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Radial basis function (RBF) interpolation – or more generally interpolation with reproducing kernels – uses a positive definite kernel K to reconstruct an unknown function f from its samples yi = f(xi), i = 1,…,N, obtained at the locations xi in Rd. In doing so, f is approximated by an expansion of the form 
s(x) = ∑Nj=1 cj K(x, xj), where the coefficients c = (c1,…,cN)T are obtained via solution of the interpolation system Kc = y. Here K = (K(xi, xj)), i,j=1,…N, is often very ill-conditioned and y = (y1,…, yN)T.

In this talk we will introduce a matrix factorization of the form K = 
ΨΛΦT of the standard RBF interpolation matrix K in terms of matrices generated by the orthogonal eigenfunctions of the Hilbert-Schmidt integral operator associated with the kernel K. This Hilbert-Schmidt SVD is not a traditional singular value decomposition of K, but shares some properties with the SVD. Most importantly, the matrix factors are obtained without ever having to form the ill-conditioned matrix K.

We will show how the Hilbert-Schmidt SVD leads to a stable algorithm for computation with positive definite kernels and present a particularly simple implementation of the resulting RBF-QR method for a family of so-called compact Matérn kernels. We will illustrate our algorithm with a standard interpolation example, and with an application to the determination of “optimal” RBF shape parameters via maximum likelihood estimation. 
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