with A and y given by (16.15).

16.8 How would you modify the algorithm outlined above if the constraint set was
{x ∈ Rn : Ax ≥ y} (rather than {x ∈ Rn : Ax ≤ y})?

16.9∗ Show that any canonical form reached during the simplex method does not
depend on the sequence of simplex method steps carried out to reach it from the starting
canonical form, but only on the current sequence b and the starting canonical form. (Hint:
remember the b-form and Problem 4.33).

16.10 Show that the constraints x1 − x2 ≤ −1, x1 + x2 ≥ 1, x1 − 2x2 ≥ −1 are

infeasible.

Total positivity

This application highlights the power of the determinant concept, albeit in
a very special context.

A matrix is totally positive (or, tp for short) if all its (square) sub-
matrices have a nonnegative determinant. It would have been better to have
called such a matrix totally nonnegative in order to distinguish it from
a matrix all of whose (square) submatrices have positive determinant which
are called strictly totally positive (or, stp for short).

Any zero matrix is trivially totally positive, as is any identity matrix.
Here are some more interesting examples:

(i) any Cauchy matrix

(ii)
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(iii) all which which are actually stp.

By the multilinearity of determinants, any positive weighted sum of tp
matrices is tp.

By the (15.6)Binet-Cauchy Formula, the product of tp matrices is tp.

If A is an invertible matrix and tp, then its inverse is checkerboard in
the sense that

(−1)i+j(A−1)ij ≥ 0.

This is a direct consequence of the formula (15.3)

(A−1)ij = (−1)i+j detA(\j | \i)/detA .

Consequently, ∥Ax∥∞/∥x∥∞ is minimized by the choice x = ((−1)i : i =
1, 2, . . .).

The following proposition offers a very striking property, a kind of mono-
tonicity in the entries of the inverses of principal submatrices of an invertible
tp matrix.

(16.24) Proposition. If A ∈ Rn×n is tp and invertible, and I is any integer
subinterval in 1:n, then A(I, I) is also invertible and

(−1)i+j(A(I, I)−1)ij ≤ (−1)i+j(A−1)ij , i, j ∈ I,

with the convention A(I, I)−1 ∈ RI×I .

Least-squares approximation by broken lines

For a given strictly increasing sequence

ξξξξξ = (a = ξ1 < · · · < ξℓ+1 = b),

consider the collection

BLξξξξξ := {f ∈ C([a . . b]) : D2f(x) = 0, x ̸∈ ξξξξξ}

of all continuous functions on the closed interval [a . . b] that are straight lines
on each of the ℓ intervals [ξi . . ξi+1], i = 1:ℓ. We call each element of BLξξξξξ a
broken line with break sequence ξξξξξ.

The conditions imposed on the elements of BLξξξξξ, i.e., continuity and
the vanishing of the second derivative at all points in [a . . b] other than the
interior breaks ξi, i = 2:ℓ, are linear, hence BLξξξξξ is a linear subspace of
C([a . . b]). What is its dimension?

Since f ∈ BLξξξξξ is a straight line on [ξi . . ξi+1], we know, e.g., from (5.7)
that

f(x) =
f(ξi)(ξi+1 − x) + f(ξi+1)(x− xi)

ξi+1 − ξi
for x ∈ [ξi . . ξi+1], i = 1:ℓ.



264 16 Some applications

This shows that

f =
ℓ+1∑
i=1

Hif(ξi),

with

Hi(x) :=


x−ξi−1

ξi−ξi−1
, ξi−1 ≤ x ≤ ξi

ξi+1−x
ξi+1−ξi

, ξi ≤ x ≤ xi+1

0 otherwise

 , a ≤ x ≤ b,

the unique element of BLξξξξξ that is zero at all the breaks but at ξi where it
has the value 1. Because of their characteristic shape (see (16.25) Figure),
the Hi are known as hat functions or chapeau functions.

1 H1 H3 H4 Hℓ+1

a = ξ1 ξ2 ξ3 ξ4 ξ5 ξℓ ξℓ+1 = b

(16.25) Figure. Some of the elements of the standard basis for BLξξξξξ.

Consequently, H := [H1, . . . , Hℓ+1] is onto BLξξξξξ, while the evident fact
that δξξξξξ : f 7→ f(ξξξξξ) is a left inverse for H implies that H is also 1-1, hence a
basis for BLξξξξξ, with δξξξξξ (restricted to BLξξξξξ) the corresponding coordinate map.
Also,

(16.26) ∥Ha∥∞ = ∥a∥∞,

with
∥g∥∞ := max g([a . . b]), g ∈ C([a . . b]).

It follows with (6.17)Theorem that we can construct, for any g ∈ C[a. .b],
its least-squares approximation by broken lines with break sequence ξξξξξ as

PHg := H(HcH)−1Hcg,

with HcH the tridiagonal matrix with nonzero entries Hi
cHj , |i − j| ≤ 1,

which for the standard inner product

⟨g, f⟩ = f cg :=

∫ b

a

g(x)f(x) dx

work out to be, with hi := ∆ξi := ξi+1 − ξi and s := (x− ξi)/hi,

Hi
cHi+1 =

∫ ξi+1

ξi

x− ξi
hi

ξi+1 − x
hi

dx = hi

∫ 1

0

s(1− s) ds = hi/6;
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hence

Hi
cHi−1 = Hi−1

cHi = hi−1/6;

and, finally, with t := (x− ξi−1)/hi−1,

Hi
cHi = hi−1

∫ 1

0

t2 dt+ hi

∫ 1

0

(1− s)2 ds = (hi−1 + hi)/3.

It is helpful to divide the ith equation in the resulting linear system for
the coordinate vector a := HcPHg of the least-squares approximation from
BLξξξξξ to g by ∫

Hi = (hi−1 + hi)/2,

and so obtain the linear system

(16.27)
hi−1/3

hi−1 + hi
ai−1 + (2/3)ai +

hi/3

hi−1 + hi
ai+1 =M c

i g, i = 1:(ℓ+1),

with the choice h0 := 0 =: hℓ+1, and with

Mi := 2Hi/(hi−1 + hi)

a hat function normalized to have integral 1.

Since each Mi is nonnegative, this implies that the right-hand sides of
the linear system are bounded by ∥g∥∞ := max(|g([a . . b])|). Hence, if i is
such that |ai| = ∥a∥∞, then, by (16.27),

∥g∥∞ ≥ (2/3)|ai| − (1/3)∥a∥∞ = ∥a∥∞/3,

or, with (16.26),

∥PHg∥∞ = ∥a∥∞ ≤ 3∥g∥∞.

This shows that PH , as a linear map on the normed vector space C([a . .
b]), has ∥PH∥ ≤ 3, hence, by Lebesgue’s inequality (7.30), the error g − PHg
in the least-squares approximation to g ∈ C([a . . b]) is at most 4 times the
smallest possible error achievable (in the max norm) by any element of BLξξξξξ.

The B-spline basis for a spline space
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Frames

An interesting and useful generalization of bases are frames, i.e., column
maps that are onto but not necessarily 1-1. The previous section offered the
well-known and popular example of a barycentric frame, i.e., an (n+1)-
column map V = [v0, . . . , vn] onto an n-dimensional vector space X, whose
1-dimensional nullspace has only the zero vector in common with the subspace

null(et) = {a ∈ R0:n :
∑
i

aj = 0},

hence V maps the flat
{a ∈ R0:n : eta = 1}

1-1 onto X. Such a barycentric representation of X has the advantage that
it provides a stable description of the neighborhoods of n + 1 more or less
arbitrary elements ofX. It also provides the means for discussing polynomials
defined on an arbitrary finite-dimensional vector space.

A multivariate polynomial interpolant of minimal degree

This application makes essential use of the concept of bound and free columns
introduced during the discussion of elimination; it also provides a striking
example of the use of determinants.

Consider polynomial interpolation to data at a finite set T of sites in IFd.
When d = 1, and k := #T, we know that Π<k contains, for each IF-valued
function g defined at least on T, exactly one p that matches g on T in the
sense that p(τττττ) = g(τττττ) for all τττττ ∈ T.

What should we do when d > 1?

Here are several ways to choose a polynomial subspace F that is correct
for T in the sense that it contains, for each a ∈ IFT exactly one p that matches
a on T. This will happen exactly when δT : f 7→ f(T) := (f(τττττ) : τττττ ∈ T) ∈ IFT

maps F onto IFT.

One idea is to use the Lagrange form

Pg := [ℓτττττ : τττττ ∈ T]g(T)

with the ℓτττττ a suitable multivariate generalization of the elements of the (uni-
variate) Lagrange basis (5.7). Here is one such generalization:

ℓτττττ (x) :=
∏

σσσσσ∈T\τττττ

(τττττ − σσσσσ)t(x− σσσσσ)
(τττττ − σσσσσ)t(τττττ − σσσσσ)

, τττττ ∈ T.

Note that, as a product of < #T linear factors, each ℓτττττ is a polynomial of
degree < #T and that

(16.28) δT[ℓτττττ : τττττ ∈ T] = id.
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Hence,
PTg := [ℓτττττ : τττττ ∈ T]g(T)

is a polynomial of degree < #T that matches g on T and is the unique such
in F := ran[ℓτττττ : τττττ ∈ T]. In other words, this F is correct for T.

There are at least two objections to this choice when compared with the
standard choice in the univariate case: (a) the space F depends not only on
#T but on T itself; and (b) the degree of the interpolating polynomial may
be unnecessarily large.

Objection (a) turns out to be unreasonable because of

(16.29) Mairhuber’s Theorem ([M]). For any n-dimensional sub-

space F of Π(IFd) with n, d > 1, there exists T ⊂ IFd with #T = n for
which F is not correct.

τττττ

σσσσσ

(16.30) Figure. Interchanging two sites in the plane by a continuous
move while keeping all sites distinct (something that cannot be done
when all sites are restricted to lie on a straight line).

Proof: The proof is a nice demonstration of the power of determi-
nants. We assume that, to the contrary, a particular F is correct for every
choice of T ⊂ IFd with #T = dimF > 1, and derive from this a contradic-
tion, as follows. Pick a basis V for F . Then the Gram matrix δTV must be
invertible for all choices of such T, hence

det(δTV ) ̸= 0, T ⊂ IFd, #T = dimF.

This determinant is linear in the entries v(τττττ), v ∈ V , τττττ ∈ T of the Gram
matrix, hence a continuous function of the τττττ . Since n > 1, T contains at
least two elements, τττττ and σσσσσ, say. Since d > 1, we can carry out a continuous
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motion of these two sites which will move each to the former location of the
other without ever coinciding with any other site in T. This will change the
determinant continuously but, by assumption, it will never be 0, yet, at the
end, we will in effect have interchanged two rows of the Gram matrix, hence
will have changed the value of the determinant to its negative in a continuous
manner without ever crossing 0, a contradiction.

Objection (b), on the other hand, is well-founded. For example, since
dimΠ<2(IF

d) = d + 1, we would expect to be able to find an interpolant of
degree < 2 to arbitrary data a(T) at ’most’ (d+1)-sets T in IFd while the
interpolant [ℓτττττ : τττττ ∈ T]a(T) constructed above would usually be of degree d.

One way to deal with Objection (b) is to construct, for given T, a poly-
nomial interpolant of minimal degree, as follows.

We know from (16.28) that δT maps

Y := Π<#T(IF
d)

onto IFT. Therefore, in looking for interpolants of minimal degrees, it is
sufficient to look for them in Y . Moreover, we know that, for any basis V of
Y , the Gramian

δTV

has rank #T, therefore has exactly #T bound columns, and we can determine
the sequence b of the indices of these bound columns by Gauss elimination.
With that, we know that, with

V ( : , b) := [vj : j ∈ b]

the column map formed from the bound columns of V , the square matrix
δTV ( : , b) is 1-1, hence invertible. Therefore, F := ranV ( : , b) is correct for
T.

Now choose the basis V for Y to have monomials as its columns, i.e.,

V = [()ααααα : ααααα ∈ (Z+)
d, |ααααα| < #T],

with
()ααααα : IFd → IF : x 7→ xααααα := xα1

1 · · ·x
αd

d

an unusual but handy notation for the monomial with exponent ααααα, and

|ααααα| :=
∑
j

αj

its degree. The resulting polynomial subspace F = ranV ( : , b) will depend
strongly on the order in which the monomials appear in the column map V .
I will use the notation

ααααα ≺ βββββ
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to indicate that ()ααααα appears in V to the left of ()βββββ . We define the corre-
sponding ≺-degree of

r =:
∑
ααααα

()αααααr̂ααααα ∈ ranV = Π≤k(IF
d)

as the exponent of the right-most column of V needed in any power form of
r, i.e.,

deg≺(r) := max≺{ααααα : r̂ααααα ̸= 0}.

(16.31) Proposition. With k := #T, let

βββββ1 ≺ · · · ≺ βββββk+1

be the exponents associated with the bound columns of the Gram matrix
δTV and set

W := [()βββββ1 , . . . , ()βββββk+1 ].

Then, F := ranW is correct for T, and, for arbitrary a ∈ IFT,

pa :=W (δTW )−1a ∈ F

is an interpolant for a on T of minimal ≺-degree in the sense that
deg≺(pa) is minimal for all polynomials that interpolate a at T.

Proof: The fact that δTpa = a is evident. For the minimality of the
≺-degree of pa, we introduce the linear projector

P :=W (δTW )−1δT

on Π(IFd) with range F = ranW and nullspace null δT, and prove the follow-
ing stronger statement:

(16.32) deg≺(Pr) ≼ deg≺(r), r ∈ ranV,

which claims that P is ≺-degree reducing. Since P is a linear map, it
is sufficient to prove this claim for r a monomial, r = ()γ say. If γ is the
exponent associated with a bound column of δTV , then Pr = r, and we are
done. Otherwise, γ is associated with a free column of δTV . But this says
that δTr is in the range of [δT()

βββββj : βββββj ≺ γ], hence Pr ∈ ran[()βββββj : βββββj ≺ γ]
and therefore deg≺(Pr) ≺ deg≺(r).

Since Pr = pa for all polynomial interpolants r to a on T, (16.32) implies
the claimed minimality.
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Now, by choosing, as we may, the order ≺ to respect the ordinary poly-
nomial degree in the sense that

ααααα ≺ βββββ =⇒ |ααααα| ≤ |βββββ|,

we are certain that the resulting linear projector P is also degree-reducing
in the sense that

deg(Pr) ≤ deg(r), r ∈ Π(IFd),

hence that pa is an interpolant of minimal degree.

16.11 A subspace F of the space C(R) of continuous functions on the subset R of

Fd is called a Haar space if it is correct for every T ⊂ R with #T = dimF . Prove that

no subspace F of C(R) can be a Haar space if dimF > 1 and R contains a set shaped like

a ”Y”. (Hint: marshalling yard.)

The reduced monic Gröbner basis for a zero-dimensional ideal
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A nonempty finite subset of R contains a maximal element

Let m be an arbitrary element of the set M in question; there is at least one,
by assumption. Then the algorithm

for r ∈M do: if r > m, m← r, od

produces the maximal element, m, after finitely many steps.

Since a bounded subset of Z necessarily has only finitely many elements,
it follows that a nonempty bounded subset of Z contains a maximal element.
This latter claim is used several times in this book.

Also, note the corollary that a bounded function into the integers takes
on its maximal value: its range then contains a maximal element and any
preimage of that maximal element will do.

A nonempty bounded subset of R has a least upper bound

Let M be a subset of R. Then, as the example of the open interval (0 . . 1)
shows, such M need not have a maximal (or, rightmost) element. However,
if the set

{r ∈ R : m ≤ r,∀m ∈M}

of upper bounds for M is not empty, then this set has a smallest (or,
leftmost) element. This smallest element is called the least upper bound,
or the supremum, for M and is correspondingly denoted

supM.

The existence of a least upper bound for any real set M that has an upper
bound is part of our understanding or definition of the set R. What if M
has no upper bound? Then some would say that supM = ∞. What if

271
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M is empty? Then, offhand, supM is not defined. On the other hand,
since M ⊂ N =⇒ supM ≤ supN , some would, consistent with this, define
sup{} := −∞.

One also considers the set

{r ∈ R : r ≤ m, ∀m ∈M}

of all lower bounds of the setM and understands that this set, if nonempty,
has a largest (or, right-most) element. This element is called the greatest
lower bound, or infimum, of M , and is denoted

infM.

What if M has no lower bound? Then some would say that infM = −∞.
In particular, inf R = −∞. Also, some would set inf{} :=∞ = supR.

Note that
− supM = inf(−M).

Complex numbers

A complex number is of the form

z = a+ ib,

with a and b real numbers, called, respectively, the real part of z and the
imaginary part of z, and i the imaginary unit, i.e.,

i :=
√
−1.

Actually, there are two complex numbers whose square is −1. We denote the
other one by −i. Be aware that, in parts of Engineering, the symbol j is used
instead of i.

MATLAB works internally with (double precision) complex numbers. Both vari-
ables i and j in MATLAB are initialized to the value i.

One adds complex numbers by adding separately their real and imag-
inary parts. One multiplies two complex numbers by multiplying out and
rearranging, mindful of the fact that i2 = −1. Thus,

(a+ ib)(c+ id) = ac+ aid+ bic− bd = (ac− bd) + i(ad+ bc).

Note that both addition and multiplication of complex numbers is commu-
tative. Further, the product of z = a+ ib with its complex conjugate

z := a− ib
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is the nonnegative number
zz = a2 + b2,

and its (nonnegative) squareroot is called the absolute value or modulus
of z and denoted by

|z| :=
√
zz.

For z ̸= 0, we have |z| ̸= 0, hence z/|z|2 = a/|z|2 − ib/|z|2 is a well-defined
complex number. It is the reciprocal of z since zz/|z|2 = 1, of use for
division by z. Note that, for any two complex numbers z and ζ,

|zζ| = |z||ζ|.

It is very useful to visualize complex numbers as points in the so called
complex plane, i.e., to identify the complex number a + ib with the point
(a, b) in R2. With this identification, its absolute value corresponds to the
(Euclidean) distance of the corresponding point from the origin, and its di-
rection z/|z| is called its sign, and is denoted

signum z :=

{
z/|z|, z ̸= 0,
0, z = 0.

The sum of two complex numbers corresponds to the vector sum of their
corresponding points. The product of two complex numbers is most easily
visualized in terms of the polar form

z = a+ ib = r exp(iφ),

with r ≥ 0, hence r = |z| its modulus, exp(iφ) = signum z its sign, and φ ∈ R
is called its argument. Indeed, for any real φ, exp(iφ) = cos(φ)+i sin(φ) has
absolute value 1, and φ is the angle (in radians) that the vector (a, b) makes
with the positive real axis. Note that, for z ̸= 0, the argument, φ, is only
defined up to a multiple of 2π, while, for z = 0, the argument is arbitrary. If
now also ζ = α+ iβ = |ζ| exp(iψ), then, by the law of exponents,

zζ = |z| exp(iφ)|ζ| exp(iψ) = |z||ζ| exp(i(φ+ ψ)).

Thus, as already noted, the absolute value of the product is the product of
the absolute values of the factors, while the argument of a product is the sum
of the arguments of the factors.

For example, in as much as the argument of z is the negative of the
argument of z, the argument of the product zz is necessarily 0. As another
example, if z = a + ib is of modulus 1, then z lies on the unit circle in the
complex plane, and so does any power zk of z. In fact, then z = exp(iφ)
for some real number φ, and therefore zk = exp(i(kφ)). Hence, the sequence
z0, z1, z2, . . . appears as a sequence of points on the unit circle, equally spaced
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around that circle, hence fails to converge to one point unless it is a constant
sequence, i.e., unless z = 1, hence φ = 0.

(17.1) Lemma: Let z be a complex number of modulus 1. Then the
sequence z0, z1, z2, . . . of powers of z lies on the unit circle, but fails to
converge except when z = 1.

Convergence of a scalar sequence

A subset Z of C is said to be bounded if it lies in some ball

Br := {z ∈ C : |z| < r}

of (finite) radius r. Equivalently, Z is bounded if, for some r, |ζ| < r for all
ζ ∈ Z. In either case, the number r is called a bound for Z.

In particular, we say that the scalar sequence (ζ1, ζ2, . . .) is bounded if
the set {ζm : m ∈ N} is bounded. For example, the sequence (1, 2, 3, . . .) is
not bounded.

(17.2) Lemma: The sequence (ζ1, ζ2, ζ3, . . .) is bounded if and only if
|ζ| ≤ 1. Here, ζk denotes the kth power of the scalar ζ.

Proof: Assume that |ζ| > 1. I claim that, for all m,

(17.3) |ζm| − 1 > (|ζ| − 1)m.

This is certainly true for m = 1. Assume it correct for m = k. Then

|ζk+1| − 1 = (|ζk+1| − |ζk|) + (|ζk| − 1).

The first term on the right-hand side gives

|ζk+1| − |ζk| = (|ζ| − 1)|ζ|k−1 > |ζ| − 1,

since |ζ| > 1, while, for the second term, |ζk| − 1 > (|ζ| − 1)k by induction
hypothesis. Consequently,

|ζk+1| − 1 > (|ζ| − 1) + (|ζ| − 1)k = (|ζ| − 1)(k + 1),

showing that (17.3) also holds for m = k + 1.
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In particular, for any given c, choosing m to be any natural number
bigger than c/(|ζ| − 1), we have |ζm| > c. We conclude that the sequence
(ζ1, ζ2, ζ3, . . .) is unbounded when |ζ| > 1.

Assume that |ζ| ≤ 1. Then, for any m, |ζm| = |ζ|m ≤ 1m = 1, hence the
sequence (ζ1, ζ2, ζ3, . . .) is not only bounded, it lies entirely in the unit disk

B−
1 := {z ∈ C : |z| ≤ 1}.

A sequence (ζ1, ζ2, ζ3, . . .) of (real or complex) scalars is said to converge
to the scalar ζ, in symbols:

lim
m→∞

ζm = ζ,

if, for all ε > 0, there is some mε so that, for all m > mε, |ζ − ζm| < ε.

Assuming without loss the scalars to be complex, we can profitably vi-
sualize this definition as saying the following: Whatever small circle {z ∈ C :
|z − ζ| = ε} of radius ε we draw around the point ζ, all the terms of the
sequence except finitely many are inside that circle.

(17.4) Lemma: A convergent sequence is bounded.

Proof: If limm→∞ ζm = ζ, then there is some m0 so that, for all
m > m0, |ζ − ζm| < 1. Therefore, for all m,

|ζm| ≤ r := |ζ|+ 1 +max{|ζk| : k = 1:m0}.

Note that r is indeed a well-defined nonnegative number, since a finite set of
real numbers always has a largest element.

(17.5) Lemma: The sequence (ζ1, ζ2, ζ3, . . .) is convergent if and only
if either |ζ| < 1 or else ζ = 1. In the former case, limm→∞ ζm = 0, while
in the latter case limm→∞ ζm = 1.

Proof: Since the sequence is not even bounded when |ζ| > 1, it
cannot be convergent in that case. We already noted that it cannot be
convergent when |ζ| = 1 unless ζ = 1, and in that case ζm = 1 for all m,
hence also limm→∞ ζm = 1.

This leaves the case |ζ| < 1. Then either |ζ| = 0, in which case ζm = 0 for
all m, hence also limm→∞ ζm = 0. Else, 0 < |ζ| < 1, therefore 1/ζ is a well-
defined complex number of modulus greater than one, hence, as we showed
earlier, 1/|ζm| = |(1/ζ)m| grows monotonely to infinity as m→∞. But this
says that |ζm| decreases monotonely to 0. In other words, limm→∞ ζm = 0.
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A real continuous function on a compact set in Rn

has a maximum

This basic result of Analysis is referred to in this book several times. Its
proof goes beyond the scope of this book.

Here is the phrasing of this result that is most suited for this book.

(17.6) Theorem: An upper semicontinuous real-valued function f on
a closed and bounded set M in X := Rn has a maximum, i.e.,

sup f(M) = f(m)

for some m ∈M .

In particular, sup f(M) <∞.

A subset M of X is closed if m = limn xn and xn ∈ M , all n, implies
that m ∈M .

A subset M of X is bounded if sup ∥M∥ <∞.

A subset M of X is compact if it is closed and bounded.

A function f :M ⊂ X → R is continuous at m if limn xn = m implies
that limn f(xn) = f(m). The function is continuous if it is continuous at
every point of its domain.

A function f : M ⊂ X → R is upper semicontinuous at m if
limn xn = m implies that limn f(xµ(n)) ≥ f(m) for every strictly increas-
ing µ : N → N for which the corresponding subsequence n 7→ f(xµ(n)) of
n 7→ f(xn) is convergent.

Let b := sup f(M). Then, for each r < b, the set

Mr := {m ∈M : f(m) ≥ r}

is not empty. Also, Mr is closed, by the upper semicontinuity of f , and
bounded. Also, Mr is decreasing as r increases. This implies (by the Heine-
Borel Theorem) that ∩rMr is not empty. But, for any m ∈ ∩rMr, f(m) ≥ r
for all r < b, hence f(m) ≥ b = sup f(M), therefore f(m) = sup f(M).

The theorem is also valid if X is any finite-dimensional normed vector
space. For, with V any basis for X, we can write f = gV −1 with g := fV
upper semicontinuous on V −1M and sup f(M) = sup g(V −1M) = g(h) for
some h ∈ V −1M , and so m := V h does the job for f .

Groups, rings, and fields
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(17.7 A semigroup (F, op) is a set F and an operation op on F , i.e.,
a map op : F × F → F : (f, g) 7→ fg that is associative, meaning that

∀f, g, h ∈ F , (fg)h = f(gh).

The semigroup is commutative if

∀f, g ∈ F , fg = gf.

The prime (and essentially only) example of a semigroup is the set MM of
all maps on some set M , with map composition as the operation, or any of
its subsets H that are closed under the operation, i.e., satisfy HH := {gh :
g, h ∈ H} ⊂ H. MM is commutative only if #M = 1.

17.1 Prove that (F, op) is a semigroup if and only if the map Φ : F → FF : f 7→
(g 7→ fg) is a semigroup homomorphism, i.e., Φ(fg) = Φ(f)Φ(g), all f, g ∈ F . Give

an example in which Φ fails to be 1-1.

(17.8) A group (G, op) is a semigroup (necessarily nonempty) whose
operation is a group operation, meaning that, in addition to associa-
tivity, it has the following properties:

(g.1) there exists a left neutral element and a right neutral element,
i.e., an el, er ∈ G (necessarily el = er, hence unique, denoted by e
and called the neutral element) such that

∀g ∈ G, elg = g = ger;

(g.2) every g ∈ G has a left inverse and a right inverse, i.e., f, h ∈ G so
that fg = e = gh (and, necessarily, these are unique and coincide,
leading to the notation f = g−1 = h).

G is said to be ‘a group under the operation op’.

If also H is a group, then a homomorphism from G to H is any
map φ : G→ H that ‘respects the group structure’, i.e., for which

∀f, g ∈ G, φ(fg) = φ(f)φ(g).

A group G is called Abelian if it is commutative, in which case the
group operation is denoted (f, g) 7→ f + g, the group inverse of g ∈ G is
denoted −g, and f − g is short-hand for f + (−g).
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The prime example of a group is the collection of all invertible maps on
some set, with map composition the group operation. The most important
special case of these is SSn, called the symmetric group of order n and
consisting of all permutations of order n, i.e., of all invertible maps on n =
{1, 2, . . . , n}. Any finite group G can be represented by a subgroup of SSn
for some n in the sense that there is a group monomorphism φ : G→ SSn,
i.e., a 1-1 homomorphism from G to SSn.

Here are some specific examples:

(i) (Z,+), i.e., the integers under addition; note that, for each n ∈ Z, the
map n : Z → Z : m 7→ m + n is, indeed, invertible, with −n : Z → Z :
m 7→ m− n its inverse.

(ii) (QQ\0, ∗), i.e., the nonzero rationals under multiplication; note that, for
each q ∈ QQ\0, the map q : QQ\0 → QQ\0 : p 7→ pq is, indeed, invertible,
with q−1 : QQ\0→ QQ\0 : p 7→ p/q its inverse.

(iii) The collection of all rigid motions that carry an equilateral triangle to
itself. It can be thought of as SS3 since each such motion, being rigid,
must permute the vertices and is completely determined once we know
what it does to the vertices.

17.2 Prove that, for M = {1, 2}, the semigroup MM is not commutative.

17.3 Verify all the parenthetical claims made in the above definition of a group.

17.4 Give an example of a nonabelian group.

(17.9) A ring R = (R,+, ∗) is a set R (necessarily nonempty) with two
operations, (f, g) 7→ f + g and (f, g) 7→ f ∗ g =: fg, called addition and
multiplication respectively, such that

(r.1) (R,+) is an Abelian group, with neutral element usually denoted
0;

(r.2) (R, ∗) is a semigroup;

(r.3) (distributive laws): for every f ∈ R, the maps R → R : g 7→ fg
and R→ R : g 7→ gf are homomorphisms of the group (R,+), i.e.,
f(g + h) = fg + fh and (g + h)f = gf + hf .

A field is a ring (R,+, ∗) for which (R\0, ∗) is a group.

If multiplication in the ring R is commutative, i.e., fg = gf for all
f, g ∈ R, then R is called commutative.

If the ring R has a neutral element for multiplication, i.e., an element
e so that eg = g = ge for all g ̸= 0, then it has exactly one such, and it is
usually denoted by 1. In that case, R is called a ring with identity. Any
field is a ring with identity.
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Both R and C are commutative fields. The prime example of a ring is
the set Π(IFd) of all polynomials in d (real or complex) variables with (real
or complex) coefficients, with pointwise addition and multiplication the ring
operations. It is a commutative ring with identity. It has given the major
impetus to the study of (two-sided) ideals, i.e., of nonempty subsets S of a
ring R closed under addition, and containing both SR and RS, i.e., closed
also under left or right multiplication by any element of the ring. This makes
S a subring of R, i.e., a ring in its own right, but not all subrings are ideals.
Both {0} and R are trivially ideals. Any other ideal in R is called proper.

Let R be a commutative ring. Then the set

[s1, . . . , sr](R
r) = {s1g1 + · · ·+ srgr : (g1, . . . , gr) ∈ Rr)}

is an ideal, the ideal generated by (s1, . . . , sr). Such an ideal is called
finitely generated. A ring R is called Noetherian if all its ideals are
finitely generated. Hilbert’s Basis Theorem famously states that Π(IFd)
is Noetherian.

17.5 Verify that, for any s1, . . . , sn in the commutative ring R, [s1, . . . , sn](Rn) is

an ideal.

The ring of univariate polynomials

Π = Π(IF) is, by definition, the set of univariate polynomials, i.e., the collec-
tion of all maps

p : IF→ IF : z 7→ p̂0 + p̂1z + p̂2z
2 + · · ·+ p̂dz

d,

with p̂0, . . . , p̂d ∈ IF and some d ∈ Z+. If p̂d ̸= 0, then d is the degree of p,
i.e.,

d = deg p := max{j : p̂j ̸= 0}.

This leaves the degree of the zero polynomial, 0 : IF→ IF : z 7→ 0, undefined.
It is customary to set

deg 0 := −1.

As already mentioned, Π is a ring under pointwise addition and multi-
plication. More than that, Π is a principal ideal domain, meaning that
any of its proper ideals is generated by just one element. Indeed, if I is a
proper ideal, then it contains an element p of smallest possible nonnegative
degree and, since I ̸= Π, this degree is positive. If f is any element of Π,
then, by the Euclidean algorithm (see page 281), we can find q, r ∈ Π so that
f = qp + r and deg r < deg p. If now f ∈ I, then also r = f − qp ∈ I and
deg r < deg p hence, by the minimality of deg p, r must be 0. In other words,

I = Πp := {qp : q ∈ Π}.
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It follows that Π is a unique factorization domain, which, in the
case of the ring Π, means that each factorization of a polynomial into a
product of irreducible polynomials is unique, up to reordering of the factors
and multiplication by a scalar.

17.6∗ Prove that the ideal generated by the univariate polynomials p1, . . . , pr is
generated by their greatest common divisor.

To be sure, already Π(IF2) fails to be a principal ideal domain.

It is simple algebra (see, e.g., the discussion of Horner’s method on page
280) that the set

Z(p) := {z ∈ IF : p(z) = 0}

of zeros of p ∈ Π contains at most deg p elements. It is the Fundamental
Theorem of Algebra that #Z(p) = deg p, counting multiplicities, in case
IF = C. More explicitly, this theorem says that, with d := deg p,

p = c(· − z1) · · · (· − zd)

for some nonzero constant c and some z ∈ Cd.

It is in this sense that C is said to be algebraically closed while R
is not. E.g., the real polynomial ()2 + 1 has no real zeros. It is remarkable
that, by adjoining one, hence the other, of the ‘imaginary’ zeros of ()2 + 1,
i.e., i =

√
−1, appropriately to R, i.e., by forming C = R + iR, we obtain

enough additional scalars so that now, even if we consider polynomials with
complex coefficients, all nonconstant polynomials have a full complement of
zeros (counting multiplicities).

Horner, or: How to divide a polynomial by a linear factor

Recall that, given the polynomial p and one of its roots, µ, the polynomial
q := p/(· − µ) can be constructed by synthetic division. This process is
also known as nested multiplication or Horner’s scheme as it is used,
more generally, to evaluate a polynomial efficiently. Here are the details, for
a polynomial of degree ≤ 3.

If p(t) = a0 + a1t+ a2t
2 + a3t

3, and z is any scalar, then

p(z) = a0 + z (a1 + z (a2 + z a3︸︷︷︸
=:b3

)

︸ ︷︷ ︸
=:b2

)

︸ ︷︷ ︸
=a1+zb2=:b1︸ ︷︷ ︸

a0+zb1=:b0

.

In other words, we write such a polynomial in nested form and then evaluate
from the inside out. Each step is of the form

(17.10) bj := aj + zbj+1;



The Euclidean Algorithm 281

it involves one multiplication and one addition. The last number calculated
is b0; it is the value of p at z. There are 3 such steps for our cubic polynomial
(the definition b3 := a3 requires no calculation!). So, for a polynomial of
degree n, we would use n multiplications and n additions.

Now, not only is b0 of interest, since it equals p(z); the other bj are also
useful since

p(t) = b0 + (t− z)(b1 + b2t+ b3t
2).

We verify this by multiplying out and rearranging terms according to powers
of t. This gives

b0 + (t− z)(b1 + b2t+ b3t
2) = b0 + b1t + b2t

2 + b3t
3

−zb1 − zb2t − zb3t
2

= b0 − zb1 + (b1 − zb2)t + (b2 − zb3)t2 + b3t
3

= a0 + a1t + a2t
2 + a3t

3

The last equality holds since, by (17.10),

bj − zbj+1 = aj

for j < 3 while b3 = a3 by definition.

(17.11) Nested Multiplication (a.k.a. Horner): To evaluate the
polynomial p(t) = a0 + a1t + · · · + akt

k at the point z, compute the
sequence (b0, b1, . . . , bk) by the prescription

bj :=

{
aj if j = k;
aj + zbj+1 if j < k.

Then p(t) = b0 + (t− z)q(t), with

q(t) := b1 + b2t+ · · ·+ bkt
k−1.

In particular, if z is a root of p (hence b0 = 0), then

q(t) = p(t)/(t− z).

Since p(t) = (t − z)q(t), it follows that deg q < deg p. This provides
another proof (see (3.38)) for the easy part of the Fundamental Theorem of
Algebra, namely that a polynomial of degree k has at most k roots.
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The Euclidean Algorithm

Horner’s method is a special case of the Euclidean Algorithm which con-
structs, for given polynomials f and p with deg p > 0, (unique) polynomials
q and r with deg r < deg p so that

f = pq + r.

For variety, here is a nonstandard discussion of this algorithm which uses
the fact that square triangular matrices with nonzero diagonal entries are
invertible.

Assume that

p(t) = p̂0 + p̂1t+ · · ·+ p̂dt
d, p̂d ̸= 0, d > 0,

and
f(t) = f̂0 + f̂1t+ · · ·+ f̂nt

n

for some n ≥ d, there being nothing to prove otherwise. Then we seek a
polynomial

q(t) = q̂0 + q̂1t+ · · ·+ q̂n−dt
n−d

for which
r := f − pq

has degree < d. With r(t) =: r̂0 + r̂1t + · · · + r̂nt
n, this requires r̂j = 0 for

j ≥ d. Since r = f − pq, we compute r̂j = f̂j −
∑n−d

i=j−d p̂j−iq̂i. Therefore, we

require that
∑n−d

i=j−d p̂j−iq̂i = f̂j for j = d, . . . , n, and so obtain the square
upper triangular linear system

p̂dq̂0 + p̂d−1q̂1 + p̂d−2q̂2 + · · · + p̂0q̂n−d = f̂d
p̂dq̂1 + p̂d−1q̂2 + · · · + p̂1q̂n−d = f̂d+1

. . .
...

. . .
...

p̂dq̂n−d−1 + p̂d−1q̂n−d = f̂n−1

p̂dq̂n−d = f̂n

for the unknown coefficients q̂0, . . . , q̂n−d which can be uniquely solved by
back substitution since the diagonal entries of its coefficient matrix all equal
p̂d ̸= 0.



18 List of Notation

try to build up a list of definitions by listing up all lines with :=
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Rough index for this book

1-1: -5, 2, 8, 40
1-norm: 79
2-norm: 79
A-invariance: 125
A-invariant: 113
absolute value: 167
absolutely homogeneous: 70, 79
additive: 20
adjugate: 164
affine: 151
affine combination: 148, 150
affine hull: 150
affine map: 149
affine polynomial: 152
affine space: 149
affinely independent: 151
agrees with y at Λt: 59
algebraic dual: 95
algebraic multiplicity: 130, 133
alternating: 130, 137, 161
angle: 72
angle-preserving: 72
annihilating for A ∈ L(X): 132
annihilating polynomial: -8
annihilating polynomial for A at x: 107
argument: 167
array: 24
assignment: 1
assignment on I: 1
associative: 13, 18
augmented: 38
Axiom of Choice: 14
axis: 137
azimuth: 148
Background: -9
barycentric coordinates of p with respect to Q: 151
basic: 32
basis: -6, 43
basis for X: 43
Basis Selection Algorithm: 45
belief: 14
best least-squares solution: 88
bi-orthonormal: 94
bidual: 97
bilinear: 44
bisection: 160
boldface: -5
boring: 120
bound: -6, 32, 40, 45, 54
bound for Z: 168
bounded: 168, 168
broken lines: 19
canonical: 127
car: 94
cardinality: 1, 8

cartesian product: 2
Cauchy(-Bunyakovski-Schwarz)
Inequality: 69

Cauchy-Binet formula: -9, 166
Cayley-Hamilton Theorem: 133
CBS Inequality: 69
Chaikin algorithm: 139
chain rule: 153
change of basis: -6
characteristic function: 7
characteristic polynomial: -8, 130, 132, 134
circulant: 140
codimension: 50, 53
coefficient vector: 21
cofactor: 163
column map: -6, 23
column space: 29
column vector: 2
commutative: 18
commutative group with respect to addition: 18
commute: 121
compatible: 74
complement: 53, 93
complementary to: 36
complex: 2, 3
complex conjugate: 167
complex numbers: 1
complex plane: 167
component: 53
composition: 13
condition: 75
condition number: 75, 86, 89
congruent: 156
conjugate transpose: 3, 65
construction of a basis: 45
continuous function: 19
contour lines: 155
converge to the scalar ζ: 169
convergence: -7
convergence to 0: -7
convergent: 112
convergent to 0: 112
converges: 111, 152
converges to the n-vector z∞: 111
convex combination: 152
coordinate: 2
coordinate axis: 53
coordinate map: 56, 82
coordinate space: -6
coordinate vector for x with respect to the
basis v1, v2, . . . , vn: 43

coordinates: -6
coordinates with respect to the basis: 56
correction: -5
cost function: 142
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Courant-Fischer minimax Theorem: 158
Cramer’s rule: 162
critical point: -8, 154
cross product: 137, 138, 164
current guess: -5
cycle length: 16
D-invariant: 108
d-variate polynomials of degree ≤ k: 47
data map: 56
defect: 50
defective: -8, 113
defective eigenvalue: 102
definite: 155
DeMorgan’s Law: 93
derivative of f at p: 152
derivative of f at p in the direction τ : 152
determinant: -9, 130
diagona(liza)ble: 101
diagonal matrix: 3
diagonalizable: -8
diagonally dominant: 128
difference: 1
differentiable at p ∈ F : 152
dimension: -6
Dimension Formula: -6, 48
dimension of X: 46
dimension of Πk(IR

d): 47
dimension of a flat: 150
direct sum: -6, 52
directed graph: 136
discretize: 55, 57
domain: -5, 1, 6
dot product: 64, 137
dual: 93, 94, 97
dual of the vector space: 94
eigenbasis: 101
eigenpair: 99
eigenstructure: -8
eigenvalue: -8, 99
eigenvector: -8, 99
elegance: -8
elementary: 26
elementary matrix: -7, 83
elementary row operation: 26
elevation: 148
elimination: -6, 32
elimination step: 32
empty assignment: 2
empty set: 1
end: 13
entry: 1
epimorph(ic): 8
equivalence: 27
equivalence relation: -8, 103
equivalent: 32, 91

equivalent equation: -7
error: 75, 98
Euclid’s Algorithm: 170
Euclidean norm: -6, 67
existence: -5, 8, 12
expansion by minors: 163
exponential: -7
extending a 1-1 column map: 45
factor: -6, 54
factor space: 50
family: 2
feasible set: 143
field-addition distributive: 18
finest A-invariant direct sum
decomposition: 122

finite-dimensional: 48, 77
finitely generated: 43
flat: 149
form: 94
Fourier series: 59
free: -6, 32, 45
Frobenius norm: 74
function: 7, 18
functional: 94
Fundamental Theorem of Algebra: 105, 170
Gauss: 147
Gauss-Jordan: 147
geometric multiplicity: 133
Gershgorin Circle Theorem: 129
Gershgorin’s circles: -8
gradient: -5, 154
Gram-Schmidt: -6
Gram-Schmidt orthogonalization: 72
Gramian matrix: 57
graph: 10
half-spaces: 21
halfspace: 143
Hermite interpolation: 59
Hermitian: 65
hermitian: -8, 64, 86, 87, 120
Hessian: -8, 154
homogeneous: -6, 20, 21, 28, 32
Horner’s scheme: 169
Householder matrices: 86
Householder reflection: -7, 73
hyperplane: 143
I-assignment: 1
ith row of A: 3
((i, j)-entry: 3
ideal: 123, 133
idempotent: -6, 15, 59
identity map: 12
identity matrix: 29
identity permutation: 163
image: 7
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image of Z under f : 6
imaginary part of z: 167
imaginary unit: 167
indefinite: 155
index set: 1
initial guess: 98
injective: 8
inner product: -6, 64
inner product space: -6, 64
inner-product preserving: 72
integers: 1
interesting eigenvalue: 103
interpolation: -6, 41, 59, 62
intersection: 1
interval with endpoints p, q: 152
inverse: -5, 18, 29
inverse of f : 12
inverse of its graph: 12
invertibility, of triangular matrix: 41
invertible: -5, 12, 40, 48
involutory: 86
irreducible: 122, 135
isometry: -6, 72, 80, 91
item: 1
iteration: -7, 98
iteration map: 98
jth column: 23
jth column of A: 3
jth unit vector: 24
Jacobian: -5, 153
Jordan (canonical) form: 126
Jordan block: 126
Jordan form: -8
kernel: 28
Krylov sequence: -8
Lagrange basis: 58
Lagrange fundamental polynomials: 58
least-squares: -6
least-squares solution: 69, 88
left inverse: -5, 14
left shift: 9
level lines: 155
linear: -6, 20, 130
linear combination of the vj : 43
linear combination of the vectors v1, v2, . . . , vn with
weights a1, a2, . . . , an: 23
linear functional: -6, 56, 94
linear constraint: 143
linear in its first argument: 64
linear inequalities, system of: 147
linear manifold: 149
linear map: -6
linear operator: 20
linear polynomial: 152
linear programming: 142
linear projector: -6

linear space: -6, 18
linear spaces of functions: -6
linear subspace: -6, 19
linear subspace, specification of: 28
linear transformation: 20
linearity: -6
linearly dependent on v1, v2, . . . , vn: 43
linearly independent: 43
linearly independent of v1, v2, . . . , vn: 43
list: 2
local minimizer: 154
lower triangular: 3
m× n-matrix: 3
main diagonal of A: 3
map: -5, 6, 7
map composition: -5, 13
map into Y given by the assignment f : 7
map norm: -7, 76, 77
mapping: 7
matrix: 3
matrix exponential: 99
matrix polynomial: -7
matrix representation for A: 91
max-norm: 78
maximally 1-1: 46
maximin Theorem: 158
maximizer: 154
minimal: 82, 122
minimal (annihilating) polynomial for A: 123
minimal polynomial: -8
minimal polynomial for A: 133
minimal polynomial for A at x: 107
minimally onto: 46
minimization: -8
minimizer for f : 154
modulus: 91, 167
monic: -8, 107
monomial of degree j: 28
monomorph(ic): 8
Moore-Penrose pseudo-inverse: 89
morphism: 7
multilinear: 130
multiplication by a scalar: -6
multiplicity: 129
n-dimensional coordinate space IFn: 19
n-list: 2
n-vector: -5, 2
natural basis: 51
natural basis for IFn: 43
natural numbers: 1
negative (semi)definite: 155
negative labeling: 103
nested form: 170
nested multiplication: 169
neutral: 18
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Newton polynomial: 42
Newton’s method: -5
nilpotent: -7, 124, 125, 132
non-defective: -8
nonbasic: 32
nonnegative: 91, 134
norm: -6
norm of a map: 77
norm, of a vector: 79
normal: -8, 120, 143
normal equation!69
normalize: 70
normed vector space: 79
nullspace: -6, 28
o.n.: -6, 71
octahedron: 5
onto: -5, 8, 40
operator: 7
optimization: 142
order: 3
orthogonal: 66, 67, 71, 73
orthogonal complement: 71
orthogonal direct sum: 68
orthonormal: -6, 71, 120
parity: 131, 162
permutation: 85
permutation matrix: -7, 81, 85, 107
permutation of order n: 9
permutation of the first n integers: 162
perpendicular: 66
Perron-Frobenius Theorem: 135
perturbations: -8
pigeonhole principle for square matrices: 40
pivot block: 166
pivot element: 35
pivot equation: 32
pivot row: 32
PLU factorization: -7
point: 149
pointwise: -6, 18, 54
polar decomposition: 91
polar form: 91, 167
polyhedron: 5
polynomials of degree ≤ k: 19
positive: 134
positive (semi)definite: 155
positive definite: 64, 79
positive orthant: 134
positive semidefinite: 87, 91
power method: 118
power sequence: -7, 16
power sequence of A: 112
power-bounded: 112
power-boundedness: -7
pre-dual: 97

pre-image of U under f : 6
primary decomposition for X wrto A: 124
prime factorization: 122
primitive nth root of unity: 141
principal: 133
product: 18
product of matrices: 25
product space: 54
projected problem: 88
projector: 15, 59
proper: 125
proper chain: 50
proper factor of q: 122
proper subset: 1
pseudo-inverse: 89
QR factorization: -7, 72
QR method: 109
quadratic form: -8, 154
range: -5, -6, 1
range of f : 6
rank: -7, 82
rank-one perturbation of the identity: 83
rational numbers: 1
Rayleigh quotient: -8, 157
Rayleigh’s Principle: 158
real: 2, 3
real numbers: 1
real part of z: 167
really reduced: 36
really reduced row echelon form: -6
really reduced row echelon form for
A ∈ IFm×n: 36

reciprocal: 167
reduced: 87
reduced row echelon form for A: 35
reducible: 135
reduction to a sum of squares: 156
refinement of the Gershgorin Circle
Theorem: 129

reflexive: 103
relation: 3
relative error: 75
relative residual: 75
represent: 96
representation: 95
representing: 43
residual: 75, 88, 144
right inverse: -5, 14
right shift: 9
right side: 21
right triangular: -7
right-handed: 137
root of unity: 141, 142
row: 56
row echelon form: -6, 34
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row echelon form for A: 36
row map: -6, 56
row space: 29
row vector: 2
rrref: -6
saddle point: 155
scalar: -5, 18
scalar field: 18
scalar multiplication: 18
scalar product: -5, 64
scaled power method: 118
Schur complement: -9, 166
Schur form: -7, 120
second-order: -8
self-inverse: 86
semidefinite: 155
Sherman-Morrison Formula: 31
similar: -7
similar to each other: 103
similarities: -7
similarity: -8
simple: 133
Simplex Method: 146
simplex with vertex set Q: 152
singular: 162
singular value: 87, 88
Singular Value Decomposition: 87
Singular Value Decomposition: -7, 88
skew-homogeneous: 96
skew-symmetric: 64
slack variables: 144
slotwise: 54
smooth: -5
span of the sequence v1, v2, . . . , vn: 43
spanning for X: 43
Spectral Mapping Theorem: 132
spectral radius of A: 99
spectrum: -8, 99
square matrix: 3
stable: 112
stochastic: 98
strictly lower triangular: 86
strongly connected: 136
subadditive: 79
subset: 1
sum: 18, 52
surjective: 8
svd: 87
SVD: -7, 88
Sylvester’s determinant identity: -9, 166
Sylvester’s Law of Inertia: -8

symmetric: 103
symmetric part: 154
symmetry: 93
synthetic division: 169
target: -5, 6
Taylor series: 59
term: 1
test for invertibility: 128
thinning an onto column map: 45
Toeplitz: 142
topological dual: 95
trace: 74, 129
transformation: 7
transition matrix: 58
transitive: 103
translation: 147, 149
transpose: 3
triangle inequality: 79
triangular matrix: 41
tridiagonal: 142
trigonometric polynomial: 59
trivial map: 21
trivial space: 19, 43
truncated Fourier series: 59
two-point: 59
unimodular: 91, 142
union: 1
unique factorization domain: 122
uniqueness: -5, 8, 12
unit disk: 168
unit lower triangular: -7, 86
unit sphere: 75, 77
unitarily similar: 120
unitary: -7, 18, 73, 86, 120
upper: -7
upper triangular: -7, 3
value: 1
value of f at x: 6
Vandermonde: 73
vector: 18, 149
vector addition: -6, 18
vector norm: -7, 79
vector operations: -6
vector space: 18
vector-addition distributive: 18
vertex: 146
viewing angle: 148
Woodbury: 31
working-array: 32
Wronski matrix at x: 58


