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V. Baire category and consequences

Pointwise convergence

We explore necessary and sufficient conditions for pointwise convergence of linear
maps, particularly in the presence of completeness, i.e., when the domain and/or the
target of the maps is a complete nls, i.e., a Banach space (=: Bs).

H.P.(1) Prove: If A ∈ bL(X) and dim ran(A) < dim X, then ‖A − 1‖ ≥ 1. (Hint:(III.7) Riesz’ Lemma)
Conclude that, on an infinite-dimensional nls, the identity cannot be the (norm) limit of finite-rank lm’s.

Definition. The sequence (An) in bL(X,Y ) converges (in norm) to A ∈ bL(X,Y )
:⇐⇒ lim An = A, i.e., lim ‖A−An‖ = 0.

This is also written

An −→ A
(

or An =⇒ A or An
‖·‖−−−→ A

)
.

Such convergence is also at times termed “uniform” since it allows a uniform error
estimate on any bounded set: Since ‖Ax−Anx‖ ≤ ‖A− An‖‖x‖, we have

∀{x ∈ B} ‖Ax− Anx‖ ≤ ‖A−An‖ → 0.

But in fact norm convergence is not uniform convergence, it is only uniform convergence
on bounded sets; in particular, An

u−−→ A on B.
A standard example of a norm-convergent numerical process is fixed point iteration,

cf. (III.15).

** norm convergence is rare **
Numerical approximation processes on infinite-dimensional spaces rarely converge in

norm (or, ‘uniformly’). For example, let (Pn) be a sequence of linear projectors of fi-
nite rank. Each is the solution of some LIP, and we are looking for convergence of the
interpolant Pnx to x as n→∞. This means that we would like lim Pn = 1.

Note that (1− Pn)x = x for all x ∈ ran(1− Pn) = kerPn, hence ‖1− Pn‖ ≥ 1 unless
ran(1− Pn) = {0}, i.e., unless 1 = Pn. Thus lim Pn = 1 implies that Pn = 1 from some n
on. Since each Pn is of finite rank, by assumption, this is impossible in case dim X 6<∞.

** the next best thing is pointwise convergence **
Definition. The sequence (An) in Y X converges strongly, or pointwise, to A ∈ Y X

:⇐⇒ ∀{x ∈ X} lim Anx = Ax, i.e., lim ‖Ax−Anx‖ = 0.
This is also written

An
s−−→ A.

H.P.(2) Prove that if (An) is in bL(X, Y ), then a pointwise limit A ∈ Y X of (An) is necessarily in
L(X, Y ), and ‖A‖ ≤ lim inf ‖An‖. Hence, if (An) is bounded, then A ∈ bL(X, Y ).

H.P.(3) Prove that pointwise convergence of a bounded sequence in bL(X, Y ) is uniform on totally
bounded sets.
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84 V. Baire category and consequences

** approximate identity **
A bounded sequence (An) in bL(X) converging pointwise to the identity is called an

approximate identity. In Numerical Analysis, approximate identities (Pn), with each
Pn a linear projector of finite rank, are often used to “discretize” an “operator equation”,
i.e., an equation A? = y with A ∈ bL(X,Y ) and y ∈ Y given, by “projecting” the equation
into the finite-rank equation PnA Xn

? = Pny for which solutions are sought in some lss
Xn of X with dimXn = dim ran Pn. Chapter VIII supplies many examples.
H.P.(4) Prove that broken-line interpolation provides an approximate identity for C[a. . b]. Specifically, take
Pnf to be the broken line on [a . . b] that agrees with f at its breakpoints ti := a + i(b − a)/n, i = 0, . . . , n.
(Hint: H.P.(II.15).)

** w-convergence, w*-convergence **
Weak convergence and weak*-convergence are both special cases of pointwise

convergence. We say that (xn) converges weakly to x (and write xn
w−−→ x or xn ⇁ x)

in case ∀{λ ∈ X∗} lim λxn = λx. Thus weak convergence in the nls X is pointwise
convergence when we consider X as a subset of X∗∗. If X happens to be Y ∗ for some
nls Y , then we can also consider pointwise convergence (on Y ). If Y is reflexive, this
is the same as weak convergence, but in general it is weaker. For this reason, and as a
distinction, pointwise convergence in X = Y ∗, i.e., pointwise convergence on Y , is called
weak*-convergence, and is denoted by xn

w∗−−−→ x.
One uses these weaker forms of convergence in order to achieve compactness, i.e.,

the existence of limit points, when trying to prove the existence of solutions to varia-
tional problems by showing that minimizing sequences have limit points. For example, the
closed unit ball of any X∗ is weak*-compact (by (IV.4)Alaoglu’s Theorem), but fails to be
(norm)compact in case X is not finite-dimensional (by H.P.(III.16)).

The norm topology on a nls X is often called the strong topology in distinction to
the weak topology on X, i.e., the topology of pointwise convergence on X∗.
H.P.(5) Let X = Y ∗ for some nls Y . Prove: Weak convergence is stronger than weak*-convergence, i.e.,

xn
w−−→ x =⇒ xn

w∗−−−→ x.

H.P.(6) The weak topology on a nls X is, by definition, the topology of pointwise convergence ‘on’ X∗.
In particular, the nbhdsystem for x ∈ X in this topology consists of the balls x + Br,L, with r > 0, L any finite
subset of X∗, and Br,L := {y ∈ X : maxλ∈L |λy| < r}. Prove: Any weakly closed subset of a nls space is
(norm-)closed. Also, give an example to show that the converse does not hold. (This will require dim X 6< ∞;
also, a convex weakly closed subset is also norm-closed (see H.P.(VI.10)).)

H.P.(7) Prove: For X = Lp or `p with 1 ≤ p < ∞, the collection B(f) := {Br,λ(f) := {g ∈ X :
|λ(g − f)| < r}, r > 0, λ ∈ X∗} is equivalent to the nbhd system for the topology of weak convergence.

** bounded pointwise convergence **

(1) Bounded Pointwise Convergence Theorem. If (An) is bounded in bL(X,Y ),
A ∈ bL(X,Y ) and An

s−−→ A on a dense subset Z of X, then An
s−−→ A.

Proof: Let x ∈ X.

∀{z ∈ Z} ‖Ax− Anx‖ ≤ ‖(A−An)z‖+ ‖(A−An)(x− z)‖
≤ ‖(A−An)z‖+

(
‖A‖+ sup

n
‖An‖

)
‖x− z‖.
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Since sup ‖An‖ < ∞ and x ∈ X = Z−, one can make the second term small by proper
choice of z; then, for that z, the first term is small for all large n (since z ∈ Z and An

s−−→ A
on Z).

** extension by continuity **
In the formulation of the BPC theorem, we assumed that An

s−−→ A on a dense
subset Z of X for some A ∈ bL(X,Y ). What if we only know that A ∈ Y Z? Assuming
Z to be a lss of X, this implies that A ∈ bL(Z, Y ) (by H.P.(2), since we assumed that
(An) is bounded), and so the question is merely one of extending A ∈ bL(Z, Y ) to some
C ∈ bL(X,Y ). Such extension by continuity is necessarily unique since, for x ∈ X\Z,
diam(A(B1/n(x) ∩ Z)) ≤ ‖A‖(2/n)→ 0 as n → ∞, hence ∩nA(B1/n(x) ∩ Z) can have at
most one element, and, by continuity, it would necessarily have to be Cx. But such an
element need not exist, unless Y is complete. So, assuming Y is Bs, the extension of A to
all of X is defined and uniquely so.

H.P.(8) Prove: If Z is the completion of the nls X, then Z∗ ' X∗, i.e., Z∗ and X∗ are linearly isometric
via the map λ 7→ λ X .

** fundamental sets **
The BPC theorem requires pointwise convergence on some dense set Z. Actually,

it is sufficient to have pointwise convergence on some fundamental set F, i.e., a set F
for which Z := ran[F ] is dense. For, if lim Anf = Af for all f ∈ F , and z ∈ Z, then
z =

∑
f∈G a(f)f for some finite G ⊆ F (and some a ∈ IFG), hence

lim And =
∑

a(f) lim Anf =
∑

a(f)Af = A(
∑

a(f)f) = Az.

To summarize: Let X nls, Y Bs, (An) bounded in bL(X,Y ), An
s−−→ A on F , with F

fundamental in X. Then An
s−−→ C for some C ∈ bL(X,Y ) (and necessarily C F = A).

The standard fundamental set for C(T ) or Lp(T ) with T ⊂ IRd is the set of monomials.
We give a discussion of the basic quantitative aspects of fundamental sets under the heading
of degree of approximation, for which we need Baire category.

** boundedness, though not necessary, is necessary **
Having An

s−−→ A on some dense subset Z of X is obviously a necessary condition for
strong convergence. But having a bound on ‖An‖ uniformly in n is, in general, too strong
a requirement. After all, ‖An‖ is dependent on the norm in X while An

s−−→ A depends
only on the norm in Y . In particular, it may well be possible to change the norm in X so
that A is still bounded while An might not even be bounded, let alone have (An) bounded.
Here is an example.

Let X = C(1)[0 . .1], Y = C[0 . . 1], both with the sup-norm, and consider the problem
of recovering f ∈ X from its first derivative, Df , and its value at 0. We know that

f(t) = f(0) +
∫ t

0

(Df)(s) ds.
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A simple approximation Anf to f is provided by Euler’s method: Pick the uniform
partition (ti := i/n : i = 0, . . . , n) of [0 . . 1] and set

(Anf)(t) :=
{

f(0), t = 0,
(Anf)(ti) + Df(ti)(t− ti), ti < t ≤ ti+1.

Then Anf is a continuous broken line. Further,

D(f −Anf)(t) = Df(t)−Df(ti) for ti < t < ti+1, all i,

hence
‖D(f − Anf)‖∞ ≤ ωDf (1/n).

Therefore

(f − Anf)(t) =
(
f −Anf

)
(0) +

∫ t

0

D
(
f −Anf

)
(s) ds ≤ t‖D(f −Anf)‖∞ ≤ ωDf (1/n).

This shows that lim ‖f − Anf‖∞ = lim ωDf (1/n) = 0 for all f ∈ X = C(1)[0 . . 1] ; i.e.,
An

s−−→ 1.

H.P.(9) Prove that the linear maps An in Euler’s method are bounded wrto the “standard” norm ‖f‖(1) :=

max{‖f‖∞, ‖Df‖∞} for C(1).

Nevertheless, none of the An is even bounded since it is easy to make up a function
f ∈ X with ‖f‖ ≤ 1 yet Df(ti) > c, all i, for an arbitrary constant c, and, for such f ,
(Anf)(1) > c− 1. (Having ‖f‖∞ ≤ 1 doesn’t constrain ‖Df‖∞ at all.)

Nevertheless, the boundedness of the sequence (An) is necessary for pointwise conver-
gence in two ways:

(i) Even if An
s−−→ A can be established, this pointwise convergence cannot be realized

numerically unless sup ‖An‖ < ∞. For, in the presence of roundoff, we cannot hope to
compute the element Anf exactly. Rather, we construct

(Anf)comp = An(f + rn)

for some “small” error rn. The best we can do is guarantee that supn ‖rn‖ ≤ tol for some
positive tolerance tol. But then

‖Af − (Anf)comp‖ ≤ ‖Af − Anf‖+ ‖An‖tol
is the best estimate we can give for the error in (Anf)comp as an approximation to Af . By
assumption, ‖Af −Anf‖ can be made arbitrarily small by choosing n large enough. But,
if we do not have sup ‖An‖ <∞, then (Anf)comp may have nothing to do at all with Af
no matter how large we take n or how small we keep the computing tolerance tol.

(ii) When X is a Bs, i.e., a complete nls, then boundedness of (An) is necessary for
its pointwise convergence, i.e., An

s−−→ A =⇒ sup ‖An‖ <∞. This is a consequence of the
uniform boundedness principle, to be proved next. For this, we need a further piece of
information about complete metric spaces, viz.
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Baire category

This material could have been presented in the earlier discussion of metric spaces.
X ms. Y ⊆ X is nowhere dense := (Y −)o = {}. C ⊆ X is thin (or, meagre,

or of first (Baire) category) := C is the union of countably many nowhere dense sets.
Otherwise, C is called not thin (thick?) (or, not meagre, or of second category).
Sometimes, a set is called everywhere dense if its complement is nowhere dense.

(2) Baire Category theorem. A complete metric space is not thin. Equivalently, in a
complete ms, the countable intersection of everywhere dense sets is not empty.

Proof: Let X be a complete ms. To show: X\⋃∞
n=1 Yn 6= {} whenever all the Yn

are nowhere dense. Might as well go over to the possibly larger sets Y −
n , i.e., may assume

that each Yn is closed, hence has no interior. This means that each Yn contains no open
ball. This means that ∀{r > 0, x ∈ X} Br(x)\Yn is open and not empty, hence can find
s > 0 and y s.t.

B−
s (y) ⊆ Br(x)\Yn.

So, starting with some r0 > 0 and x0, can choose inductively rn ∈ (0 . . 1/n) and xn s.t.

B−
rn

(xn) ⊆ Brn−1(xn−1)\Yn, n = 1, 2, . . . .

The resulting sequence B−
rn

(xn) of closed sets is decreasing with diameters going to zero,
hence, by completeness (see H.P.II.22), ∩nB−

rn
(xn) contains some point, necessarily in

X\ ∪n Yn.

Before coming to the major application of Baire Category in this course, I show that
all numerically relevant sets are thin, in a discussion of

Degree of approximation

** Weierstraß **
Dense subsets D often come in the form ∪nYn of a union of finite dimensional lss’s

Yn of X, and the corresponding fundamental set F is made up of the (columns of) bases
of the various Yn. A favorite one for X = C(T ) with T compact in IRm is the collection of
monomials

()α : t 7→ tα := t(1)α(1) · · · t(m)α(m),

with α a nonnegative integer m-vector. The fact that this collection is, indeed, fundamental
for C(T ) is the content of

(3) Weierstrass’ Approximation Theorem. Πn = ran[()α : |α| ≤ n], T compact
subset of IRm. Then

∀{f ∈ C(T )} lim
n→∞ d(f,Πn) = 0.

This theorem is much quoted, but useless from a practical point of view since it gives
no information about the speed with which d(f,Πn) approaches 0 as n → ∞, i.e., about
the available approximation power.
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** most of a Bs cannot be approximated well at all **
Knowledge of convenient fundamental sets is useful in reducing the labor involved in

proving pointwise convergence. But one would have to know much more than that about
a fundamental set before its use for the approximation of x ∈ X would be defensible. E.g.,
one would have to know, more precisely, just how to choose, for given ε > 0 and given
x ∈ X, a finite G ⊆ F so that d(x, ran[G]) < ε, how big a G one actually has to choose,
and the like.

The next proposition shows that all the elements having some positive degree of
approximation from a sequence of proper closed subspaces form a thin set. Thus, by Baire
category, most elements of a Bs cannot be approximated well at all.

(4) Proposition (Harold S. Shapiro). (Yn) a sequence of proper closed lss’s in nls X,
(rn) a real sequence converging to 0. Then

A := {x ∈ X : d(x, Yn) = O(rn)}

is thin.

Proof:

d(x, Yn) = O(rn)⇐⇒ lim sup nd(x, Yn)/rn <∞
⇐⇒∃{m,M} ∀{n > m} d(x, Yn) ≤ rnM

⇐⇒∃{m,M ∈ IN} x ∈M
⋂

n>m

B−
rn

(Yn) =: MA(m).

Thus
A =

⋃
m,M

MA(m)

and we are done once we show that A(m) is nowhere dense. Since A(m) is closed, need
only show that it has no interior: Suppose that Br(x) ⊆ A(m). Then, ∀{n > m} Br(x) ⊆
B−

rn
(Yn), hence r ≤ rn, by (III.10)Corollary to Riesz’ Lemma, therefore r = 0.

H.P.(10) Deduce that totally bounded sets in an infinite-dimensional nls are thin. (Hint: Consider
Yn := ran[Vn], with Vn a finite (1/n)-net for the totally bounded set in question.)

(5) Corollary. If X is complete, then, for any null sequence (rn), there exists x ∈ X so
that d(x, Yn) goes to zero even slower than does rn.

** degree of approximation **
These observations lead to a study of the classes

{x ∈ X : d(x, Yn) = O(rn)}

for specific popular choices of (Yn) and standard sequences (rn) such as (n−k) for some
(positive) k. A typical example is provided by the
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(6) Jackson Theorem. ∃{const} ∀{f ∈ X = C[0 . . 1]} d(f,Πn) ≤ constωf (1/n).

which links smoothness of f to the degree of approximation to it by polynomials. It, to-
gether with its refinements that take the behavior of higher derivatives of f into account,
gives the kind of practically interesting quantitative statements that the Weierstrass Ap-
proximation Theorem does not provide.

** Hamel basis for inf.dim. Bs is uncountable **
By (III.10)Corollary to Riesz’ Lemma, a proper closed lss is nowhere dense, hence the

countable union of proper closed lss’s is thin. It follows that an infinite-dimensional Bs X
cannot be of the form ∪n ran[x1, . . . , xn], and that says that any algebraic or Hamel basis
for an infinite-dimensional Bs must be uncountable. This leads to consideration of a basis
concept more suitable for infinite-dimensional ls’s in that it should permit one to work
with infinite linear combinations.

Schauder basis

In a nls, the Schauder basis is the standard choice. Precisely, with (vn) a(n infinite)
sequence in the nls X and a a corresponding sequence of scalars, we define

∑
n

vna(n) := lim
j→∞

∑
n≤j

vna(n)

if it exists. This sets up a lm

V : domV ⊂ IFIN → X : a 7→
∑

n

vna(n)

whose range we call the S(chauder s)pan of (vn). We call the sequence (vn) Schauder
independent in case V is 1-1, and a Schauder basis (for X) in case V is onto as well.

The domain of such a V is, offhand, unclear; it consists of exactly those scalar se-
quences a for which

∑
n vna(n) exists in the above sense. The corresponding sequence

λi := δiV
−1 of lfl’s on X is dual to the sequence (vi) in the sense that λivj = δij .

All practically important Bs’s have Schauder bases, but not all Bs’s do.
H.P.(11) Prove:

(i) If (vn) is a Schauder basis for the nls X, then the sequence (Pn) given by

Pnx :=
∑
j≤n

vj(V
−1

x)(j), all x ∈ X,

is an increasing (i.e., both sequences (ran Pn : n ∈ IN) and (ran P ′
n : n ∈ IN) are increasing)) sequence of

lprojectors and converges pointwise to the identity.
(ii) If (Pn) is bounded, hence an approximate identity, and (vn) is normalized, i.e., ‖vn‖ = 1, all n, then

supn ‖λn‖ < ∞ for the corresponding dual sequence (λn = δnV −1), hence dom V ⊆ `∞.

H.P.(12) Try to prove the following converse: If (Qn) is an increasing approximate identity for X with r :=
supn(rank Qn+1 − rank Qn) < ∞, then there exists a Schauder basis (vj) for X with ran Qn = ran[vj≤m(n)] for
some strictly increasing sequence m. (Hint: Prove first that, with Rn := Qn+1−Qn, Qn = R1 + · · ·+Rn−1 with
RiRj = RjRi = δijRi, hence ran Qn+1 = ran Qn+̇ ran Rn and, by (IV.13)Auerbach’s Theorem, Rn = VnMn

t

with Mn
t := Λn

tRn and Vn, Λn normalized dual bases for ran Rn and its dual.)
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Uniform boundedness

Recall that a subset of a nls is bounded if it is contained in some Bs. We call a
collection F ⊂ Y X of maps into the nls Y pointwise bounded in case ∀{x ∈ X} Fx :=
{fx : f ∈ F} is bounded. Recall further that f ∈ Y X is bounded if it maps bounded sets
to bounded sets, i.e., if ∀{r > 0} ∃{s > 0} fBr ⊆ Bs. For this reason, one calls F ⊆ Y X

uniformly bounded in case ∀{r > 0} ∃{s > 0} FBr ⊆ Bs, i.e., the bound s on fBr is
uniform for all f ∈ F .

For f ∈ L(X,Y ), boundedness is equivalent to having fB ⊆ Bs for some s, i.e.,
to having ‖f‖ ≤ s < ∞. Therefore, a collection F in L(X,Y ) is uniformly bounded if
it is bounded as a subset of bL(X,Y ). Uniform boundedness of F does not mean that
FX = {fx : f ∈ F, x ∈ X} is bounded.

(7) Uniform Boundedness Principle. For any Bs X, a pointwise bounded A ⊆
bL(X,Y ) is (uniformly, or norm) bounded. In symbols:

(∀{x ∈ X} Ax bounded
)

=⇒ A
is bounded.

Proof: For n = 1, 2, . . . , Cn := {x ∈ X : Ax ⊆ B−
n } = ∩A∈AA−1B−

n is closed
(as the intersection of closed sets). Further, by the pointwise boundedness assumption,
X = ∪Cn. By Baire category, not every Cn can be nowhere dense, i.e., ∃{n, x, r >
0} Br(x) ⊂ Cn, i.e., ABr ⊂ ABr(x)−Ax ⊂ B−

n + B−
n ⊂ B−

2n, hence ‖A‖ ≤ 2n/r.

H.P.(13) Prove the theorem in the following more general form. For this, recall that p : X → IR is lower

semicontinuous := ∀{a ∈ IR} p−1(−∞ . . a] is closed, and that a set Z in a ls is symmetric if it contains
−Z. (Hint: You’ll quickly find that ∃{r > 0} supABr < ∞. To conclude from this (uniform) boundedness
of A, you may want to prove first that, for any subadditive fl p, max{p(−x), p(x)} = max{|p(−x)|, |p(x)|} and
∀{n ∈ IN} p(nx) ≤ np(x).)

(8) Theorem. A collection A of lower semicontinuous subadditive functionals pointwise
bounded on a symmetric non-thin subset of the nls X is uniformly bounded.

H.P.(14) Give an example to show that the symmetry assumption in (8)Theorem is, in general, necessary.
(E.g., X = IR,A = {α()+ : α > 0}.)

H.P.(15) Prove: 0 is a limit point, in the weak topology, of the sequence (vn :=
√

nen : n ∈ IN) in `2,
yet no subsequence of this sequence converges weakly to 0. (See H.P.(7) and prove first that, for x ∈ `2,
lim infn→∞ |x(n)|2/n = 0.)

** Banach-Steinhaus **

(9) Corollary (Banach-Steinhaus). X Bs, (An) in bL(X,Y ), and An
s−−→ A ∈ Y X .

Then sup ‖An‖ <∞.

Proof: ∀{x ∈ X} (
lim Anx exists =⇒ sup ‖Anx‖ < ∞)

. Hence A:={An : n ∈
IN} is pointwise bounded.

H.P.(16) Prove

(10) Corollary. If (xn) in nls X is w-convergent, or w*-convergent with X = Y ∗ and Y
Bs, then (xn) is (norm)bounded.
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Applications of uniform boundedness

** Schauder basis **
H.P.(17) X Bs. Prove: X has Schauder basis ⇐⇒ X has an increasing approximate identity (Qn) with
sup(rank Qn+1 − rank Qn) < ∞.

** quadrature **
X = C(T ), T ⊆ IRd some compact domain, λf :=

∫
T

f(t) dt, λU :=
∑

u∈U wU (u)δu

a rule for λ , based on the nodes u ∈ U and the weights wU ∈ IRU . By H.P.(IV.6),
‖λU‖ = ‖wU‖1, so

λU
s−−→ λ ⇐⇒ λU

s−−→ λ on some fundamental set F and sup ‖wU‖1 <∞.

This is the downfall of the Newton-Cotes rules which, for the case T = [a . . b], choose
U = {a + ih : i = 0, . . . , n} with h := (b− a)/n and then choose wU by interpolation, i.e.,
such that λU = λ on Πn. For such wU , ‖wU‖1 ∼ 2n.

On the opposite end of the scale are the quadrature rules with nonnegative weights.
Now having λU

s−−→ λ just for the function 1 (i.e., for the function t 7→ 1 ) is enough to
get boundedness since it implies that

‖wU‖ =
∑
U

wU (u) = λU1→ λ1.

Thus, for such rules, only the convergence on some fundamental set (such as the poly-
nomials) has to be checked. This is ensured by choosing λU to be exact on YU for some
collection (YU ) of lss’s whose union is fundamental. Particular examples are the various
Gauss rules. Examples of a different sort are provided by the observation (to be made in
(VI.20)Proposition) that, for every n-dimensional lss Y of C(T ) with T compact in IRd and
containing the constant function 1, there exists U ⊆ T with #U ≤ n and corresponding
positive weight vector w so that

∫
T
· = ∑

U w(u)δu on Y .

** equivalence theorems **
Call the collection

(
λU

)
of approximations to λ :=

∫ · consistent if λU
s−−→ λ (as

#U → ∞) on some fundamental set, e.g., all “sufficiently smooth” functions. Call the
collection convergent if λU

s−−→ λ on all of X. Call the collection stable if sup ‖λU‖ <∞.
Then we have here a simple instance of an

(11) Equivalence Theorem. consistency =⇒ (convergence ⇐⇒ stability).

whose most famous instance is the Lax Equivalence Theorem for finite difference approxi-
mations to a parabolic PDE (or, more generally, any linear PDE that has associated with
it a semigroup of solution operators). This is a prime topic in the course on the numerical
solution of evolution equations to which I must refer you because of lack of time.

** divergence **
The uniform boundedness principle is at its best when the sequence (An) in bL(X,Y )

fails to be bounded or stable, i.e., when sup ‖An‖ =∞. For it then asserts that the Bs X
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must contain an x for which (Anx) does not converge, more than that, for which (Anx) is
not even bounded.

A striking example is provided by the Fourier series: For this, we pick

X =
◦
C:= {f ∈ C[0 . . 2π] : f(0) = f(2π)},

the Bs of continuous 2π-periodic functions. It is convenient here to use the complex scalars
C rather than the reals; in particular, i :=

√−1 in this example. The truncated Fourier
series is provided by the map

Ln :=
∑

|m|≤n

[vm]λm

with

vm(t) := eimt, λmf :=
∫ 2π

0

f(t)e−imt dt/2π.

This is a lprojector since

λmvk =
∫ 2π

0

eikte−imt dt/2π =
∫ 2π

0

eit(k−m) dt/2π = δmk.

To analyze it, we observe that

(Lnf)(t) =
∑

|m|≤n

eimt

∫ 2π

0

f(s)e−imsds/2π =
∫ 2π

0

Dn(t− s)f(s) ds/2π

with
Dn(t) :=

∑
|m|≤n

eitm

the Dirichlet kernel. Using the standard formula for summing a finite geometric series,
this gives

Dn(t) =
eit(n+1) − e−itn

eit − 1
=

eit(n+1/2) − e−it(n+1/2)

eit/2 − e−it/2
=

sin(n + 1/2)t
sin t/2

.

A careful estimate shows that ‖Dn‖1 =
∫ 2π

0
|Dn(t)|dt ∼ (4/π) ln n n→∞−−−−−→ ∞. Since, for

every t, the linear functional
µn : f 7→ (Lnf)(t)

has norm ‖µn‖ = ‖Dn‖1/2π, we conclude that, for every t, there exists a continuous 2π-
periodic function f so that ((Lnf)(t)) is unbounded and, in particular, fails to converge.

On the other hand, by Lebesgue’s inequality,

(
f − Lnf

)
(t) ≤ ‖1− Ln‖d(f,

◦
Πn) ∼ (ln n)d(f,

◦
Πn)
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with ◦
Πn:= ran[eim· : |m| ≤ n] =: trigonometric polynomials of degree ≤ n.

By Jackson’s theorem,

d(f,
◦
Πn) ≤ cωf (1/n)

for some constant c independent of f . Therefore ‖f−Lnf‖ n→∞−−−−−→ 0 for every f satisfying
a Dini-Lipschitz condition, i.e., satisfying ωf (h) = o(| ln h|−1).

Remark. Since Dn is real, we conclude that the situation is unchanged if we restrict
ourselves to real functions and real scalars.
H.P.(18) Let In be the lprojector on X = C[−1 . . 1] given by Πn and ran[δu : u ∈ U ], with U ⊆ [−1 . .

1], #U = n + 1. Then In =
∑

u∈U
[`u]δu with `u(t) :=

∏
w 6=u

(t − w)/(u − w).

(i) Prove that ‖In‖ = ‖`‖∞, with ` :=
∑

U
|`u| the Lebesgue function of the process.

(ii) Now choose U equispaced, i.e., U = {1 − ih : i = 0, . . . , n}, with h := 2/n. Prove that the value of `
at (1 − 1/n) is at least 2n/ (4n(n − 1/2)), showing that ‖In‖ grows ‘almost like’ 2n as n → ∞. (Hint:

2n = (1 + 1)n =
∑n

j=0

(
n
j

)
)

(iii) For your information: In fact, for equispaced U , ‖In‖ = 2n+1
en ln n (1 + O(1)). On the other hand, if you use

the expanded Chebyshev points

U
c

= {cos 2j + 1

2n + 2
π/ cos

π

2n + 2
: j = 0, . . . , n},

you get ‖Ic
n‖ ≤ (2/π) ln n + .7, which grows so slowly with n that it doesn’t exceed 3 for n ≤ 30.

Remark. The fact that ‖Ln‖, ‖Ic
n‖ n→∞−−−−−→ ∞ should not be taken too seriously

since, in fact, they go to infinity so slowly that this hardly interferes with their effectiveness
as good approximation schemes for the practical range of n, say n < 1000. In addition,
even as n goes to infinity, such a slow rate of growth is easily overcome by the decay to

zero of d(f,Πn) or d(f,
◦
Πn) if f is suitably smooth (e.g., f ∈ C(1)).

Open mapping/closed graph

There is one further basic f.a. result, also connected with Baire category, namely
the Open Mapping theorem, and its corollary, the Closed Graph theorem. Its practical
usefulness is less immediate, but it belongs into any basic course on f.a.

The open mapping theorem supplies a (necessary and) sufficient condition for A ∈
bL(X,Y ) (with X,Y Bs’s) to be open, i.e., to map open sets to open sets. It is usually
applied to A that is already known to be invertible as a linear map. In that case, having A
open is precisely the same as saying that A−1 is continuous, hence bounded, since it says
that the inverse image under A−1 of open sets is open.

** test for openness **
Whether or not A is invertible,

(12) Lemma. A ∈ L(X,Y ) is open iff 0 ∈ (AB)o iff B ⊆ ABs for some s.

Proof: If A is open, then AB is open, and, in particular, 0 ∈ (AB)o, hence,
equivalently, Br ⊂ AB for some r > 0 or, equivalently (with s = 1/r), B ⊂ ABs for some
s. Conversely, having B ⊆ ABs for some s implies that A is open, as follows: If O is an
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open subset of X and y ∈ AO, hence y = Ax for some x ∈ O, hence Br(x) ⊆ O for some
r > 0, then y + Br/s ⊆ Ax + ABr = ABr(x) ⊆ AO, showing that y ∈ (AO)o. Since y is
arbitrary, it follows that AO is open.

The open mapping theorem states that A ∈ bL(X,Y ), with X,Y Bs’s, is necessarily
open if it is onto. Its standard proof contains the following lemma of practical interest.

** almost solvable stably =⇒ solvable stably **

(13) Lemma. Let A ∈ bL(X,Y ), X Bs. If B ⊆ (ABt)− for some t, then B− ⊆ ∩s>tABs.
In particular, A is onto.

Proof: Since (ABt)− is closed, we conclude that B− ⊂ (ABt)−, hence, for any
y ∈ Y , y ∈ B−

‖y‖ ⊆ (ABt‖y‖)−. In other words: For some t and any y ∈ Y and any ε > 0,
we can find an x ∈ Bt‖y‖ with ‖y−Ax‖ < ε. From this, we wish to conclude that, for any
s > t and any y ∈ Y , we can find an x ∈ B−

s‖y‖ for which Ax = y.
The proof uses the following variant of fixed point iteration. Let y ∈ Y . With d0 := y,

we pick, for n = 1, 2, . . . and entitled by the fact that B− ⊆ (ABt)−, hence B−
r ⊆ (ABrt)−,

an xn with ‖xn‖ < t‖dn−1‖ so that

(14) dn−1 = Axn + dn,

with the norm of the residual dn as small as we please. Thus, for any n,

y = Ax1 + Ax2 + · · ·+ Axn + dn = A(
n∑
1

xj) + dn,

with

‖
m∑
n

xj‖ ≤
m∑
n

‖xj‖ < t
m∑
n

‖dj−1‖.

Hence, choosing, as we may, the xj so that
∑ ‖dj−1‖ is convergent, it follows that

limn→∞ ‖dn‖ = 0 and that
( ∑

j<n xj

)
is a Cauchy sequence, hence converges to some

x ∈ X, therefore, A being bounded, we have y = Ax. Further, ‖x‖ ≤ ∑
j ‖xj‖ <

t
∑

i ‖di‖ = t(‖y‖ + ε), with ε :=
∑∞

n=1 ‖dn‖. Since y was arbitrary, this shows that
B− ⊂ A(Bt(1+ε)). However, also ε is arbitrary (positive) since we are free to make each
‖dn‖ as small as we please. Therefore,

B− ⊆
⋂
s>t

ABs.

(15) Corollary. X,Y Bs’s, A ∈ bL(X,Y ) onto. Then B− ⊆ ABs for some s.

Proof: Since A is onto, Y =
⋃∞

n=1 ABn, hence ABn is somewhere dense for some
n, i.e., ∃{z ∈ Y, r > 0} Br(z) ⊂ (ABn)−. This implies Br ⊂ (Br(z) + Br(−z))/2 ⊂
((ABn)− + (ABn)−)/2 ⊂ (ABn)−, or B ⊂ (ABt)− with t := n/r, hence B− ⊆ ABs for
some s.
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(16) Corollary. X,Y Bs’s, A ∈ bL(X,Y ) onto. Then A| : X/ kerA → Y : 〈x〉 7→ Ax is
boundedly invertible.

Proof: By construction and assumption, A| is invertible. By (III.11), X/ ker A is
a Bs with respect to the factor norm ‖〈x〉‖ := d(x, ker A). With that, by (15)Corollary,
there is an s so that, for arbitrary x ∈ X, there is x′ with Ax′ = Ax, i.e., x′ ∈ 〈x〉,
and ‖x′‖ < s‖Ax‖. But this says that s‖A|〈x〉‖ = s‖Ax‖ > ‖x′‖ ≥ d(x′, ker A) = ‖〈x〉‖,
showing A| to be bounded below, hence A−1

| is bounded.

(17) Corollary. X,Y Bs’s, A ∈ bL(X,Y ), ranA closed. Then (ker A)⊥ = ranA∗. In
particular, ranA∗ is closed.

Proof: By H.P.(IV.14), ran A∗ is contained in the closed lss (ker A)⊥. Hence it is
sufficient to prove that (kerA)⊥ ⊆ ranA∗. For this, observe that the lm A| : X/ kerA →
ranA : 〈x〉 7→ Ax is boundedly invertible by (16)Corollary since ranA is a closed lss of
the Bs Y , hence a Bs. Now take λ ⊥ kerA. Then (by (I.3)) λ = µ〈〉 for µ : 〈x〉 7→ λx,
hence ‖µ‖ := supx |λx|/‖〈x〉‖ = supx |λx|/d(x, ker A) ≤ supx |λx|/d(x, ker λ) = ‖λ‖, i.e.,
µ ∈ (X/ ker A)∗, hence λ = µ(A|)−1A ∈ ranA∗.

λ A
IF←− X −→ ranA ⊆ Y

µ ↖ ↓ ↗ A|
X/ ker A

** example: an ordinary differential equation **
It follows that if the equation Ax = y is uniquely solvable for every y ∈ Y , then the

solution x depends continuously on the datum y. A typical example involves the linear
map

A : C(m)[0 . . 1]→ C[0 . . 1]× IRm : f 7→ (
Lf,Λtf

)
with

L := Dm +
∑
j<m

ajD
j , aj ∈ C[0 . . 1], all j,

and Λt = [λ1, . . . , λm]t 1-1 on ker L and made up of lfl’s continuous on C(m)[0 . . 1]. Since
dimkerL = m, this implies that A is 1-1, and, assuming that the λj are already continuous
over C(m−1), it also implies that A is onto. Since (see below) C(m)[0 . . 1] is complete, we
conclude that the unique solution f ∈ C(m)[0 . . 1] of the linear BVP (:= boundary value
problem)

(L,Λt)? = (g, c)

depends continuously on the given (g, c) ∈ C[0 . . 1]× IRm, i.e.,

∃{M} ∀{(g, c) ∈ C[0 . . 1]× IRm} ‖f‖(m)
∞ ≤M max{‖g‖∞, ‖c‖∞}.

In other words, the BVP is stable.
This example is a bit of a sham since the proof that such A is onto is usually given

via Green’s function, in which case the continuous dependence of the solution on the data
is explicit.
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** open mapping theorem **

(18) Open Mapping Theorem. X,Y Bs’s, A ∈ bL(X,Y ) onto =⇒ A is open.

Proof: From (15)Corollary, we know that B ⊂ ABs for some s, and, by (12), that
is equivalent to A being open.

H.P.(19) Where in the proof of the OMT is the continuity of A used?

** illustrations **

(19) Corollary. If X is Bs and A ∈ bL(X,Y ) has finite rank, then A maps open sets to
sets relatively open in ranA.

Proof: Since dim ranA < ∞, ranA is Bs, hence A : X → ranA : x 7→ Ax is
open.

(20) Corollary. Every nontrivial bounded lfl on a Bs is an open map.

(21) Corollary. If Y is a closed lss of Bs X, then 〈〉 : X → X/Y is open.

(22) Corollary. X,Y Bs’s, A ∈ bL(X,Y ), 1-1, onto =⇒ A−1 ∈ bL(Y,X).
H.P.(20) Suppose A ∈ bL(X, Y ), with X, Y Bs’s. Prove:

ran A is closed and ker A = {0} ⇐⇒ A is bounded below.

** equivalence of norms **
For example, suppose that X is Bs with respect to two norms, ‖ · ‖ and ‖ · ‖′. Suppose

further that 1 : X → X : x 7→ x is bounded as a map from (X, ‖ · ‖) to (X, ‖ · ‖′). This
says that sup ‖x‖′/‖x‖ <∞, i.e.,

∃{M} ∀{x ∈ X} ‖x‖′ ≤M‖x‖.

Then (22)Corollary implies that 1 is also a bounded map from (X, ‖ · ‖′) to (X, ‖ · ‖), i.e.,

∃{m} ∀{x ∈ X} ‖x‖ ≤ m‖x‖′.

Thus, the equivalence of two complete norm topologies can be checked by merely checking
whether one is stronger than the other.

** completeness is necessary here **
The fact that X must be complete wrto both norms is crucial here. For example,

X := C(1)[0 . . 1] is nls wrto the max norm ‖ · ‖∞, but also wrto the norm ‖ · ‖′ given by

‖f‖′ := max{|f(0)|, ‖Df‖∞}.

Further,
‖f‖∞ ≤ 2‖f‖′.

But a bound the other way is impossible since sup ‖Df‖∞/‖f‖∞ =∞. Since (C(1), ‖ · ‖′)
is a Banach space (cf. below), this also shows that (C(1), ‖ · ‖∞) cannot be complete.
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** closed graphs **
Other more or less useful consequences of the open mapping theorem, hence ultimately

of the Baire category theorem, are connected with the cartesian product of nls’s. You
should verify that the cartesian product X × Y of two nls’s X and Y is indeed a linear
space with addition and scalar multiplication taken pointwise, i.e.,

(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2)

α(x, y) := (αx, αy).

(In fact, the cartesian product ×t∈T Xt of an ‘assignment’ (Xt : t ∈ T ) of ls’s Xt with an
arbitrary index set T is naturally a ls wrto pointwise vector operations.) Further, X × Y
is nls with respect to the norm

‖(x, y)‖ := |(‖x‖, ‖y‖)|

with | · | any norm on IR2, and is complete if both X and Y are. Usually, ‖(x, y)‖ :=
max(‖x‖, ‖y‖). (In the case of an arbitrary Cartesian product, its subspace {x ∈ ×t∈T Xt :
‖t 7→ ‖x(t)‖Xt

‖ < ∞}, with ‖ ‖ any (extended) norm on IRT , is a nls, and is complete in
case each Xt is complete and, e.g., we use the max-norm on IRT .)
H.P.(21) Prove the following Corollary to (15)Corollary: X Bs, X = Y + Z, with Y, Z closed lss’s. Then
∃{const} ∀{x} ∃{(y, z) ∈ Y × Z} x = y + z and const‖x‖ ≥ ‖y‖ + ‖z‖.
H.P.(22) Use H.P.(21) to prove: X Bs, P ∈ L(X), P 2 = P (i.e., P is l.projector). Then P ∈ bL(X) ⇐⇒
ker P, ran P are closed.

(23) Closed Graph Theorem. X,Y Bs’s, A ∈ L(X,Y ). A closed =⇒ A bounded.

Here, A ∈ L(X,Y ) is called closed if it is closed as a subset of the nls X × Y . (This
may be confusing since, a little while ago, we called a lm open for quite a different reason.)

Now a curiosity: The graph of A ∈ Y X is, by definition, the subset Γ(A) of X × Y
defined by

Γ(A) := {(x, y) ∈ X × Y : y = Ax}.
This notation is customary but, of course, superfluous since, what is a map if it isn’t what
is called here its graph? So, forget about the whole thing, but get used to the idea that
A ∈ Y X is a subset of X × Y .

As a training in this way of thinking, you should verify that, for A ∈ L(X,Y ), A is a
lss of X × Y .

What does it mean for A to be closed? It means that if (x, y) = lim(xn, yn) (i.e.,
x = lim xn, y = lim yn) for some sequence ((xn, yn)) in A (i.e., xn ∈ X, yn = Axn, all n),
then (x, y) ∈ A (i.e., y = Ax).

For example, if A ∈ bL(X,Y ), then A is closed since then Ax = A(lim xn) = lim Axn =
lim yn = y. The closed graph theorem is a kind of converse.

Proof of the closed graph theorem. Since A is closed and linear, it is a closed
linear subspace of the Bs X×Y , hence itself a Bs. The map A→ X : (x,Ax) 7→ x is linear,
onto, and 1-1 since A is a map, and is bounded since ‖x‖ ≤ max{‖x‖, ‖Ax‖} = ‖(x,Ax)‖.
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By the open mapping theorem, its inverse, i.e., the map x 7→ (x,Ax), is therefore also
bounded, i.e.,

∞ > sup
x
‖(x,Ax)‖/‖x‖ = sup

x
max{1, ‖Ax‖/‖x‖} = max{1, ‖A‖}.

** nls’s of smooth functions **
A clean way to think of functions with a certain number of derivatives is as just that,

i.e., as a collection or vector of functions related by differential operators. This point
of view is evident when one looks at just how such a space of differentiable functions is
normed and how its dual is constructed (cf. H.P.(24) below). As an illustration, here is the
simplest possible example, the ls X = C(1)[0 . . 1]. I’ll drop the reference to the interval
[0 . . 1]; in effect any closed interval would do.

The standard definition is

C(1) := {f ∈ C : Df ∈ C}.
But already the standard norm

‖f‖(1)∞ := max{‖f‖∞, ‖Df‖∞}
isn’t just the norm of one function. Rather, it is the norm of the pair (f,Df) as an element
of C × C. In effect, C(1) = D, as we now make clear.

We note in passing that, earlier, we used the norm

‖f‖′ := max{|f(0)|, ‖Df‖∞}

but this is equivalent to ‖·‖(1)∞ since f = f(0)+
∫ 1

0
(·−s)+0 Df(s) ds for any f ∈ C(1)[0. .1],

hence, for any such f , ‖f‖′ ≤ ‖f‖(1)∞ ≤ 2‖f‖′.
We now show that C(1) is a Bs (hence the equivalence of these two norms already

follows from one of the inequalities just mentioned). We do this by thinking of C(1) as
D, i.e., as a linear subspace of the Bs C × C, hence require nothing more than that D be
closed. This latter fact is most easily proved by considering the Volterra operator or map

V : C → C : f 7→
∫ ·

0

f(s) ds =
∫ 1

0

(· − s)+
0
f(s) ds.

Since V f(t) − V f(u) =
∫ t

u
f(s) ds ≤ |t − u|‖f‖∞, it follows that ranV ⊂ C and that V

is bounded; in fact, ‖V ‖ = 1. (More than that, V (B) is totally bounded since ωV f (h) ≤
h‖f‖∞.) Further, DV = 1, hence V D is a lprojector; in particular, f = f(0) + V Df for
all f ∈ C(1).

This says that C(1) = {(f, g) ∈ C × C : g = Df} = (Π0, 0)+̇V −1, with

V −1 = {(V f, f) : f ∈ C}
closed since V is bounded, hence closed. But this implies that C(1) = D is itself closed, as
the sum of a closed and a finite-dimensional lss (cf. H.P.(III.13)).
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H.P.(23) Show that 1 − V does not take on its norm (as a map on C).

Here is the same argument in more conventional terms.
To show that C(1) is closed as a subspace of C ×C, consider (fn,Dfn) n→∞−−−−−→ (f, g).

Then fn = fn(0) + V Dfn and f − f(0) = lim(fn − fn(0)) = lim V (Dfn) = lim V g (using
the continuity of V ). But this says that f = f(0) + V g, hence g = Df , i.e., (f, g) ∈ C(1).

In just the same way, the space C(m) is identified with

{(fr)m
0 ∈ Cm+1 : fr = Dfr−1, r = 1, . . . ,m}

and is shown to be closed (as the intersection of closed sets), hence complete. In particular,
the norms

‖f‖(m)
∞ := max{‖Drf‖∞ : r = 0, . . . ,m}

and
‖f‖ := max{|f(0)|, . . . , |Dm−1f(0)|, ‖Dmf‖∞}

are equivalent.
In the same way, the Sobolev space W

(m)
p (G) of all functions on some domain G ⊆ IRd

with all partial derivatives of order ≤ m in Lp(G) is identified with a closed linear subspace
of (Lp(G))N , with N =

(
d+m

m

)
. In this generality, the definition of D is “weak”, i.e.,

(f, g) ∈ L2
p is in Dy iff

∫
G

ϕg = − ∫
Dyϕf for all “test functions” ϕ. This raises some

questions concerning f , g “on” ∂G in case G is not all of IRd.
Also, it is slightly more work to prove that the standard norm

‖f‖ := ‖(‖Djf‖p(G) : j = 0, . . . ,m)‖p

on W
(m)
p (G), with

‖Djf‖p(G) := ‖(‖Dαf‖p(G) : |α| = j)‖p,
is equivalent to the norm

f 7→ ‖Pf‖+ ‖Dmf‖p(G),

with P any linear projector onto the (finite-dimensional) kernel of f 7→ ‖Dmf‖p(G), and
an arbitrary (fixed) norm taken on that kernel.

However, if G is a bounded, open, connected domain with Lipschitz boundary, then
that kernel can be shown to be Π<m(G), i.e., the space of polynomials in d variables of
degree < m, restricted to G. Consequently, with P any of the many available bounded
linear projectors on W

(m)
p (G) (e.g., ranP ′ = Π<m(G) would do), one obtains the

Bramble-Hilbert Lemma. If L is any bounded linear map, from X := W
(m)
p (G) to some

nls Y (with G bounded, open, connected, with Lipschitz boundary), and Π<m ⊆ ker L,
then,

‖Lf‖ ≤ ‖L‖constG‖Dmf‖p(G), f ∈ X.

Indeed, ‖Lf‖ ≤ ‖L‖d(f, kerL) ≤ ‖L‖d(f,Π<m), while dist (f,Π<m) ≤ ‖f − Pf‖ ≤
constG(‖P (f−Pf)‖+‖Dm(f−Pf)‖p(G)) = constG‖Dmf‖p(G), with the second inequal-
ity by the norm-equivalence (and constG the corresponding constant).
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H.P.(24) Prove that every λ ∈ (C(m)[0 . . 1])∗ has a representation of the form

λ : f 7→
m∑

j=0

∫ 1

0

fj(s) dxj(s),

with x := (xj : j = 0, . . . , m) ∈ (NBV [0 . . 1])m+1.

** example: an ordinary differential equation initial value problem **
As a further illustration, consider the m-th order ODE Initial Value Problem in which

we seek f ∈ C(m)[0 . . 1] that satisfies

(
Dmf

)
(t) = F (t, f(t),Df(t), . . . , (Dm−1f)(t)) for 0 ≤ t ≤ 1

together with the initial conditions

(
Djf

)
(0) = c(j), j = 0, . . . ,m− 1.

In terms of the vector-valued function f :=
(
Djf

)m−1

j=0
=: (fj)m−1

j=0 , the problem is to find

f ∈ C(1)([0 . . 1]→ IRm) that satisfies

Df(t) = F̃ (t, f(t)) for 0 ≤ t ≤ 1,

f(0) = c,

with F̃ : [0 . . 1]× IRm defined by

F̃ (t, x)(j) :=
{

x(j + 1), j < m;
F (t, x(1), . . . , x(m)), j = m.

If IRm → IRm : x 7→ F̃ (t, x) is Lipschitz continuous uniformly for t ∈ [0 . . 1], then Picard
iteration (see Chapter II) provides a proof for the existence of a solution for this first-order
system, hence for the equivalent original mth order equation.

example: an ordinary differential equation initial value problem c©2002 Carl de Boor


