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overview

Here is a quick run-down on these notes, with various terms to be learned
in boldface.

Much of scientific work involves relationships called maps:

f : X → Y : x 7→ f(x)

For example,

◦ time 7→ the population of the US;

◦ temperature 7→ pressure in a bottle;

◦ location (longitude, latitude, altitude) 7→ (barometric pressure, humid-
ity, temperature);

◦ mother’s age 7→ frequency of newborn with Down syndrom

◦ available resources ( capital, raw materials, labor pool, etc) 7→ output
of the US economy

◦ etc.

All this is part of our hope to understand effects in terms of causes.

Once we feel we understand such a relationship, we are eager to put it
to use in order to find out how to cause certain effects. Mathematically, we
are trying to solve the equation:

f(?) = y

for given f : X → Y and given y ∈ Y .

In this generality and vagueness, nothing much can be said other than to
urge familiarity with basic map terms, such as, domain, target and range
of a map, the map properties 1-1 (equivalent to uniqueness of solutions),
onto (equivalent to existence of a solution for any y), invertible (equivalent
to having exactly one solution for any y ∈ Y , the best-possible situation),
and the notions of left inverse, right inverse and inverse related to the
earlier notions by the concept of map composition.

Often, though, the map f is a smooth map, from some subset X of
real n-dimensional coordinate space R

n to R
m, say. With the list x =

(x1, . . . , xn) our notation for x ∈ R
n, this means that, first of all,

f(x) = (f1(x), f2(x), . . . , fm(x)) ∈ R
m

with each fj a scalar-valued function, and, secondly, at any point p ∈ X , we
can expand each fj into a Taylor series:

fj(p+ h) = fj(p) +Dfj(p)
th+ o(h), j = 1, . . . ,m,
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with
Dfj(p) = (D1fj(p), . . . , Dnfj(p)) ∈ R

n

the gradient of fj at p, and xty the scalar product of the n-vectors x and
y, and the o(h) denoting ‘higher-order’ terms that we eventually are going to
ignore in best scientific fashion.

This implies that

f(p+ h) = f(p) +Df(p)h+ o(h),

with

Df(p) =



D1f1(p) · · · Dnf1(p)

... · · ·
...

D1fm(p) · · · Dnfm(p)




the Jacobian matrix of f at p.

With this, a standard approach to finding a solution to the equation

f(?) = y

is Newton’s method: If x is our current guess at the solution, we are
looking for a correction h so that

y = f(x+ h) = f(x) +Df(x)h+ o(h);

we ignore the ‘higher-order’ terms that hide behind the expression o(h), and
so get a linear equation for h:

y − f(x) = Df(x)?,

which we solve for h, add this correction to our current x to get a new guess

x← x+ h = x+Df(x)−1(y − f(x))

and repeat. Under suitable circumstances, the process converges, to a solu-
tion.

The key idea here is the reduction, from solving a general equation f(?) =
y to solving a sequence of linear equations, Df(x)? = z. This works since,
in principle, we can always solve a linear system.

Most equations f(?) = y that can be solved are actually solved by this
process or a variant thereof, hence the importance of knowing how to solve
linear equations.

For this reason, our first task will be to introduce linear maps and
linear spaces, especially linear spaces of functions., i.e., vector spaces
in which the basic vector operations, namely vector addition and mul-
tiplication by a scalar, are defined pointwise. These provide the proper
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means for expressing the concept of linearity. Then we recall elimination
as the method for solving a homogeneous linear system

A? = 0

with A ∈ R
m×n. Specifically, we recall that elimination classifies the un-

knowns as bound and free, and this leads to row echelon forms, in par-
ticular the rrref or really reduced row echelon form, from which we can
obtain a complete description of the solution set of A? = 0, i.e., for nullA,
the nullspace of A, as well as an efficient description of ranA, the range
of A. Thus equipped, we deal with the general linear system A? = b via the
homogeneous linear system [A, b]? = 0.

Both nullA and ranA are typical examples of linear subspaces, and
these efficient descriptions for them are in terms of a basis, i.e., in terms of
an invertible linear map V from some coordinate space IFn to the linear
subspace in question. This identifies bases as particular column maps, i.e.,
linear maps from some coordinate space, i.e., maps of the form

IFn → X : a 7→ a1v1 + · · ·+ anvn =: [v1, . . . , vn]a

for some sequence v1, . . . , vn in the linear space X in question.

We’ll spend some time recalling various details about bases, how to con-
struct them, how to use them, and will also mention their generalization,
direct sums and their associated linear projectors or idempotents. We
stress the notion of dimension (= number of columns or elements in a basis),
in particular the Dimension Formula

dimdomA = dim ranA+ dimnullA,

valid for any linear map A, which summarizes much of what is important
about dimension.

We’ll also worry about how to determine the coordinates of a given
x ∈ X with respect to a given basis V for X , i.e., how to solve the equation

V ? = x.

This will lead us to row maps, i.e., linear maps from some linear space to
coordinate space, i.e., maps of the form

X → IFn : x 7→ (λ1x, · · · , λnx) =: [λ1, . . . , λn]tx

for some sequence λ1, . . . , λn of linear functionals on the linear space X in
question. It will also lead us to interpolation aka change of basis, and will
make us single out inner product spaces as spaces with a ready supply of
suitable row maps, and thence to least-squares, to particularly good bases,
namely o.n. (:= orthonormal) bases (which are the isometries for the
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standard norm, the Euclidean norm ‖x‖2 =
√
xtx associated with the

standard inner product and which can be constructed from an arbitrary
basis by Gram-Schmidt).

We’ll find that bases also show up naturally when we try to factor a
given linear map A ∈ L(X,Y ) in the most efficient way, as a product

A = V Λt

with Λt ∈ L(X, IFr) and V ∈ L(IFr, Y ) and r as small as possible. It will
be one of my tasks to convince you that you have actually carried out such
factorizations, in fact had to do this in order to do certain standard oper-
ations, like differentiating or integrating polynomials and other functions.
Such factorizations are intimately connected with the rank of A (since the
smallest possible r is the rank of A) and lead, for a matrix A, to the SVD,
or Singular Value Decomposition,

A = V ΣW c

with V , W o.n. and Σ diagonal, a factorization that is, in a certain sense, a
best way of describing the action of the linear map A. Other common fac-
torizations for matrices are the PLU factorization with P a permutation
matrix, L unit lower triangular, and U upper triangular (generated
during elimination); and the (more stable) QR factorization, with Q uni-
tary (i.e., an o.n. basis) and R upper, or, right triangular, obtained by
elimination with the aid of specific elementary matrices called House-
holder reflections.

For square matrices, one hopes to (but does not always) get factorizations
of the form A = V ΣV −1 with Σ diagonal (the simplest example of a matrix

without such a factorization is the nilpotent matrix

[
0 1
0 0

]
), but often

must be (and is) content to get the Schur form, which is available for any
square matrix and is of the form A = V UV c with V an o.n. basis and U
upper triangular. In either case, A is then said to be similar to Σ and U ,
respectively. These latter factorizations, or similarities, are essential for an
understanding of the power sequence

A0 = id, A1 = A,A2 = AA,A3 = AAA, ....

of the square matrix A and, more generally, for an understanding of the
matrix polynomial p(A), since, e.g.,

A = V diag(µ1, . . . , µn)V −1 =⇒ p(A) = V diag(p(µ1), . . . , p(µn))V −1,

for any polynomial p and even for some well-behaved functions p like the
exponential p : t 7→ exp(t). In particular, then

Ak = V diag(µk
1 , . . . , µ

k
n)V −1, k = 0, 1, 2, . . . ,
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therefore we can describe the behavior of the matrix sequence (Ak : k =
0, 1, 2, . . .) entirely in terms of the scalar sequences (µk

j : k = 0, 1, 2, . . .).
Specifically, we can characterize power-boundedness, convergence, and
convergence to 0.

There are many reasons for wanting to understand the power sequence
of a matrix; here is one. Often, elimination is not the most efficient way to
solve a linear system. Rather, the linear system

A? = b

itself is solved by iteration, by splitting A =: M−N withM ‘easily’ invertible,
and looking at the equivalent equation

M? = N? + b

which leads to the iteration

x←M−1(Nx+ b) =: Bx+ c.

Convergence of this process depends crucially on the behavior of the power
sequence for B (and does not at all depend on the particular vector norm
or map norm used).

The factorization

A = V diag(µ1, . . . , µn)V −1

is equivalent to having AV = V diag(µ1, . . . , µn), i.e.,

[Av1, . . . , Avn] = [µ1v1, . . . , µnvn]

for some invertible V = [v1, . . . , vn] : IFn → domA, i.e., to having a basis V
consisting of eigenvectors forA, with the µj the corresponding eigenvalues.
For this reason, we’ll study the eigenstructure of A and the spectrum of
A, as well as similarity, i.e., the equivalence relation

A ∼ C := ∃V A = V CV −1.

In this study, we make use of polynomials, particular the annihilating poly-
nomials (which are the nontrivial polynomials p for which p(A) = 0) and
their cousins, the nontrivial polynomials p for which p(A)x = 0 for some
x 6= 0, and the unique monic annihilating polynomial of minimal degree,
called the minimal polynomial for A, as well as the Krylov sequence
x,Ax,A2x, . . ..

We’ll discuss the most important classification of eigenvalues, into de-
fective and non-defective eigenvalues, and give a complete description of
the asymptotic behavior of the power sequence A0, A1, A2, . . . in terms of the
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eigenstructure of A, even when A is not diagonalizable, i.e., is not simi-
lar to a diagonal matrix (which is equivalent to some eigenvalue of A being
defective).

We’ll also discuss standard means for locating the spectrum of a ma-
trix, such as Gershgorin’s circles and the characteristic polynomial
of a matrix, and give the Perron-Frobenius theory concerning the dominant
eigenvalue of a positive matrix.

From the Schur form (vide supra), we derive the basic facts about the
eigenstructure of hermitian and of normal matrices. We give the Jordan
form only because of its mathematical elegance since, in contrast to the
Schur form, it cannot be constructed reliably numerically.

As a taste of the many different applications of Linear Algebra, we dis-
cuss briefly: the solution of a system of constant-coefficient ODEs, Markov
processes, subdivision in CAGD, Linear Programming, the Discrete Fourier
Transform, approximation by broken lines, and the use of flats in analysis
and CAGD.

Further, we also consider briefly minimization of a real-valued map

f : K → R

with K ⊂ R
n. Returning to our Taylor expansion

f(p+ h) = f(p) +Df(p)th+ o(h),

we notice that, usually, p cannot be a minimum point for f unless it is a
critical point, i.e., unless the gradient, Df(p), is the zero vector. However,
even with Df(p) = 0, we only know that f is ‘flat’ at p. In particular,
a critical point could also be a (local) maximum point, or a saddle point,
etc. To distinguish between the various possibilities, we must look at the
second-order terms, i.e., we must write and know, more explicitly, that

f(p+ h) = f(p) +Df(p)th+ htD2f(p)h/2 + o(hth),

with

H := D2f :=



D1D1f · · · D1Dnf

... · · ·
...

DnD1f · · · DnDnf




the Hessian for f , hence

h 7→ htD2f(p)h =
∑

i,j

DiDjf(p)hihj

the associated quadratic form.
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We will learn to distinguish between maxima, minima, and saddle points
by the signs of the eigenvalues of the Hessian, mention Sylvester’s Law of
Inertia, and show how to estimate the effect of perturbations on H on the
spectrum of H , using ideas connected with the Rayleigh quotient.

At this point, you will realize that these notes are strongly influenced by
the use of Linear Algebra in Analysis, with important applications, e.g., in
Graph Theory, ???, or ???, being ignored (partly through ignorance).

Finally, although determinants have little to contribute to Linear Al-
gebra at the level of this book, we’ll give a complete introduction to this very
important Linear Algebra tool, and then discuss the Schur complement,
Sylvester’s determinant identity, and the Cauchy-Binet formula.

Throughout, we’ll rely on needed material from prerequisite courses as
collected in an appendix called Background.
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1 Sets, assignments, lists, and maps

The basic objects of Mathematics are sets and maps. Linear Algebra
is perhaps the first course where this fact becomes evident and where it
can be illustrated in a relative straightforward context. Since a complete
understanding of the course material requires a thorough appreciation of
the basic facts about maps, we begin with these and their simpler cousins,
lists and assignments, after a brief review of standard language and notation
concerning sets.

Sets

Sets of interest in these notes include

◦ the natural numbers : N := {1, 2, . . .};
◦ the integers : Z := {. . . ,−1, 0, 1, . . .} = (−N) ∪ {0} ∪ N;

◦ the nonnegative integers : Z+ := {p ∈ Z : p ≥ 0};
◦ the rational numbers : Z÷ N := {p/q : p ∈ Z, q ∈ N};
◦ the real numbers and the nonnegative reals: R, R+ := {x ∈ R :
x ≥ 0};
◦ the complex numbers : C := R + iR = {x + iy : x, y ∈ R}, i :=√
−1. As these examples show, a set is often specified in the form
{x : P (x)} which is read ‘the set of all x that have the property P (x)’.
Note the use of the colon, ‘:’, (rather than a vertical bar, ‘|’) to separate,
the initial, provisional, description of the typical element of the set, from
the conditions imposed on it for membership in the set. In these notes,
braces, ‘{’, ‘}’, are used solely in the description of sets.

Standard notation concerning sets includes:

◦ #S denotes the cardinality of the set S, i.e., the count of its elements.

◦ x ∈ S and S ∋ x both mean that x is an element of S.

◦ S ⊂ T , T ⊃ S both mean that S is a subset of T , i.e., all the elements
of S are also elements of T ; if we want to convey that S is a proper

1
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subset of T , meaning that S ⊂ T but S 6= T , we write S ⊆
′
T .

◦ {} denotes the empty set, the set with no elements.

◦ S ∩ T := {x : x ∈ S and x ∈ T } is the intersection of S and T .

◦ S ∪ T := {x : x ∈ S or x ∈ T } is the union of S and T .

◦ S\T := {x : x ∈ S but not x ∈ T } is the difference of S from T and
is often read ‘S take away T ’. In these notes, this difference is never

written S − T , as the latter is reserved for the set {s− t : s ∈ S, t ∈ T }
formable when both S and T are subsets of the same vector space.

1.1 What is the standard name for the elements of R\(Z ÷ N)?

1.2 What is the standard name for the elements of iR?

1.3 Work out each of the following sets. (a) ({−1, 0, 1}∩N)∪{−2}; (b) ({−1, 0, 1}∪
{−2}) ∩ N; (c) Z\(2Z); (d) {z2 : z ∈ iR}.

1.4 Determine #((R+\{x ∈ R : x2 > 16}) ∩ N).

Assignments

Definition: An assignment or, more precisely, an assignment on I
or I-assignment

f = (fi)i∈I = (fi : i ∈ I)
associates with each element i in its domain (or, index set)

dom f := I

some term or item or entry or value fi. In symbols:

f : dom f : i 7→ fi.

The set
ran f := {fi : i ∈ dom f}

of all items appearing in the assignment f is called the range of the
assignment.

If also g is an assignment, then f = g exactly when fi = gi for all
i ∈ dom f = dom g.

Very confusingly, many mathematicians call an assignment an indexed

set, even though it is most certainly not a set. The term family is also used;
however it, too, smacks too much of a set or collection.

We call the assignment f 1-1 if fi = fj =⇒ i = j.

The simplest assignment is the empty assignment, (), i.e., the unique
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assignment whose domain is the empty set. Note that the empty assignment
is 1-1 (why??).

An assignment with domain the set

n := {1, 2, . . . , n}

of the first n natural numbers is called a list, or, more explicitly, an n-list.

To specify an n-list f , it is sufficient to list its terms or values:

f = (f1, f2, . . . , fn).

For example, the cartesian product

×n
i=1Xi := X1 ×X2 × · · · ×Xn := {(x1, x2, . . . , xn) : xi ∈ Xi, i = 1:n}

of the set sequence X1, . . . , Xn is, by definition, the collection of all n-lists
with the ith item or coordinate taken from Xi, all i.

In these notes, we deal with n-vectors, i.e., n-lists of numbers, such as the
3-lists (1, 3.14,−14) or (3, 3, 3). (Note that the list (3, 3, 3) is quite different
from the set {3, 3, 3}. The list (3, 3, 3) has three terms, while the set {3, 3, 3}
has exactly one element.)

Definition: An n-vector is a list of n scalars (numbers). The collection
of all real (complex) n-vectors is denoted by R

n (Cn).

In MATLAB, there are (at least) two ways to specify an n-vector,
namely as a one-row matrix (colloquially known as a row vector),
or as a one-column matrix (colloquially known as a column vec-
tor). For example, we can record the 3-vector x = (1.3, 3.14,−15)
as the one-row matrix

x_as_row = [1.3,3.14,-15];

or as the one-column matrix

x_as_col = [1.3;3.14;-15];

One can also write a one-column matrix as a column, without the
need for the semicolons, e.g.,

x_as_col = [1.3
3.14

-15];
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Back to general assignments. If dom f is finite, say #dom f = n, then
we could always describe f by listing the n pairs (i, fi), i ∈ dom f , in some
fashion. However, that may not always be the most helpful thing to do. Here
is a famous example.

During the Cholera outbreak in 1854 in London, Dr. John Snow recorded
the deaths by address, thus setting up an assignment whose domain consisted
of all the houses in London. But he did not simply make a list of all the
addresses and then record the deaths in that list. Rather, he took a map of
London and marked the number of deaths at each address right on the map
(not bothering to record the value 0 of no deaths). He found that the deaths
clustered around one particular public water pump, jumped to a conclusion
(remember that this was well before Pasteur’s discoveries), had the handle of
that pump removed, and had the satisfaction of seeing the epidemic fade.

Thus, one way to think of an assignment is to visualize its domain in
some convenient fashion, and, ‘at’ each element of the domain, its assigned
item or value.

This is routinely done for matrices, another basic object in these notes.

1.5 In some courses, students are assigned to specific seats in the class room. (a) If
you were the instructor in such a class, how would you record this seating assignment? (b)
What are the range and domain of this assignment?

1.6 A relation between the sets X and Y is any subset of X × Y . Each such
relation relates or associates with some elements of X one or more elements of Y . For
each of the following relations, determine whether or not it provides an assignment on the
set X := 3 =: Y . (i) R = X × Y ; (ii) R = {(x, x) : x ∈ X}; (iii) R = {(1, 2), (2, 2)}; (iv)
R = {(1, 2), (2, 1)}; (v) R = {(1, 2), (3, 1), (2, 1)}; (vi) R = {(1, 2), (2, 2), (3, 1), (2, 1)}.

Matrices

Definition: A matrix, or, more precisely, an m × n-matrix, is any
assignment with domain the cartesian product

m× n = {(i, j) : i ∈ m, j ∈ n}

of m with n, for some nonnegative m and n.

The collection of all real, resp. complex m×n-matrices is denoted
by R

m×n, resp. C
m×n.

In other words, a matrix has a rectangular domain. Correspondingly, it
is customary to display such an m× n-matrix A as a rectangle of items:

A =




A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n
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rather than as a list of pairs. This means that we must think of its domain
rotated clockwise 90◦ when compared to the ordinary (x, y)−plane, i.e., the
domain of many other bivariate assignments (or maps).

This way of displaying a matrix has led to the following language.

Let A be an m× n-matrix. The item

Ai,j

corresponding to the index (i, j) is also called the (i, j)-entry of A.
The list Ai: := (Ai,j : j ∈ n) is called the ith row of A, the list
A:j := (Ai,j : i ∈ m) is called the jth column of A, and the list
(Aii = Ai,i : 1 ≤ i ≤ min{m,n}) is called the (main) diagonal of A.

A matrix with nonzero entries only on or above (below) the diagonal is
called upper (lower) triangular. A diagonal matrix is one that is
both upper and lower triangular.

By definition, At denotes the transpose of the matrix A, i.e., the n×m-
matrix whose (i, j)-entry is Aji, all i, j. Because of its importance in the
later parts of these notes, we usually use the conjugate transpose
Ac := At whose (i, j)-entry is the scalar Aji, with α the complex conju-
gate of the scalar α.

When m = n, A is called a square matrix of order n.

The notation Ai: for the ith row and A:j for the jth column of
the matrix A is taken from MATLAB, where, however, A(i,:) is a
one-row matrix and A(:,j) is a one-column matrix (rather than just
a vector). The (main) diagonal of a matrix A is obtained in MATLAB

by the command diag(A), which returns, in a one-column matrix,
the list of the diagonal elements. The upper (lower) triangular part
of a matrix A is provided by the command triu(A) (tril(A)). The
conjugate transpose of a matrix A is obtained by A’. This is the
same as the transpose if A is real. To get the mere transpose At in
the contrary case, you must use the notation A.’ which is strange
since there is nothing pointwise about this operation.

The above-mentioned need to look at displays of matrices side-
ways is further compounded when we use MATLAB to plot a ma-
trix. Here, for example, is the ‘picture’ of the 8 × 16-matrix A :=
eye(8,16) as generated by the command mesh(eye(8,16)). This
matrix has all its diagonal entries equal to 1 and all other entries
equal to 0. But note that a careless interpretation of this figure
would lead one to see a matrix with 16 rows and only 8 columns,
due to the fact that MATLAB’s mesh(A) command interprets A(i,j)
as the value of a bivariate function at the point (j,i).
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The rectangular identity matrix eye(8,16) as plotted in MATLAB

While lists can be concatenated in just one way, by letting one follow
the other, matrices can be ‘concatenated’ by laying them next to each other
and/or one underneath the other. The only requirement is that the result be
again a matrix. If, for example,

A := [ 1 2 ] , B :=




3
6
9



 C :=

[
4 5
7 8

]
,

then there are four different ways to ‘concatenate’ these three matrices,
namely




1 2 3
4 5 6
7 8 9


 ,




4 5 3
7 8 6
1 2 9


 ,




3 1 2
6 4 5
9 7 8


 ,




3 4 5
6 7 8
9 1 2


 .

In MATLAB, one would write the three matrices

A = [1 2]; B = [3;6;9]; C = [4 5; 7 8];

and would describe the four possible ‘concatenations’

[[A;C],B]; [[C;A],B]; [B,[A;C]]; [B,[C;A]];

We saw earlier that even vectors are described in MATLAB by
matrices since plain MATLAB only knows matrices.
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1.7 For the matrix A given by [[0 0 0 0];eye(2,4)], determine the following items:

(a) the main diagonal; (b) the second column; (c) the third row; (d) A3,2; (e) At; (f) Ac.

(g) Is A lower or upper triangular?

Lists of lists

Matrices are often used to record or represent a list f = (f1, f2, . . . , fn)
in which all the items fj are themselves lists. This can always be done if
all the items fj in that list have the same length, i.e., for some m and all j,
#fj = m. Further, it can be done in two ways, by columns or by rows.

Offhand, it seems more natural to think of a matrix as a list of its
rows, particularly since we are used to writing things from left to right.
Nevertheless, in these notes, it will always be done by columns, i.e., the
sequence (f1, f2, . . . , fn) ofm-vectors will be associated with them×n-matrix
A whose jth column is fj , all j. We write this fact in this way:

A = [f1, f2, . . . , fn]; i.e., A:j = fj , j = 1:n.

This makes it acceptable to denote by

#A

the number of columns of the matrix A. If I need to refer to the number of
rows of A, I will simply count the number of columns of its transpose, At, or
its conjugate transpose, Ac, i.e., write

#At or #Ac,

rather than introduce yet another notation.

Here is a picturesque example of a list of lists, concerning the
plotting of a polyhedron, specifically the regular octahedron. Its
vertex set consists of the three unit vectors and their negatives, i.e.:

vs = [1 0 0 0 -1 0
0 0 1 -1 0 0
0 1 0 0 0 -1];

Each face is a triangle, and we specify it here by giving the index,
in the vertex array vs, of each of its three vertices:

ff = [2 4 1; 2 1 3; 4 5 1; 2 6 4]’;
bf = 7 - ff;

The faces have been organized into front faces and back faces, in
anticipation of the plotting about to be done, in which we want to
plot the front faces strongly, but only lightly indicate the back faces.
Be sure to look for specific faces in the figure below, in which the six
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vertices are numbered as in vs. E.g., the first front face, specified
by the first column of ff, involves the vertices numbered 2, 4, 1;
it is the face we are viewing head-on.

First, we set the frame:

axis([-1 1 -1 1 -1 1])
hold on, axis off

Then we plot the back-faces first (using r=[1 2 3 1] to make sure
that we plot closed triangles):

r = [1 2 3 1];
for j=1:4

plot3(vs(1,bf(r,j)),vs(2,bf(r,j)),vs(3,bf(r,j)),’:’)
end

Then, finally, we plot the front faces and finish the picture:

for j=1:4
plot3(vs(1,ff(r,j)),vs(2,ff(r,j)),vs(3,ff(r,j)), ...

’linewidth’,1.5);
end
hold off

Here is the resulting figure (obtained by the command print -

deps2 figoctah.eps which generates a postscript file). I have
labeled all the vertices by their index in the vertex list vs.

5

2

3

4

1

6

The regular octahedron.

1.8 The regular octahedron is one of five regular solids. Write a MATLAB

function regular(n) that will, for input n ∈ (1, 2, 3), draw the regular (tetra-

hedron, cube, octahedron).
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Maps

Definition: A map

f : X → Y : x 7→ f(x)

associates with each element x of its domain dom f := X a unique
element y = f(x), called the value of f at x, from its target tar f := Y .
If g is also a map, then f = g means that dom f = dom g, tar f = tar g,
and f(x) = g(x) for all x ∈ dom f .

The collection
ran f := {f(x) : x ∈ X}

of all values taken by f is called the range of f . More generally, for
any subset Z of X ,

fZ := f(Z) := {f(z) : z ∈ Z}

is called the image of Z under f . In these terms,

ran f = f(dom f).

Also, for any U ⊂ Y , the set

f−1U := {x ∈ X : f(x) ∈ U}

is called the pre-image of U under f . The collection of all maps from
X to Y is denoted by

Y X or (X → Y ).

Names other than map are in use, such as mapping, operator, mor-
phism, transformation etc., all longer than ‘map’. A scalar-valued map is
often called a function. Somewhat confusingly, many mathematicians use
the term ‘range’ for what we have called here ‘target’; the same mathemati-
cians use the term image for what we have called here ‘range’.

Every map f : X → Y gives rise to an assignment on X , namely the
assignment (f(x) : x ∈ X). On the other hand, an assignment f on X gives
rise to many maps, one for each Y that contains ran f , by the prescription
X → Y : x 7→ fx. We call this the map into Y given by the assignment
f .

If X is empty, then Y X consists of exactly one element, namely the map
given by the empty assignment, and this even holds if Y is empty.
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However, if Y is empty and X is not, then there can be no map from
X to Y , since any such map would have to associate with each x ∈ X some
y ∈ Y , yet there are no y ∈ Y to associate with.

“Wait a minute!”, you now say, “How did we manage when X was
empty?” Well, if X is empty, then there is no x ∈ X , hence the question
of what element of Y to associate with never comes up. Isn’t Mathematics
slick?

1.9 Which of the following lists of pairs describes a map from {o,u,i,a} to {t,h,s}?
A: ((u,s), (i,s), (a,t), (o,h), (i,s)); B: ((i,t), (a,s), (o,h), (i,s), (u,s)); C: ((a,s), (i,t), (u,h),
(a,s), (i,t)).

1.10 For each of the following MATLAB maps, determine their range, as maps on real
2-by-3 matrices: (a) A 7→ max(A); (b) A 7→ A(:,2); (c) A 7→ diag(A); (d) A 7→ size(A); (e)
A 7→ length(A); (f) A 7→ cos(A); (g) A 7→ ones(A); (h) A 7→ sum(A).

1.11 The characteristic function χ
S

of the subset S of the set T is, by definition,

the function on T that is 1 on S and 0 otherwise:

χ
S

: T → {0, 1} : t 7→
{

1, if t ∈ S;
0, otherwise.

Let R and S be subsets of T . Prove that (a) χ
R∪S

= max(χ
R

, χ
S
); (b) χ

R∩S
=

min(χ
R

, χ
S
) = χ

R
χ

S
; (c) χ

R\S
= χ

R
(1 − χ

S
). (d) R ⊂ S iff χ

R
≤ χ

S
.

1.12 Let f : T → U , and consider the map from subsets of U to subsets of T given
by the rule

R 7→ f−1R := {t ∈ T : f(t) ∈ R}.
Prove that this map commutes with the set operations of union, intersection and ‘take
away’, i.e., for any subsets R and S of U , (a) f−1(R∪S) = (f−1R)∪ (f−1S); (b) f−1(R∩
S) = (f−1R) ∩ (f−1S); (c) f−1(R\S) = (f−1R)\(f−1S).

1-1 and onto

In effect, a map is an assignment together with a target, with the tar-
get necessarily containing the range of the assignment. A major reason for
introducing the concept of map (as distinct from the notion of assignment)
is in order to raise the following basic question:

Given the map f : X → Y and y ∈ Y , find x ∈ X for which f(x) = y,
i.e., solve the equation

(1.1) f(?) = y.

Existence occurs if this equation has a solution for every y ∈ Y , i.e.,
if ran f = tar f . Uniqueness occurs if there is at most one solution for
every y ∈ Y , i.e., if f(x) = f(z) implies that x = z, i.e., the assignment
(f(x) : x ∈ X) is 1-1.

Here are the corresponding map properties:

Definition: The map f : X → Y is onto in case ran f = Y .
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Definition: The map f : X → Y is 1-1 in case f(x) = f(y) =⇒ x = y.

Not surprisingly, these two map properties play a major role throughout
these notes. (At last count, ‘1-1’ appears over 360 times in these notes, and
‘onto’ over 240 times.) – There are other names in use for these properties:
An onto map is also called surjective or epimorph(ic), while a 1-1 map is
also called injective or monomorph(ic).

You are, of course, familiar with maps in an atlas, or maps used for
travel. These endeavor to associate with each point in their domain (usually
a rectangle) some point on the earth’s surface in a “continuous” 1-1 manner.

Perhaps the simplest useful examples of maps are those derived from
lists, i.e., maps from some n into some set Y . Here is the basic observation
concerning such maps being 1-1 or onto.

(1.2) If g : n → Y is 1-1 and f : m → Y is onto, then n ≤ m, with
equality if and only if g is also onto and f is also 1-1.

Proof: The sequence (f(1), . . . , f(m)) contains every element of Y ,
but may also contain duplicates of some. Throw out all duplicates to arrive
at the sequence (h(1), . . . , h(q)) which still contains all elements of Y but
each one only once. In effect, we have ‘thinned’ f to a map h : q → Y that
is still onto but also 1-1. In particular, q ≤ m, with equality if and only if
there were no duplicates, i.e., f is also 1-1.

Now remove from the sequence (h(1), . . . , h(q)) every entry of the se-
quence (g(1), . . . , g(n)). Since h is onto and 1-1, each of the n distinct en-
tries g(j) does appear in h’s sequence exactly once, hence the remaining
sequence (k(1), . . . , k(r)) has length r = q − n. Thus, n ≤ q, with equality,
i.e., with r = 0, if and only if g is onto. In any case, the concatenation
(g(1), . . . , g(n), k(1), . . . , k(r)) provides an ‘extension’ of the 1-1 map g to a
map to Y that is still 1-1 but also onto.

Put the two arguments together to get that n ≤ q ≤ m, with equality if
and only if f is also 1-1 and g is also onto.

Note the particular conclusion that if both g : n→ Y and f : m→ Y are
1-1 and onto, then necessarily n = m. This number is called the cardinality
of Y and is denoted

#Y.

Hence, if we know that #Y = n, i.e., that there is some invertible map from
n to Y , then we know that any map f : n→ Y is onto if and only if it is 1-1.
This is the
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(1.3) Pigeonhole principle: If f : n→ Y with #Y = n, then f is 1-1
if and only if f is onto.

Any map from n to n that is 1-1 and onto is called a permutation of
order n since its list is a reordering of the first n integers. Thus (3, 2, 1)
or (3, 1, 2) are permutations of order 3 while the map into 3 given by the
3-vector (3, 3, 1) is not a permutation, as it is neither 1-1 nor onto.

By the Pigeonhole principle, in order to check whether an n-vector rep-
resents a permutation, we only have to check whether its range is n (which
would mean that it is onto, as a map into n), or we only have to check whether
all its values are different and in n (which would mean that it is a 1-1 map
into its domain, n).

The finiteness of n is essential here. For example, consider the right
shift

(1.4) r : N→ N : n 7→ n+ 1.

This maps different numbers to different numbers, i.e., is 1-1, but fails to be
onto since the number 1 is not in its range. On the other hand, the left shift

(1.5) l : N→ N : n 7→ max{n− 1, 1}

is onto, but fails to be 1-1 since it maps both 1 and 2 to 1.

In light of this example, it is all the more impressive that such a pi-
geonhole principle continues to hold for certain special maps f : X → Y
with both X and Y infinite. Specifically, according to (4.16)Corollary, if X
and Y are vector spaces of the same finite dimension and f : X → Y is a
linear map, then f is 1-1 if and only f is onto. This result is one of the high
points of basic linear algebra. A more down-to-earth formulation of it, as in
(3.17)Theorem, is the following: A linear system with as many equations as
unknowns has a solution for every right-hand side if and only if it has only
the trivial solution when the right-hand side is 0.

1.13 Prove: any g : n → Y with n > #Y cannot be 1-1.

1.14 Prove: any f : m → Y with m < #Y cannot be onto.

1.15 Let g : n → Y be 1-1, and f : m → Y be onto. Prove that

(i) for some k ≥ n, g can be ‘extended’ to a map h : k → Y that is 1-1 and onto;

(ii) for some k ≤ m, f can be ‘thinned’ to a map h : k → Y that is onto and 1-1.

1.16 Prove: If T is finite and S ⊂ T , then S is finite, too. (Hint: consider the set N
of all n ∈ N ∪ {0} for which there is a 1-1 map g : n → S.)

1.17 Prove that S ⊂ T and #T < ∞ implies that #S ≤ #T , with equality if and

only if S = T .
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Some examples

The next simplest maps after those given by lists are probably those
that come to you in the form of a list of pairs. For example, at the end of
the semester, I am forced to make up a grade map. The authorities send me
the domain of that map, namely the students in this class, in the form of a
list, and ask me to assign, to each student, a grade, thus making up a list of
pairs of the form

name | grade

Here at UW, the target of the grade map is the set

{A, AB, B, BC, C, D, F, I},
but there is no requirement to make this map onto. In fact, I could not meet
that requirement if there were fewer than 8 students in the class. Neither is
it required to make the grade map 1-1. In fact, it is not possible to make the
grade map 1-1 if the class has more than 8 students in it. But if the class
has exactly 8 students in it, then a grade map that is onto is automatically
also 1-1, and a grade map that is 1-1 is automatically also onto.

There are many maps in your life that are given as a list of pairs, such
as the list of dorm-room assignments or the price list in the cafeteria. The
dorm-room assignment list usually has the set of students wanting a dorm
room as its domain and the set of available dorm rooms as its target, is
typically not 1-1, but the authorities would like it to be onto. The price
list at the cafeteria has all the items for sale as its domain, and the set
N/100 := {m/100 : m ∈ N} of all positive reals with at most two digits after
the decimal point as its target. There is little sense in wondering whether
this map is 1-1 or onto.

1.18 Describe an interesting map (not already discussed in class) that you have made
use of in the last month or so (or, if nothing comes to mind, a map that someone like you
might have used recently). Be sure to include domain and target of your map in your
description and state whether or not it is 1-1, onto.

Maps and their graphs

x

f(x)

X Y

One way to visualize the map f : X → Y : x 7→ f(x).



14 1 Sets, assignments, lists, and maps

One successful mental image of a ‘map’ is to imagine both domain and
target as sets of some possibly indistinct shape, with curved arrows indicating
with which particular element in the target the map f associates a particu-
lar element in the domain. Another successful mental (and more successful
mathematical) image of a map f : X → Y is in terms of its graph, i.e., in
terms of the set of pairs

{(x, f(x)) : x ∈ X}.

In fact, the mathematically most satisfying definition of ‘map from X to Y ’
is: a subset of X × Y that, for each x ∈ X , contains exactly one pair (x, y).
In this view, a map is its graph.

Here, for example, is the (graph of the) grade map G for a graduate
course I taught recently. I abbreviated the students’ names, to protect the
innocent.

NA

•

SC

•

SG

•
AK

•

TK

•

AM

•

JP

•

DS

•

ST

•

TW

•

ZH

•A

AB

B

BC

C

D

F

I

You may be more familiar with the graphs of real functions, such as the
‘squaring’ map

()2 : [0 . . 2]→ [0 . . 4] : x 7→ x2,

whose graph is shown in the next figure.

1.19 For each of the following subsets R of the cartesian product X × Y with X =
[0 . . 2] and Y = [0 . . 4], determine whether it is the graph of a map from X to Y and, if it
is, whether that map is 1-1 and/or onto or neither.

(a) R = {(x, y) : y = (x − 1/2)2}; (b) R = {(x, y) : x ≥ 1, y = (2x − 2)2}; (c)
R = {(x, y) : y = (2x − 2)2}; (d) R = {(x, y) : x = y}.

1.20 Same as previous problem, but with X and Y interchanged and, correspond-
ingly, R replaced by R−1 := {(y, x) ∈ Y × X : (x, y) ∈ R}. Also, discuss any connections
you see between the answers in these two problems.
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X = [0 . . 2] = dom f = tar f−1

Y = [0 . . 4] = tar f = dom f−1

X × Y

Y ×X

4

y = f(?)

0

0

?

2

The graph of the squaring map f := ()2 : [0 . . 2]→ [0 . . 4] : x 7→ x2 and of
its inverse f−1 =

√
: [0 . . 4]→ [0 . . 2] : x 7→ √x.

Invertibility

The graph of a map f helps us solve the standard ‘computational’ prob-
lem involving maps, namely the problem of finding an x ∈ X that solves the
equation

f(?) = y

for given f : X → Y and y ∈ Y . The solution set is the pre-image of {y}
under f , i.e., the set

f−1{y} = {x ∈ X : f(x) = y}.

For example, when looking at the graph of the above grade map G, we see
that G−1{AB} = {JP, ST}, while G−1{D} = {} (the empty set). In the first
case, we have two solutions, in the second case, we have none.
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In effect, when looking for solutions to the equation f(?) = y, we are
looking at the graph of f with the roles of domain and target interchanged:
We are trying to associate with each y ∈ Y some x ∈ X in such a way that
f(x) = y. If f is onto, then there is at least one solution for every y ∈ Y ,
and conversely (existence). If f is 1-1, then there is at most one solution for
any y ∈ Y , and conversely (uniqueness). Ideally, there is, for each y ∈ Y ,
exactly one x ∈ X for which f(x) = y.

Definition: The map f : X → Y is invertible := for every y ∈ Y
there exists exactly one x ∈ X for which f(x) = y.

Let f : X → Y .

f is invertible if and only if f is 1-1 and onto.

f is invertible if and only if the inverse of its graph, i.e., the set

{(f(x), x) : x ∈ X} ⊂ Y ×X,

is the graph of a map from Y to X . This latter map is called the inverse
of f and is denoted by f−1.

Any 1-1 assignment f , taken as a map into its range, is invertible, since
it is both 1-1 and onto. The above grade map G fails on both counts to
be invertible, it is neither 1-1 nor onto. The squaring map ()2 : [0 . . 2] →
[0 . .4] : x 7→ x2, on the other hand, is invertible since it is both 1-1 and onto.
The earlier figure shows the graph of its inverse, obtained from the graph of
the squaring map by reversing the roles of domain and target. In effect, we
obtain the inverse of the graph of f by looking at the graph of f sideways
and can often tell at a glance whether or not it is the graph of a map, i.e.,
whether f is 1-1 and onto.

A map may be ‘half’ invertible, i.e., it may be either 1-1 or onto, without
being both. For example, the right shift (1.4) is 1-1, but not onto, while the
left shift (1.5) is onto, but not 1-1. Only if domain and target happen to
have the same finite number of elements, then being 1-1 is guaranteed to be
the same as being onto, by the pigeonhole principle (see Problem 1.34).

(1.6) If f : X → Y , with #X = #Y <∞, then f 1-1 or onto implies f
1-1 and onto, i.e., invertible.

In particular, for any finite X , any map f : X → X that is 1-1 or onto
is automatically invertible.
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The notion of f being ‘half’ invertible is made precise by the notions
of left and right inverse. Their definition requires the identity map, often
written

id

if its domain (which is also its target) is clear from the context. The full
definition is:

idX : X → X : x 7→ x.

In other words, the identity map is a particularly boring map, it leaves ev-
erything unchanged.

We also need map composition:

Definition: The composition f ◦ g of two maps f : X → Y and
g : U →W ⊂ X is the map

f ◦ g : U → Y : u 7→ f(g(u)).

We write fg instead of f ◦ g whenever there is no danger of confusion.
Map composition is associative, i.e., whenever fg and gh are defined,
then

(fg)h = f ◦ (gh).

There is a corresponding definition for the composition x ◦ y of two
assignments, x and y, under the assumption that ran y ⊂ domx. Thus,

xy := x ◦ y = (xyi
: i ∈ dom y)

is an assignment whose domain is dom y and whose range is contained in
ranx.

As a simple example, if x is an n-vector and y is an m-vector with
ran y ⊂ n = {1, . . . , n}, then

z := xy := x ◦ y = (xy1
, . . . , xym

).

In MATLAB, if x describes the n-vector x and y describes the
m-vector y with entries in n = {1, . . . , n}, then z=x(y) describes
the m-vector z = xy = x ◦ y.

In the same way, if A ∈ IFm×n, and b is a k-list with entries from
m = {1, . . . ,m}, and c is an l-list with entries from n = {1, . . . , n},
then A(b, c) is a k× l-matrix, namely the matrix D := A(b, c) ∈ IFk×l

with

D(i, j) = A(b(i), c(j)), i ∈ k, j ∈ l.
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In effect, the matrix D = A(b, c) is obtained from A by choosing
rows b(1), b(2), . . . , b(k) and columns c(1), c(2), . . . , c(l) of A, in that
order.

If all rows, in their natural order, are to be chosen, then use
A(:,c). If all columns, in their natural order, are to be chosen, then
use A(b,:).

In particular, A(1,:) is the matrix having the first row of A as
its sole row, and A(:,end) is the matrix having the last column of
A as its sole column. The matrix A(1:2:end,:) is made up from
all the odd rows of A. A(end:-1:1,:) is the matrix obtained from
A by reversing the order of the rows (as could also be obtained by
the command flipud(A)). A(:,2:2:end) is obtained by removing
from A all odd-numbered columns. If x is a one-row matrix, then
x(ones(1,m),:) and x(ones(m,1),:) both give the matrix having
all its m rows equal to the single row in x (as would the expression
repmat(x,m,1)).

MATLAB permits the expression A(b,c) to appear on the left of
the equality sign: If A(b,c) and D are matrices of the same size,
then the statement

A(b,c) = D;

changes, for each (i,j) ∈ dom D, the entry A(b(i),c(j)) of A to
the value of D(i,j). What if, e.g., b is not 1-1? MATLAB does the
replacement for each entry of b, from the first to the last. Hence,
the last time is the one that sticks. For example, if a=1:4, then
the statement a([2,2,2])=[1,2,3] changes a to [1,3,3,4]. On
the other hand, if A appears on both sides of such an assignment,
then the one on the right is taken to be as it is at the outset of that
assignment. For example,

A([i,j],:) = A([j,i],:);

is a slick way to interchange the ith row of A with its jth.

As a first use of map composition, here are the standard sufficient con-
ditions for a map being onto or being 1-1.

If fg is onto, then f is onto; if fg is 1-1, then g is 1-1.

Proof: Since ran(fg) ⊂ ran f ⊂ tar f = tar fg, fg onto implies f
onto. Also, if g(y) = g(z), then (fg)(y) = (fg)(z), hence fg 1-1 implies
y = z, i.e., g is 1-1.
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For example, the composition lr of the left shift (1.5) with the right shift
(1.4) is the identity, hence l is onto and r is 1-1 (as observed earlier).

Remark. The only practical way to check whether a given g is 1-1 is to
come up with an f so that fg is ‘obviously’ 1-1, e.g., invertible. The only
practical way to check whether a given f is onto is to come up with a g so
that fg is ‘obviously’ onto, e.g., invertible.

Definition: If f ∈ Y X and g ∈ XY and fg = id, then f (being to
the left of g) is a left inverse of g, and g is a right inverse of f . In
particular, any left inverse is onto and any right inverse is 1-1.

To help you remember which of f and g is onto and which is 1-1 in case
fg = id, keep in mind that being onto provides conclusions about elements
of the target of the map while being 1-1 provides conclusions about elements
in the domain of the map.

Now we consider the converse statements.

If f : X → Y is 1-1, then f has a left inverse.

Proof: If f is 1-1 and x ∈ X is some element, then

g : Y → X : y 7→
{
f−1{y} if y ∈ ran f ;
x otherwise,

is well-defined since each y ∈ ran f is the image of exactly one element of X .
With g so defined, gf = id follows.

The corresponding statement: If f : X → Y is onto, then f has a
right inverse would have the following ‘proof’: Since f is onto, we can define
g : Y → X : y 7→ some point in f−1{y}. Regardless of how we pick that point
g(y) ∈ f−1{y}, the resulting map is a right inverse for f . – Some object to
this argument since it requires us to pick, for each y, a particular element
from that set f−1{y}. The belief that this can always be done is known as
“The Axiom of Choice”.

If f is an invertible map, then f−1 is both a right inverse and a left
inverse for f . Conversely, if g is a right inverse for f and h is a left
inverse for f , then f is invertible and h = f−1 = g.
Consequently, if f is invertible, then: (i) f−1 is also invertible, and
(f−1)−1 = f ; and, (ii) if also g is an invertible map, with tar g = dom f ,
then fg is invertible, and (fg)−1 = g−1f−1 (note the order reversal).
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Proof: Let f : X → Y be invertible. Since, for every y ∈ Y , f−1(y)
solves the equation f(?) = y, we have ff−1 = idY , while, for any x ∈ X , x
is a solution of the equation f(?) = f(x), hence necessarily x = f−1(f(x)),
thus also f−1f = idX .

As to the converse, if f and has both a left and a right inverse, then
it must be both 1-1 and onto, hence invertible. Further, if hf = idX and
fg = idY , then (using the associativity of map composition),

h = h idY = h ◦ (fg) = (hf)g = idXg = g,

showing that h = g, hence h = f−1 = g.

As to the consequences, the identities ff−1 = idY and f−1f = idX

explicitly identify f as a right and left inverse for f−1, hence f must be
the inverse of f−1. Also, by map associativity, (fg)g−1f−1 = f idXf

−1 =
ff−1 = idY , etc.

While fg = id implies gf = id in general only in case #dom f =
#tar f < ∞, it does imply that gf is as much of an identity map as it can
be: Indeed, if fg = id, then (gf)g = g ◦ (fg) = g id = g, showing that
(gf)x = x for every x ∈ ran g. There is no such hope for x 6∈ ran g, since such
x cannot possibly be in ran gf = g(ranf) ⊂ ran g. However, since gf(x) = x
for all x ∈ ran g, we conclude that ran gf = ran g. This makes gf the identity
on its range, ran g. In particular, (gf) ◦ (gf) = gf , i.e., gf is idempotent
or, a projector.

(1.7) Proposition: If f : X → Y and fg = idY , then gf is a projector,
i.e., the identity on its range, and that range equals ran g.

For example, the composition lr of the left shift (1.5) with the right shift
(1.4) is the identity, hence rl must be the identity on ran r = {2, 3, . . .} and,
indeed, it is.

If the n-vector c in MATLAB describes a permutation, i.e., if the
map c : n→ n : j 7→ c(j) is 1-1 or onto, hence invertible, then the
n-vector cinv giving its inverse can be obtained with the commands

cinv = c; cinv(c) = 1:length(c);

The first command makes sure that cinv starts out as a vector of the
same size as c. With that, the second command changes cinv into
one for which cinv(c) = [1,2,...,length(c)]. In other words,
cinv describes a left inverse for (the map given by) c, hence the
inverse (by the pigeonhole principle).

A second, more expensive, way to construct cinv is with the
help of the command sort, as follows:

[d, cinv] = sort(c);
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For (try help sort), whether or not c describes a permutation,
this command produces, in the n-vector d, the list of the items in
c in nondecreasing order, and provides, in cinv, the recipe for this
re-ordering:

d(i)=c(cinv(i)), i= 1:n.

In particular, if c describes a permutation, then, necessarily, d =
[1,2,3,...], therefore c(cinv)= [1,2,...,length(c)], showing
that cinv describes a right inverse for (the map given by) c, hence
the inverse (by the pigeonhole principle).

Both of these methods extend, to the construction of a left,
respectively a right, inverse, in case the map given by c has only a
left, respectively a right, inverse.

1.21 Let f : 2 → 3 be given by the list (2, 3), and let g : 3 → 2 be the map given by
the list (2, 1, 2).

(a) Describe fg and gf (e.g., by giving their lists).

(b) Verify that fg is a projector, i.e., is the identity on its range.

1.22 For each of the following maps, state whether or not it is 1-1, onto, invertible.
Also, describe a right inverse or a left inverse or an inverse for it or else state why such
right inverse or left inverse or inverse does not exist.

The maps are specified in various ways, e.g., by giving their list and their target or
by giving both domain and target and a rule for constructing their values.

(a) a is the map to {1, 2, 3} given by the list (1, 2, 3).

(b) b is the map to {1, 2, 3, 4} given by the list (1, 2, 3).

(c) c is the map to {1, 2} given by the list (1, 2, 1).

(d) d : R
2 → R : x 7→ 2x1 − 3x2.

(e) f : R
2 → R

2
: x 7→ (−x2, x1).

(f) g : R
2 → R

2
: x 7→ (x1 + 2, x2 − 3).

(g) h : R → R
2

: y 7→ (y/2, 0).

1.23 Verify that, in the preceding problem, dh = id, and explain geometrically why
one would call hd a projector.

1.24 Prove: If fg = fh for g, h : S → T and with f : T → U 1-1, then g = h.

1.25 Prove: If fh = gh for f, g : T → U and with h : S → T onto, then f = g.

1.26 Use the preceding two problems to prove the following converse of (1.7)Propo-
sition: If f : X → Y and gf is a projector, then f is onto and g is 1-1 iff fg = idY .

1.27 If both f and g are maps from n to n, then so are both fg and gf . In particular,
for any f ∈ nn, its power sequence

f0 := idn, f1 := f, f2 := f ◦ f, f3 := f ◦ f2, . . .

is well defined. Further, since nn is finite, the sequence f0, f1, f2, . . . of powers must
eventually repeat itself. In other words, there must be a first r such that fr = fj for some
j < r. Let’s call the difference d := r − j between these two exponents the cycle length
of f .

(a) Find the cycle length for the map given by the sequence (2, 3, 4, 1, 1). (Feel free to
use MATLAB.)
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(b) Also determine the cycle lengths for the following maps:

A:=(2,3,4,5,1); B:=(2,3,1,5,4); C:=(1,2,3,4,5);
D:=(2,5,2,2,1); E:=(2,5,2,5,2); F:=(2,5,2,2,5).

(c) Given all these examples (and any others you care to try), what is your guess as to
the special nature of the map fd in case the cycle length of f is d and f is invertible?

1.28 Finish appropriately the following MATLAB function

function b = ii(a)
% If ran(a) = N := {1,2,...,length(a)} , hence a describes
% the invertible map
% f:N --> N : j |--> a(j)
% then b describes the inverse of f , i.e., the map g:N --> N for which
% fg = id_N and gf = id_N .
% Otherwise, the message
% The input doesn’t describe an invertible map
% is printed and an empty b is returned.

1.29 Let fi : X → X for i = 1:n, hence g := f1 · · · fn is also a map from X to
X. Prove that g is invertible if, but not only if, each fi is invertible, and, in that case,
g−1 = f−1

n · · · f−1
1 . (Note the order reversal!)

1.30 If f : S → T is invertible, then f has exactly one left inverse. Is the converse
true?

1.31 Let g be a left inverse for f : S → T , and assume that #S > 1. Prove that g is
the unique left inverse for f iff g is 1-1. (Is the assumption that #S > 1 really needed?)

1.32 Let g be a right inverse for f . Prove that g is the unique right inverse for f iff
g is onto.

1.33 If f : S → T is invertible, then f has exactly one right inverse. Is the converse
true?

1.34

(i) Prove: If g : Z → X is invertible, then, for any f : X → Y , f is 1-1 (onto) if and
only if the map fg is 1-1 (onto).

(ii) Derive (1.6) from (1.3).

The inversion of maps

The notions of 1-1 and onto, and the corresponding notions of right
and left inverse, are basic to the discussion of the standard ‘computational’
problem already mentioned earlier: for f : X → Y and y ∈ Y , solve

(1.1) f(?) = y.

When we try to solve (1.1), we are really trying to find, for each y ∈ Y , some
x ∈ X for which f(x) = y, i.e., we are trying to come up with a right inverse
for f . Existence of a solution for every right side is the same as having f
onto, and is ensured by the existence of a right inverse for f . Existence of a
left inverse for f ensures uniqueness: If hf = id, then f(x) = f(y) implies
that x = h(f(x)) = h(f(y)) = y. Thus existence of a left inverse implies
that f is 1-1. But existence of a left inverse does not, in general, provide a
solution.

When f has its domain in R
n and and its target in R

m, then we can think
of solving (1.1) numerically. Under the best of circumstances, this still means
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that we must proceed by approximation. The solution is found as the limit of
a sequence of solutions to linear equations, i.e., equations of the form A? = b,
with A a linear map. This is so because linear (algebraic) equations are
the only kind of equations we can actually solve exactly (ignoring roundoff).
This is one reason why Linear Algebra is so important. It provides the
mathematical structures, namely vector spaces and linear maps, needed to
deal efficiently with linear equations and, thereby, with other equations.

1.35 T/F

(a) 0 is a natural number.

(b) #{3, 3, 3} = 1.

(c) #(3, 3, 3) = 3.

(d) ({3, 1, 3, 2, 4} ∩ {3, 5, 4}) ∪ {3, 3} = {4, 3, 3, 3, 3}.
(e) If A, B are finite sets, then #(A ∪ B) = #A + #B − #(A ∩ B).

(f) #{} = 1.

(g) {3, 3, 1, 6}\{3, 1} = {3, 6}.
(h) If f : X → X for some finite X, then f is 1-1 if and only if f is onto.

(i) The map f : 3 → 3 given by the list (3, 1, 2) is invertible, and its inverse is given by
the list (2, 3, 1).

(j) The map f : 3 → 2 given by the list (1, 2, 1) has a right inverse.

(k) If U ⊂ tar f , then f maps f−1U onto U .

(l) The map f is invertible if and only if f−1 is the graph of a map.

(m) If f, g ∈ XX and h := fg is invertible, then both f and g are invertible.

(n) The matrix

[
0 0
0 1

]
is diagonal.

(o) The matrix

[
0 0 0
0 0 0

]
is upper triangular.
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Vector spaces, especially spaces of functions

Linear algebra is concerned with vector spaces. These are sets on which
two operations, vector addition and multiplication by a scalar, are defined in
such a way that they satisfy various laws. Here they are, for the record:

(2.1) Definition: To say that X is a linear space (of vectors), or a
vector space, over the commutative field IF (of scalars) means that
there are two maps, (i) X × X → X : (x, y) 7→ x + y called (vector)
addition; and (ii) IF × X → X : (α, x) 7→ αx =: xα called scalar
multiplication, which satisfy the following rules.

(a) X is a commutative group with respect to addition; i.e.,
addition

(a.1) is associative: x+ (y + z) = (x+ y) + z;

(a.2) is commutative: x+ y = y + x;

(a.3) has neutral element: ∃0 ∀x x+ 0 = x;

(a.4) has inverse: ∀x ∃y x+ y = 0.

(s) scalar multiplication is

(s.1) associative: α(βx) = (αβ)x;

(s.2) field-addition distributive: (α+ β)x = αx+ βx;

(s.3) vector-addition distributive: α(x+ y) = αx+ αy;

(s.4) unitary: 1x = x.

It is standard to denote the element y ∈ X for which x+ y = 0 by −x since
such y is uniquely determined by the requirement that x + y = 0. I will
denote the neutral element in X by the same symbol, 0, used for the zero
scalar. For reasons to become clear, I often write xα for αx.

24
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While the scalars can come from some abstract field, we will only be
interested in the real scalars IR and the complex scalars C. Also, from a
practical point of view, the most important linear spaces consist of functions,
i.e., of scalar-valued maps all on some common domain. This means that the
typical linear space we will deal with is (a subset of) the collection of all
maps IFT from some fixed domain T into the scalar field IF (either IF = IR
or IF = C), with pointwise addition and multiplication by scalars. Here is
the definition:

(2.2) Definition of pointwise vector operations:

(a) The sum f + g of f, g ∈ IFT is the function

f + g : T → IF : t 7→ f(t) + g(t).

(s) The product αf of the scalar α ∈ IF with the function f ∈ IFT

is the function
αf : T → IF : t 7→ αf(t).

With respect to these operations, IFT is a linear space (over
IF). In particular, the function

0 : T → IF : t 7→ 0

is the neutral element, or zero vector, and, for f ∈ IFT ,

−f : T → IF : t 7→ −f(t)

is the additive inverse for f .

Note that it is not possible to add two functions unless they have the
same domain!

Standard examples include:

(i) T = n, in which case we get n-dimensional coordinate space IFn

whose elements (vectors) we call n-vectors.

(ii) T = m × n, in which case we get the space IFm×n, whose elements
we call m-by-n matrices.

(iii) T = IR, IF = IR, in which case we get the space of all real-valued
functions on the real line.

(iv) T = R
n, IF = IR, in which case we get the space of all real-valued

functions of n real variables.
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The most common way to get a vector space is as a linear subspace:

Definition: A nonempty subset Y of a vector space X is a linear
subspace (of X) in case it is closed under addition and multiplication
by a scalar. This means that the two sets

Y + Y := {y + z : y, z ∈ Y } and IFY := {αy : α ∈ IF, y ∈ Y }

are in Y .

Standard examples include:

(i) The trivial space {0}, consisting of the zero vector alone; it’s a great
space for testing one’s understanding.

(ii) Π≤k := the set of all polynomials of degree ≤ k as a subset of
IFIF.

(iii) The set C([a. .b]) of all continuous functions on the interval [a. .b].

(iv) The set of all real symmetric matrices of order n as a subset of
IRn×n.

(v) The set of all real-valued functions on IR that vanish on some fixed
set S.

(vi) The set BLξ ⊂ C([ξ1 . . ξℓ+1]) of all broken lines with (interior)
breaks at ξ2 < · · · < ξℓ.

It is a good exercise to check that, according to the abstract definition of
a vector space, any linear subspace of a vector space is again a vector space.
Conversely, if a subset of a vector space is not closed under vector addition
or under multiplication by scalars, then it cannot be a vector space (with
respect to the given operations) since it violates the basic assumption that
the sum of any two elements and the product of any scalar with any element
is again an element of the space. (To be sure, the empty subset {} of a linear
space is vacuously closed under the two vector operations but fails to be a
linear subspace since it fails to be nonempty.)

Proposition: A subset Y of a vector space X is a vector space (with
respect to the same addition and multiplication by scalars) if and only
if Y is a linear subspace (of X), i.e., Y is nonempty and is closed under
addition and multiplication by scalars.
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Corollary: The sum, Y + Z := {y + z : y ∈ Y, z ∈ Z}, and the
intersection, Y ∩Z, of two linear subspaces, Y and Z, of a vector space
is a linear subspace.

We saw that pointwise addition and multiplication by a scalar makes the
collection IFT of all maps from some set T to the scalars a vector space. The
same argument shows that the collection XT of all maps from some set T into
a vector space X (over the scalar field IF) is a vector space under pointwise
addition and multiplication by scalars. This means, explicitly, that we define
the sum f + g of f, g ∈ XT by

f + g : T → X : t 7→ f(t) + g(t)

and define the product αf of f ∈ XT with the scalar α ∈ IF by

αf : T → X : t 7→ αf(t).

Thus, we can generate from one vector space X many different vector
spaces, namely all the linear subspaces of the vector space XT , with T an
arbitrary set.

2.1 For each of the following sets of real-valued assignments or maps, determine
whether or not they form a vector space (with respect to pointwise addition and mul-

tiplication by scalars), and give a reason for your answer. (a) {x ∈ R
3

: x1 = 4};
(b) {x ∈ R

3
: x1 = x2}; (c) {x ∈ R

3
: 0 ≤ xj , j = 1, 2, 3}; (d) {(0, 0, 0)}; (e)

{x ∈ R
3

: x 6∈ R
3}; (f) C([0 . . 2]); (g) The collection of all 3×3 matrices with all di-

agonal entries equal to zero; (h) {(x, 0) : x ∈ R} ∪ {(0, y) : y ∈ R}.
2.2 Prove that, for every x in the vector space X, (−1)x = −x, and 0x = 0.

2.3 Provide a proof of the above Proposition.

2.4 Prove that the intersection of any collection of linear subspaces of a vector space
is a linear subspace.

2.5 Prove: The union of two linear subspaces is a linear subspace if and only if one
of them contains the other.

2.6 Prove: The finite union of linear subspaces is a linear subspace if and only if
one of them contains all the others. (Hint: reduce to the situation that no subspace is
contained in the union of the other subspaces and, assuming this leaves you with at least
two subspaces, take from each a point that is in none of the others and consider the straight
line through these two points.)
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Linear maps

Definition: Let X,Y be vector spaces (over the same scalar field IF).
The map f : X → Y is called linear if it is

(a) additive, i.e.,

∀{x, z ∈ X} f(x+ z) = f(x) + f(z);

and

(s) homogeneous, i.e.,

∀{x ∈ X,α ∈ IF} f(αx) = αf(x).

We denote the collection of all linear maps from X to Y by

L(X,Y ).

Many books call a linear map a linear transformation or a linear
operator. It is customary to denote linear maps by capital letters. Further,
if A is a linear map and x ∈ domA, then it is customary to write Ax instead
of A(x).

Examples: If X is a linear subspace of IFT , then, for every t ∈ T , the
map

δt : X → IF : f 7→ f(t)

of evaluation at t is linear since the vector operations are pointwise.

The map D : C(1)(R) → C(R) : g 7→ Dg that associates with each
continuously differentiable function g its first derivative Dg is a linear map.

The map C([a . . b])→ R : g 7→
∫ b

a g(t) dt is linear.

Let c := {a : N → IF : limn→∞ an exists}, i.e., c is the vector space of
all convergent sequences. Then the map c→ IF : a 7→ limn→∞ an is linear.

These examples show that the basic operations in Calculus are linear.
This is the reason why so many people outside Algebra, such as Analysts and
Applied Mathematicians, are so interested in Linear Algebra.

The simplest linear map on a vector space X to a vector space Y is the
so-called trivial map. It is the linear map that maps every element of X to
0; it is, itself, denoted by

0.

It is surprising how often this map serves as a suitable illustration or coun-
terexample.
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Example: If a ∈ R
n, then

(2.3) at : R
n → R : x 7→ atx := a1x1 + a2x2 + · · ·+ anxn

is a linear map of great practical importance. Indeed, any (real) linear alge-
braic equation in n unknowns has the form

at? = y

for some coefficient vector a ∈ R
n and some right side y ∈ R. Such an

equation has solutions for arbitrary y if and only if a 6= 0. You have already
learned that the general solution can always be written as the sum of a partic-
ular solution and an arbitrary solution of the corresponding homogeneous
equation

at? = 0.

In particular, the map at cannot be 1-1 unless n = 1.

Assume that a 6= 0. For n = 2, it is instructive to visualize the solution
set as a straight line, parallel to the straight line

null at := {x ∈ R
2 : atx = 0}

through the origin formed by all the solutions to the corresponding homoge-
neous problem, and perpendicular to the coefficient vector a. Note that the
‘nullspace’ null at splits R

2 into the two half-spaces

{x ∈ R
2 : atx > 0} {x ∈ R

2 : atx < 0},
one of which contains a. Here is such a figure, for the particular equation

2x1 + 3x2 = 6.

3

2

a

atx < 0

0 < atx < 6

6 < atx

(2.4) Figure. One way to visualize all the parts of the equation atx = 6
with a = (2, 3).
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By adding or composing two linear maps (if appropriate) or by multi-
plying a linear map by a scalar, we obtain further linear maps. Here are the
details.

The (pointwise) sum A + B of A,B ∈ L(X,Y ) and the product αA of
α ∈ IF with A ∈ L(X,Y ) are again in L(X,Y ), hence L(X,Y ) is closed
under (pointwise) addition and multiplication by a scalar, therefore a linear
subspace of the vector space Y X of all maps from X into the vector space Y .

L(X,Y ) is a vector space under pointwise addition and multiplication
by a scalar.

Linearity is preserved not only under (pointwise) addition and multipli-
cation by a scalar, but also under map composition.

The composition of two linear maps is again linear (if it is defined).

Indeed, if A ∈ L(X,Y ) and B ∈ L(Y, Z), then BA maps X to Z and,
for any x, y ∈ X ,

(BA)(x + y) = B(A(x + y)) = B(Ax+Ay)

= B(Ax) +B(Ay) = (BA)(x) + (BA)(y).

Also, for any x ∈ X and any scalar α,

(BA)(αx) = B(A(αx)) = B(αAx) = αB(Ax) = α(BA)(x).

2.7 For each of the following maps, determine whether or not it is linear (give a
reason for your answer).

(a) Π<k → Z+ : p 7→ #{x : p(x) = 0} (i.e., the map that associates with each polynomial
of degree < k the number of its zeros).

(b) C([a . . b]) → R : f 7→ maxa≤x≤b f(x)

(c) IF3×4 → IF : A 7→ A2,2

(d) L(X, Y ) → Y : A 7→ Ax, with x a fixed element of X (and, of course, X and Y vector
spaces).

(e) R
m×n → R

n×m
: A 7→ Ac (with Ac the (conjugate) transpose of the matrix A)

(f) R → R
2

: x 7→ (x, sin(x))

2.8 The linear image of a vector space is a vector space: Let f : X → T be a map
on some vector space X into some set T on which addition and multiplication by scalars
is defined in such a way that

(2.5) f(αx + βy) = αf(x) + βf(y), α, β ∈ IF, x, y ∈ X.

Prove that ran f is a vector space (with respect to the addition and multiplication as

restricted to ran f). (See Problem 4.28 for an important application.)
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Linear maps from IFn (i.e., column maps)

As a ready source of many examples, we now give a complete description
of L(IFn, X).

For any sequence v1, v2, . . . , vn in the vector space X , the map

f : IFn → X : a 7→ v1a1 + v2a2 + · · ·+ vnan

is linear.

Proof: The proof is a boring but necessary verification.

(a) additivity:

f(a+ b) = v1 (a+ b)1 + v2 (a+ b)2 + · · ·+ vn (a+ b)n

(definition of f)
= v1 (a1 + b1) + v2 (a2 + b2) + · · ·+ vn (an + bn)

(addition of n-vectors)
= v1a1 + v1b1 + v2a2 + v2b2 + · · · + vnan + vnbn

(multiplication by scalar distributes)
= v1a1 + v2a2 + · · ·+ vnan + v1b1 + v2b2 + · · ·+ vnbn

(vector addition commutes)
= f(a) + f(b)

(definition of f)

(s) homogeneity:

f(βa) = v1 (βa)1 + v2 (βa)2 + · · ·+ vn (βa)n

(definition of f)
= v1βa1 + v2βa2 + · · ·+ vnβan

(multiplication of scalar with n-vectors)
= β(v1a1 + v2a2 + · · ·+ vnan)

(multiplication by scalar distributes)
= βf(a)

(definition of f)
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Definition: The weighted sum

v1a1 + v2a2 + · · ·+ vnan

is called the linear combination of the vectors v1, v2, . . . , vn with
weights a1, . . . , an. I will use the suggestive abbreviation

[v1, v2, . . . , vn]a := v1a1 + v2a2 + · · ·+ vnan,

hence use
[v1, v2, . . . , vn]

for the map V : IFn → X : a 7→ v1a1 + v2a2 + · · ·+ vnan. I call such a
map a column map, and call vj its jth column. Further, I denote its
number of columns by

#V.

The most important special case of this occurs when also X is a coordi-
nate space, X = IFm say. In this case, each vj is an m-vector, and

v1a1 + v2a2 + · · ·+ vnan = V a,

with V the m × n-matrix with columns v1, v2, . . . , vn. This explains why I
chose to write the weights in the linear combination v1a1 + v2a2 + · · ·+ vnan

to the right of the vectors vj rather than to the left. For, it suggests that
working with the map [v1, v2, . . . , vn] is rather like working with a matrix
with columns v1, v2, . . . , vn.

Note that MATLAB uses the notation [v1, v2, . . . , vn] for the ma-
trix with columns v1, v2, . . . , vn, as do some textbooks. This stresses
the fact that it is customary to think of the matrix C ∈ IFm×n with
columns c1, c2, . . . , cn as the linear map

[c1, c2, . . . , cn] : IFn → IFm : x 7→ c1x1 + c2x2 + · · ·+ cnxn.
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Agreement: For any sequence v1, v2, . . . , vn of m-vectors,

[v1, v2, . . . , vn]

denotes both the m × n-matrix V with columns v1, v2, . . . , vn and the
linear map

V : IFn → IFm : a 7→ [v1, v2, . . . , vn]a = v1a1 + v2a2 + · · ·+ vnan.

Thus,
IFm×n = L(IFn, IFm).

Thus, a matrix V ∈ IFm×n is associated with two rather different maps:
(i) since it is an assignment with domain m × n and values in IF, we could
think of it as a map on m× n to IF; (ii) since it is the n-list of its columns,
we can think of it as the linear map from IFn to IFm that carries the n-vector
a to the m-vector V a = v1a1 + v2a2 + · · ·+ vnan. From now on, we will stick
to the second interpretation when we talk about the domain, the range, or
the target, of a matrix. Thus, for V ∈ IFm×n, domV = IFn and tarV = IFm,
and ranV ⊂ IFm. – If we want the first interpretation, we call V ∈ IFm×n a
(two-dimensional) array.

Next, we prove that there is nothing special about the linear maps of
the form [v1, v2, . . . , vn] from IFn into the vector space X , i.e., every linear
map from IFn to X is necessarily of that form. The identity map

idn : IFn → IFn : a→ a

is of this form, i.e.,
idn = [e1, e2, . . . , en]

with ej the jth unit vector, i.e.,

ej := (0, . . . , 0︸ ︷︷ ︸
j−1 zeros

, 1, 0, . . . , 0)

the vector (with the appropriate number of entries) all of whose entries are
0, except for the jth, which is 1. Written out in painful detail, this says that

a = e1a1 + e2a2 + · · ·+ enan, ∀a ∈ IFn.

Further,

(2.6) Proposition: If V = [v1, v2, . . . , vn] : IFn → X and f ∈ L(X,Y ),
then fV = [f(v1), . . . , f(vn)].
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Proof: If dom f = X and f is linear, then fV is linear and, for any
a ∈ IFn,

(fV )a = f(V a) = f(v1a1 + v2a2 + · · ·+ vnan)

= f(v1)a1 + f(v2)a2 + · · ·+ f(vn)an = [f(v1), . . . , f(vn)]a.

Consequently, for any f ∈ L(IFn, X),

f = f idn = f [e1, e2, . . . , en] = [f(e1), . . . , f(en)].

This proves:

(2.7) Proposition: The map f from IFn to the vector space X is linear
if and only if

f = [f(e1), f(e2), . . . , f(en)].

In other words,

L(IFn, X) = {[v1, v2, . . . , vn] : v1, v2, . . . , vn ∈ X} (≃ Xn).

As a simple example, recall from (2.3) the map

at : R
n → R : x 7→ a1x1 + a2x2 + · · ·+ anxn = [a1, . . . , an]x,

and, in this case, atej = aj , all j. This confirms that at is linear and shows
that

(2.8) at = [a1, . . . , an] = [a]t.

Notation: I follow MATLAB notation. E.g., [V,W ] denotes the column
map in which first all the columns of V are used and then all the columns of
W . Also, if V and W are column maps, then I write

V ⊂W

to mean that V is obtained by omitting (zero or more) columns from W ; i.e.,
V = W (:, c) for some subsequence c of 1:#W .

Finally, if W is a column map and M is a set, then I’ll write

W ⊂ M
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to mean that the columns of W are elements of M . For example:

(2.9) Proposition: If Z is a linear subspace of Y and W ∈ L(IFm, Y ),
then W ⊂ Z =⇒ ranW ⊂ Z.

The important (2.6)Proposition is the reason we define the product of
matrices the way we do, namely as

(AB)(i, j) :=
∑

k

A(i, k)B(k, j), ∀i, j.

For, if A ∈ IFm×n = L(IFn, IFm) and B = [b1, . . . , br] ∈ IFn×r = L(IFr, IFn),
then AB ∈ L(IFr, IFm) = IFm×r, and

AB = A[b1, . . . , br] = [Ab1, . . . , Abr].

Notice that the product AB of two maps A and B makes sense if and only
if domA ⊃ tarB. For matrices A and B, this means that the number of
columns of A must equal the number of rows of B; we couldn’t apply A to
the columns of B otherwise.

In particular, the 1-column matrix [Ax] is the product of the matrix A
with the 1-column matrix [x], i.e.,

A[x] = [Ax], ∀A ∈ IFm×n, x ∈ IFn.

For this reason, most books on elementary linear algebra and most users of
linear algebra identify the n-vector x with the n× 1-matrix [x], hence write
simply x for what I have denoted here by [x]. I will feel free from now on to
use the same identification. However, I will not be doctrinaire about it. In
particular, I will continue to specify a particular n-vector x by writing down
its entries in a list, like x = (x1, x2, . . .), since that uses much less space than
does the writing of

[x] =




x1

x2
...



 .

It is consistent with the standard identification of the n-vector x with
the n × 1-matrix [x] to mean by xt the 1 × n-matrix [x]t. Further, with y
also an n-vector, one identifies the (1, 1)-matrix [x]t[y] = xty with the scalar

∑

j

xjyj = ytx.

On the other hand,

yxt = [y][x]t = (yixj : (i, j) ∈ n× n)
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is an n× n-matrix (and identified with a scalar only if n = 1).

However, I will not use the terms ‘column vector’ or ‘row vector’, as they
don’t make sense to me. Also, whenever I want to stress the fact that x or
xt is meant to be a matrix, I will write [x] and [x]t, respectively.

For example, what about the expression xytz in case x, y, and z are
vectors? It makes sense only if y and z are vectors of the same length, say
y, z ∈ IFn. In that case, it is [x][y]t[z], and this we can compute in two ways:
we can apply the matrix xyt to the vector z, or we can multiply the vector
x with the scalar ytz. Either way, we obtain the vector x(ytz) = (ytz)x, i.e.,
the (ytz)-multiple of x. However, while the product x(ytz) of x with (ytz)
makes sense both as a matrix product and as multiplication of the vector x
by the scalar ytz, the product (ytz)x only makes sense as a product of the
scalar ytz with the vector x.

(2.10) Example: Here is an example, of help later. Consider the
socalled elementary row operation

Ei,k(α)

on n-vectors, in which one adds α times the kth entry to the ith entry. Is
this a linear map? What is a formula for it?

We note that the kth entry of any n-vector x can be computed as ek
tx,

while adding β to the ith entry of x is accomplished by adding βei to x.
Hence, adding α times the kth entry of x to its ith entry replaces x by
x+ ei(αek

tx) = x+ αeiek
tx. This gives the handy formula

(2.11) Ei,k(α) = idn + αeiek
t.

Now, to check that Ei,j(α) is linear, we observe that it is the sum of two maps,
and the first one, idn, is certainly linear, while the second is the composition
of the three maps,

ek
t : IFn → IF ≃ IF1 : z 7→ ek

tz, [ei] : IF1 → IFn : β → eiβ,

α : IFn → IFn : z 7→ αz,

and each of these is linear (the last one because we assume IF to be a com-

mutative field).

Matrices of the form

(2.12) Ey,z(α) := id + αyzt

are called elementary. They are very useful since, if invertible, their inverse
has the same simple form; see (2.19)Proposition below.
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2.9 Use the fact that the jth column of the matrix A is the image of ej under the
linear map A to construct the matrices that carry out the given action.

(i) The matrix A of order 2 that rotates the plane clockwise 90 degrees;

(ii) The matrix B that reflects R
n

across the hyperplane {x ∈ R
n

: xn = 0};
(iii) The matrix C that keeps the hyperplane {x ∈ R

n
: xn = 0} pointwise fixed, and

maps en to −en;

(iv) The matrix D of order 2 that keeps the y-axis fixed and maps (1, 1) to (2, 1).

2.10 Use the fact that the jth column of the matrix A ∈ IFm×n is the image of ej

under A to derive the four matrices A2, AB, BA, and B2 for each of the given pair A
and B: (i) A = [e1, 0], B = [0, e1]; (ii) A = [e2, e1], B = [e2,−e1]; (iii) A = [e2, e3, e1],
B = A2.

2.11 For each of the following pairs of matrices A, B, determine their products AB
and BA if possible, or else state why it cannot be done.

(a) A =

[
1 −1 1
1 1 1

]
, B the matrix eye(2); (b) A =

[
2 1 4
0 1 2

]
, B = At; (c) A =

[
2 1 4
0 1 2
0 0 −1

]
, B =

[−1 −1 2
0 2 −1
0 0 3

]
; (d) A =

[
2 + i 4 − i
3 − i 3 + i

]
, B =

[
2 − i 3 + i 3i
3 − i 4 + i 2

]
.

2.12 For any A, B ∈ L(X), the products AB and BA are also linear maps on X, as
are A2 := AA and B2 := BB. Give an example of A, B ∈ L(X) for which (A + B)2 does

not equal A2 + 2AB + B2. (Hint: keep it as simple as possible, by choosing X to be R
2
,

hence both A and B are 2-by-2 matrices.)

2.13 Give an example of matrices A and B for which both AB = 0 and BA = 0,
while neither A nor B is a zero matrix.

2.14 Prove: If A and B are matrices with r rows, and C and D are matrices with c
columns, and AC and BD are defined, then the product of the two partitioned matrices
[A, B] and [C;D] is defined and equals AC + BD.

2.15 Prove that both C → R : z 7→ Re z and C → R : z 7→ Im z are linear maps

when we consider C as a vector space over the real scalar field.

The linear equation A? = y, and ranA and nullA

We are ready to recognize and use the fact that the general system

(2.13)

a11x1 + a12x2 + · · ·+ a1nxn = y1

a21x1 + a22x2 + · · ·+ a2nxn = y2

· · · = ·
am1x1 + am2x2 + · · ·+ amnxn = ym

of m linear equations in the n unknowns x1, . . . , xn is equivalent to the vector
equation

Ax = y,

provided

x := (x1, . . . , xn), y := (y1, . . . , ym), A :=




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


 .
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Here, equivalence means that the entries x1, . . . , xn of the n-vector x solve
the system of linear equations (2.13) if and only if x solves the vector equation
A? = y. This equivalence is not only a notational convenience. Switching
from (2.13) to A? = y is the conceptual shift that started Linear Algebra. It
shifts the focus, from the scalars x1, . . . , xn, to the vector x formed by them,
and to the map A given by the coefficients in (2.13), its range and nullspace
(about to be defined), and this makes for simplicity, clarity, and generality.

To stress the generality, we now give a preliminary discussion of the
equation

A? = y

in case A is a linear map, from the vector space X to the vector space Y say,
with y some element of Y .

Existence of a solution for every y ∈ Y is equivalent to having A be
onto, i.e., to having ranA = Y . Now, the range of A is the linear image of
a vector space, hence itself a vector space. Indeed, if v1, . . . , vm are elements
of ranA, then there must be a sequence w1, . . . , wm in X with Awj = vj , all
j. Since X is a vector space, it contains Wa for arbitrary a ∈ IFm, therefore
the corresponding linear combination V a = [Aw1, . . . , Awm]a = (AW )a =
A(Wa) must be in ranA. In other words, if V ⊂ ranA, then ranV ⊂ ranA.

Hence, if we wonder whether A is onto, and we happen to know an onto

column map [v1, . . . , vm] = V ∈ L(IFm, Y ), then we only have to check that
the finitely many columns, v1, . . . , vm, of V are in ranA. For, if some are not
in ranA, then, surely, A is not onto. However, if they all are in ranA, then
Y = ranV ⊂ ranA ⊂ tarA = Y , hence ranA = Y and A is onto.

(2.14)Proposition: The range of a linear map A ∈ L(X,Y ) is a lin-
ear subspace, i.e., is nonempty and closed under vector addition and
multiplication by a scalar.

If Y is the range of the column map V , then A is onto if and only
if the finitely many columns of V are in ranA.

Uniqueness of a solution for every y ∈ Y is equivalent to having A be
1-1, i.e., to have Ax = Az imply that x = z. For a linear map A : X → Y ,
we have Ax = Az if and only if A(x − z) = 0. In other words, if y = Ax,
then

(2.15) A−1{y} = x+ {z ∈ X : Az = 0}.

In particular, A is 1-1 if and only if {z ∈ X : Az = 0} = {0}. In other words,
to check whether a linear map is 1-1, we only have to check whether it is 1-1
‘at’ one particular point, e.g., ‘at’ 0. For this reason, the set A−1{0} = {z ∈
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X : Az = 0} of all elements of X mapped by A to 0 is singled out.

Definition: The set

nullA := {z ∈ domA : Az = 0}

is called the nullspace or kernel of the linear map A.
The linear map is 1-1 if and only if its nullspace is trivial, i.e., contains
only the zero vector.
The nullspace of a linear map is a linear subspace.

Almost all linear subspaces you’ll meet will be of the form ranA or nullA
for some linear map A. These two ways of specifying a linear subspace are
very different in character.

If we are told that our linear subspace Z of X is of the form nullA, for
a certain linear map A on X , then we know, offhand, exactly one element
of Z for sure, namely the element 0 which lies in every linear subspace. On
the other hand, it is easy to test whether a given x ∈ X lies in Z = nullA:
simply compute Ax and check whether it is the zero vector.

If we are told that our linear subspace Z of X is of the form ranA for
some linear map A from some U into X , then we can ‘write down’ explicitly
every element of ranA: they are all of the form Au for some u ∈ domA.
On the other hand, it is much harder to test whether a given x ∈ X lies
in Z = ranA: Now we have to check whether the equation A? = x has a
solution (in U).

As a simple example, the vector space Π≤k of all polynomials of degree
≤ k is usually specified as the range of the column map

[()0, ()1, . . . , ()k] : R
k+1 → R

R,

with

()j : R→ R : t 7→ tj

a convenient (though non-standard!) notation for the monomial of degree
j, i.e., as the collection of all real-valued functions that are of the form

t 7→ a0 + a1t+ · · ·+ akt
k

for some coefficient-vector a. On the other hand, Π≤k can also be defined as
nullDk+1, i.e., as the collection of all real-valued functions that are k + 1-
times continuously differentiable and have their (k+1)st derivative identically
zero.
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(2.16) Remark: The nullspace nullA of the linear map A : X → Y
consists exactly of the solutions to the homogeneous equation

A? = 0.

The linear equation A? = y is readily associated with a homogeneous linear
equation, namely the equation

[A, y]? = 0,

with

[A, y] : X × IF : (z, α) 7→ Az + yα.

If Ax = y, then (x,−1) is a nontrivial element of null[A, y]. Conversely, if
(z, α) ∈ null[A, y] and α 6= 0, then z/(−α) is a solution to A? = y. Hence, for
the construction of solutions to linear equations, it is sufficient to know how
to solve homogeneous linear equations, i.e., how to construct the nullspace of
a linear map.

2.16 For each of the following three systems of linear equations, determine A and y
of the equivalent vector equation A? = y.

(a)
2x1 − 3x2 = 4
4x1 + 2x2 = −6

; (b)
2u1 − 3u2 = 4
4u1 + 2u2 = −6

; (c)
−4c = 16

2a + 3b = 9
.

2.17 For each of the following A and y, write out a system of linear equations equiv-
alent to the vector equations A? = y.

(a) A =

[
2 3
6 4
e −2

]
, y = (9,−

√
3, 1); (b) A =

[
1 2 3 4
4 3 2 1

]
, y = (10, 10);

(c) A = [] ∈ R
0×3

, y = () ∈ R
0
.

2.18 Prove: (i) for any A, B ∈ L(X), null A ∩ null B ⊂ null(A + B). (ii) for any

A, B ∈ L(X) with AB = BA, null A + null B ⊂ null(AB).

Inverses

We have agreed to think of the matrix A ∈ IFm×n as the column map

[A(:, 1), . . . , A(:, n)], i.e., as the linear map

IFn → IFm : a 7→ Aa :=
∑

j

A(:, j)aj .

For this reason, it is also customary to refer to the range ranA of a matrix A
as the column space of that matrix, while the range ranAt of its transpose
is known as its row space. Further, we have found that, in these terms, the
matrix product AB is also the composition A ◦B, i.e.,

(A ◦B)a = A(B(a)) = (AB)a =
∑

j

(AB)(:, j)aj .
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In these terms, the identity map idn on IFn corresponds to the identity
matrix [e1, e2, . . . , en], hence the name for the latter.

(2.17) Proposition: The inverse of a linear map is again a linear map.

Proof: Let A ∈ L(X,Y ) be invertible and y, z ∈ Y . By additivity
of A, A(A−1y+A−1z) = A(A−1y)+A(A−1z) = y+ z. Hence, applying A−1

to both sides, we get A−1y+A−1z = A−1(y+ z), thus A−1 is additive. Also,
from A(αA−1y) = αA(A−1y) = αy, we conclude that αA−1y = A−1(αy),
hence A−1 is homogeneous.

Thus, if A ∈ IFn×n is invertible (as a linear map from IFn to IFn), then
also its inverse is a linear map (from IFn to IFn), hence a square matrix of
order n. We call it the inverse matrix for A, and denote it by A−1. Being
the inverse for A, it is both a right and a left inverse for A, i.e., it satisfies

A−1A = idn = AA−1.

More generally, we would call A ∈ IFm×n invertible if there were B ∈
IFn×m so that

AB = idm and BA = idn.

However, we will soon prove (cf. (3.18)) that this can only happen when
m = n.

We will also soon prove (cf. (3.17)Theorem below) the pigeonhole prin-

ciple for square matrices, i.e., that a linear map from IFn to IFn is 1-1 if and
only if it is onto. In other words, if A,B ∈ IFn×n and, e.g., AB = idn, hence
A is onto, then A must also be 1-1, hence invertible, and therefore its right
inverse must be its inverse, therefore we must also have BA = idn. In short:

(2.18) Amazing Fact: If A,B ∈ IFn×n and AB = idn, then also
BA = idn.

To me, this continues to be one of the most remarkable results in basic
Linear Algebra. Its proof uses nothing more than the identification of matri-
ces with linear maps (between coordinate spaces) and the numerical process
called elimination, for solving a homogeneous linear system A? = 0, i.e., for
constructing nullA.

In preparation, and as an exercise in invertible matrices, we verify the
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following useful fact about elementary matrices.

(2.19) Proposition: For x, y ∈ IFn and α ∈ IF, the elementary matrix

Ey,z(α) = idn + αyzt

is invertible if and only if 1 + αzty 6= 0, and, in that case

(2.20) Ey,z(α)−1 = Ey,z(
−α

1 + αzty
).

Proof: We compute Ey,z(α)Ey,z(β) for arbitrary α and β. Since

αyzt βyzt = αβ (zty) yzt,

we conclude that

Ey,z(α)Ey,z(β) = ( idn + αyzt)( idn + βyzt) = idn + (α+ β + αβ(zty))yzt.

In particular, since the factor (α+ β+αβ(zty)) is symmetric in α and β, we
conclude that

Ey,z(β)Ey,z(α) = Ey,z(α)Ey,z(β).

Further, if 1 + αzty 6= 0, then the choice

β =
−α

1 + αzty

will give α+β+αβ(zty) = 0, hence Ey,z(β)Ey,z(α) = Ey,z(α)Ey,z(β) = idn.
This proves that Ey,z(α) is invertible, with its inverse given by (2.20).

Conversely, assume that 1 + αzty = 0. Then y 6= 0, yet

Ey,z(α)y = y + α(zty)y = 0,

showing that Ey,z(α) is not 1-1 in this case, hence not invertible.

2.19 Prove: If two matrices commute (i.e., AB = BA), then they are square matri-
ces, of the same order.

2.20 Give a noninvertible 2-by-2 matrix without any zero entries.

2.21 Prove that the matrix A :=

[
1 2
4 −1

]
satisfies the equation A2 = 9 id2. Use

this to show that A is invertible, and to write down the matrix A−1.

2.22 Prove: The matrix A :=

[
a b
c d

]
is invertible if and only if ad 6= bc, in which

case

[
d −b
−c a

]
/(ad − bc) is its inverse.
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2.23 Consider the map f : C → R
2×2

: z = a + ib 7→
[

a −b
b a

]
. Show that f is a

1-1 linear map when we think of C as a vector space over the real scalar field.

2.24 Let A, B ∈ L(X). Show that (AB)2 = A2B2 can hold without necessarily
having AB = BA. Show also that (AB)2 = A2B2 implies that AB = BA in case both A
and B are invertible.

2.25 Give an example of matrices A and B, for which both AB and BA are defined
and for which AB = id, but neither A nor B is invertible.

2.26 Prove: If A and C are invertible matrices, and B has as many rows as does A
and as many columns as does C, then also [A, B; 0, C] is invertible and

[A, B; 0, C]−1 =

[
A B
0 C

]−1

=

[
A−1 −A−1BC−1

0 C−1

]
.

2.27 A square matrix A is called diagonally dominant if |Aii| >
∑

j 6=i
|Aij | for

all i. Prove: a diagonally dominant matrix is invertible. (Hint: Prove the contrapositive:
if 0 6= x ∈ null A, then, for some i, |Aii| ≤

∑
j 6=i

|Aij |.)
2.28 Use (2.19)Proposition to prove the Sherman-Morrison Formula: If A ∈

IFn×n is invertible and y, z ∈ IFn are such that α := 1 + ztA−1y 6= 0, then A + yzt is
invertible, and

(A + yzt)−1 = A−1 − α−1A−1yztA−1.

(Hint: A + yzt = A( id + (A−1y)zt).)

2.29 Prove the Woodbury generalization of the Sherman-Morrison Formula: If A
and id + DtAC are invertible, then so is A + CDt, and

(A + CDt)−1 = A−1 − A−1C( id + DtA−1C)−1DtA−1.

2.30 T/F

(a) If A ∈ L(X, Y ), then the set of solutions of A? = b is a linear subspace of X.

(b) Any column map having a 0 column fails to be 1-1.

(c) If the column map V is not 1-1, then one of its columns is 0.

(d) If Y1 and Y2 are linear subspaces of the vector space X, then so is Y1 ∪ Y2.

(e) If Y is a subset of some vector space X, x, y, z are particular elements of X, and x
and 2y − 3x are in Y , but 3y − 2x or y are not, then Y cannot be a linear subspace.

(f) If A, B ∈ L(X, Y ) are both invertible, then so is A + B.

(g) If AB = 0 for A, B ∈ IFn×n, then B = 0.

(h) If A and B are matrices with AB = idm and BA = idn, then B = A−1.

(i) If A =

[
B C
0 0

]
with both A and B square matrices and 0 standing for zero matrices

of the appropriate size, then An =

[
Bn Bn−1C
0 0

]
for all n.

(j) If A ∈ R
m×n

and AtA = 0, then A = 0.

(k) If the matrix product AB is defined, then (AB)t = AtBt.

(l) If A is an invertible matrix, then so is At, and (At)−1 = (A−1)t.

(m)

[
1 0 0
0 1 1
0 0 1

]
is an elementary matrix.

(n) If Y is a subset of some vector space X, x, y, z are particular elements of X, and x
and 2y − 3x are in Y , but 3y − 2x or y are not, then Y cannot be a linear subspace.

(o) If the scalar field IF were not commutative, then the map IFn → IFn : x 7→ αx, of
multiplication by the scalar α, would not be linear.



3 Elimination, or: The determination of
null A and ran A

Elimination and Backsubstitution

Elimination has as its goal an efficient description of the solution set for
the homogeneous linear system A? = 0, i.e., of the nullspace of the matrix A.
It also provides an efficient description of ranA, i.e., of the set of b for which
A? = b has a solution. It is based on the following observation:

(3.1) Lemma: If B is obtained from A by subtracting some multiple
of some row of A from some other row of A, then nullB = nullA.

Proof: Assume, more specifically, that B is obtained from A by sub-
tracting α times row k from row i, for some k 6= i. Then, by (2.10)Example,

B = Ei,k(−α)A,

with Ei,k(−α) = idm−αeiek
t. Consequently, nullB ⊃ nullA, and this holds

even if i = k.

However, since i 6= k, we have ek
tei = 0, hence, for any α, 1+α(ek

tei) =
1 6= 0. Therefore, by (2.19), also

Ei,k(α)B = A,

hence also nullB ⊂ nullA.

One solves the homogeneous linear system A? = 0 by elimination. This
is an inductive process, and it results in a classification of the unknowns as free

or bound. A bound unknown has associated with it a pivot row or pivot
equation which determines this unknown uniquely once all later unknowns

44
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are determined. Any unknown without a pivot equation is a free unknown;
its value can be chosen arbitrarily. We call the jth column of A bound (free)
if the jth unknown is bound (free). The classification proceeds inductively,
from the first to the last unknown or column, i.e., for k = 1, 2, . . ., with the
kth step as follows.

At the beginning of the kth elimination step, we have in hand a matrix
B, called the working-array, which is equivalent to our initial matrix A
in that nullB = nullA. Further, we have already classified the first k − 1
unknowns as either bound or free, with each bound unknown associated with
a particular row of B, its pivot row, and this row having a nonzero entry at
the position of its associated bound unknown and zero entries for all previous
unknowns. All other rows of B are nonpivot rows; they do not involve the
unknowns already classified, i.e., they have nonzero entries only for unknowns
not yet classified. (Note that, with the choice B := A, this description also
fits the situation at the beginning of the first step.) We now classify the kth
unknown or column and, correspondingly, change B, as follows:

bound case: We call the kth unknown or column bound (some would
say basic) in case we can find some nonpivot row B(h, :) for which B(h, k) 6=
0. We pick one such row and call it the pivot row for the kth unknown.
Further, we use it to eliminate the kth unknown from all the remaining
nonpivot rows B(i, :) by the calculation

B(i, :)← B(i, :)− B(i, k)

B(h, k)
B(h, :).

free case: In the contrary case, we call the kth unknown or column
free (some would say nonbasic). No action is required in this case, since
none of the nonpivot rows involves the kth unknown.

By (3.1)Lemma, the changes (if any) made in B will not change nullB. This
finishes the kth elimination step.

For future reference, here is a formal description of the entire algorithm.
This description relies on a sequence p to keep track of which row, if any, is
used as pivot row for each of the unknowns. If row h is the pivot row for
the kth unknown, then p(k) = h after the kth elimination step. Since p is
initialized to have all its entries equal to 0, this means that, at any time, the
rows k not yet used as pivot rows are exactly those for which p(k) = 0.
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(3.2) Elimination Algorithm:

input: A ∈ IFm×n.
B ← A, p← (0, . . . , 0) ∈ R

n.
for k = 1:n, do:

for some h 6∈ ran p with B(h, k) 6= 0, do:
p(k)← h
for all i 6∈ ran p, do:

B(i, :)← B(i, :)− B(i, k)

B(h, k)
B(h, :)

enddo
enddo

enddo
output: B, p, and, possibly, free← find(p==0), bound← find(p>0).

Note that nothing is done at the kth step if there is no h 6∈ ran p with
B(h, k) 6= 0, i.e., if B(h, k) = 0 for all h 6∈ ran p. In particular, p(k) will
remain 0 in that case.

A numerical example: We start with

A :=




0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7
0 1 0 1 3 2 −1 4


 , p = (0, 0, 0, 0, 0, 0, 0, 0).

The first unknown is free. We take the second row as pivot row for the
second unknown and eliminate it from the remaining rows, to get

B =




0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 1 0 −1 1
0 0 0 0 1 0 −1 1


 , p = (0, 2, 0, 0, 0, 0, 0, 0).

Thus the third unknown is free as is the fourth, but the fifth is not, since
there are nonzero entries in the fifth column of some nonpivotal row, e.g.,
the first row. We choose the first row as pivot row for the fifth unknown and
use it to eliminate this unknown from the remaining nonpivot rows, i.e., from
rows 3 and 4. This gives

B =




0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 −1 1


 , p = (0, 2, 0, 0, 1, 0, 0, 0).
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The sixth unknown is free, but there are nonzero entries in the seventh column
of the remaining nonpivot rows, so the seventh unknown is bound, with, e.g.,
the fourth row as its pivot row. We use that row to eliminate the seventh
unknown from the remaining nonpivot row. This gives

(3.3) B =




0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1


 , p = (0, 2, 0, 0, 1, 0, 4, 0).

With that, there are no nontrivial nonpivot rows left. In particular, the
eighth unknown is free, hence we have already in hand the final array.

Altogether, bound = (2, 5, 7) (= find(p>0)) and free = (1, 3, 4, 6, 8) (=
find(p==0)).

After the n steps of this elimination process (which started with B = A),
we have in hand a matrix B with nullB = nullA and with each unknown
classified as bound or free. The two increasing sequences, bound and free,
containing the indices of the bound and free unknowns respectively, will be
much used in the sequel. Each bound unknown has associated with it a
particular row of B, its pivot row. All nonpivot rows of B (if any) are
entirely zero.

Neat minds would reorder the rows of B, listing first the pivot rows in
order, followed by the nonpivot rows and, in this way, obtain a row echelon
form for A. In any case, in determining x ∈ nullB, we only have to pay
attention to the pivot rows. This means that we can determine a particular
element x of nullB = nullA by backsubstitution, i.e., from its last entry to
its first as follows:

For k = n:−1:1, if the kth unknown is bound, i.e., k ∈ bound, determine
xk from its pivot equation (since that equation only involves xk, . . . , xn); else,
pick xk arbitrarily (as then the kth unknown is free, i.e., k ∈ free).

Here is a more formal description, for future reference.

(3.4) Backsubstitution Algorithm:

input: B ∈ IFm×n and p (both as output from (3.2)), z ∈ IFn.
x← z
for k = n:−1:1, do:

if p(k) 6= 0, then xk ← −
(∑

j>k B(p(k), j)xj

)
/B(p(k), k) endif

enddo
output: x, which is the unique solution of A? = 0 satisfying xi = zi for
all i with p(i) = 0.

Notice that the value of every free unknown is arbitrary and that, once
these are chosen somehow, then the bound unknowns are uniquely determined
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by the requirement that we are seeking an element of nullB = nullA. In other
words, the general element of nullB has exactly as many degrees of freedom
as there are free unknowns. Since there are #free unknowns, nullB is said
to be ‘of dimension #free’.

In particular, for any k, the kth entry, xk, of an x ∈ nullB can be nonzero
only in one of two ways: (a) the kth unknown is free, i.e., k ∈ free; (b) the
kth unknown is bound, but xj 6= 0 for some j > k. It follows that xk can
be the rightmost nonzero entry of such an x only if the kth unknown is free.
Conversely, if the kth unknown is free, and x is the element of nullB = nullA
computed by setting xk = 1 and setting all other free entries equal to 0, then
xk is necessarily the rightmost nonzero entry of x (since all free entries to the
right of it were chosen to be zero, thus preventing any bound entry to the
right of it from being nonzero).

This proves

(3.5) Observation: There exists x ∈ nullA with rightmost nonzero
entry xk if and only if the kth unknown is free.

This simple observation gives a characterization of the sequence free

entirely in terms of the nullspace of the matrix A we started with. This
implies that the classification into free and bound unknowns or columns is
independent of all the details of the elimination. More than that, since, for
any 1-1 matrix M with m columns, null(MA) = nullA, it implies that, for
any such matrix MA, we get exactly the same sequences free and bound

as we would get for A. This is the major reason for the uniqueness of a
more disciplined echelon form, the ‘really reduced row echelon form’, to be
discussed in the next section.

Since A(:, k) ∈ ranA(:, [1:k−1]) if and only if there is some x ∈ nullA
whose rightmost nonzero entry is its kth, we have the following reformulation
of (3.5)Observation and consequences.

(3.6) Corollary:

(i) The kth column of A is free if and only if it is a weighted sum of
the columns strictly to the left of it, i.e., A(:, k) ∈ ranA(:, 1:k − 1).

(ii) A(:, 1:k) is 1-1 if and only if all its columns are bound.

(iii) nullA is nontrivial if and only if there are free columns.

Perhaps the most widely used consequence of (iii) here is the following.
If there are more unknowns than equations, then there are not enough equa-
tions to go around, i.e., some unknowns must be free, therefore there are
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nontrivial solutions to our homogeneous equation A? = 0. We remember this
fundamental result of elimination in the following form:

(3.7) Theorem: Any matrix with more columns than rows has a non-
trivial nullspace.

3.1 Determine the bound and free columns for each of the following matrices A.

(a) 0 ∈ R
m×n

; (b) [e1, . . . , en] ∈ R
n×n

; (c) [e1, 0, e2, 0] ∈ R
6×4

; (d)

[
2 2 5 6
1 1 −2 2

]
;

(e)

[
0 2 1 4
0 0 2 6
1 0 −3 2

]
; (f) [x][y]t, with x = (1, 2, 3, 4) = y.

3.2 (3.6)Corollary assures you that y ∈ ran A if and only if the last column of [A, y]
is free. Use this fact to determine, for each of the following y and A, whether or not
y ∈ ranA.

(a) y = (π, 1 − π), A =

[
1 −2
−1 2

]
; (b) y = e2, A =

[
1 2 −1
2 3 −4
3 4 −8

]
; (c) y = e2,

A =

[
1 2 −1
2 3 −4
3 4 −7

]
.

3.3 Prove (3.1)Lemma directly, i.e., without using (2.19)Proposition. (Hint: Prove
that null B ⊃ null A. Then prove that also A is obtainable from B by the same kind of
step, hence also null A ⊃ null B.)

3.4 Prove: If M and A are matrices for which MA is defined and, furthermore, M
is 1-1, then MA? = 0 has exactly the same free and bound unknowns as does A? = 0.

3.5 Assuming the matrix A has exactly α bound columns and the matrix B has

exactly β bound columns and both have the same number of rows, how many bound

columns does the matrix [A, B] have (a) at least? (b) at most? (c) How, if at all, would

your answers to (a), (b) change if I told you that A has m rows?

The really reduced row echelon form and other reduced forms

The construction of the really reduced row echelon form takes elimination
four steps further, none of which changes the nullspace:

(i) When the hth pivot row is found, and it is not the hth row, then it
is exchanged with the current hth row to make it the hth row. (This keeps
things neat; all the rows not yet used as pivot rows lie below all the rows
already picked as pivot rows.)

(ii) Each pivot row is divided by its pivot element, i.e., by its left-
most nonzero entry. (This helps with the elimination of the corresponding
unknown from other rows: if B(h, k) is the pivot element in question (i.e.,
bound(h) = k, i.e., xk is the hth bound unknown), then, after this normal-
ization, one merely subtracts B(i, k) times B(h, :) from B(i, :) to eliminate
the kth unknown from row i.)

(iii) One eliminates each bound unknown from all rows (other than its
pivot row), i.e., also from pivot rows belonging to earlier bound unknowns,
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and not just from the rows not yet used as pivot rows. For real efficiency,
though, this additional step should be carried out after elimination is com-
pleted; it starts with the elimination of the last bound unknown, proceeds to
the second-last bound unknown, etc., and ends with the second bound un-
known (the first bound unknown was eliminated from all other rows already).

The resulting matrix B is called the reduced row echelon form for
A, and this is written:

B = rref(A).

However, it turns out to be very neat to add the following final step:

(iv) Remove all rows that are entirely zero, thus getting the matrix

R := B(1:#bound, :) =: rrref(A)

called the really reduced row echelon form of A.

Here is a formal description (in which we talk about the rrref for A even
though we prove its uniqueness only later, in (3.13)):

(3.8) Definition: We say that R is the really reduced row echelon

form for A ∈ IFm×n and write R = rrref(A), in case R ∈ IFr×n for
some r and there is a strictly increasing r-sequence bound (provided by
the MATLAB function rref along with rref(A)) so that the following is
true:

1. R is a row echelon form for A: This means that (i) nullR =
nullA; and (ii) for each k = bound(i), R(i, :) is the pivot row for the kth
unknown, i.e., R(i, :) is the unique row in R for which R(i, k) is the first
(or, leftmost) nonzero entry.

2. R is really reduced or normalized, in the sense that R(:, bound)
is the identity matrix, i.e., for each i, the pivot element R(i, bound(i))
equals 1 and is the only nonzero entry in its column, and R has only
these r = #bound rows.

A numerical example, continued: For the earlier numerical exam-
ple, the rref and the rrref would look like this:




0 1 0 1 0 2 0 3
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0


 ,




0 1 0 1 0 2 0 3
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1



 .

Recall (or observe directly) that, for this example, bound = (2, 5, 7) and
free = (1, 3, 4, 6, 8).
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Finally, for most purposes, it is sufficient to have a b-form for A, i.e., a
matrix R that satisfies the following two conditions:

(3.9)(i) nullR = nullA;

(3.9)(ii) R(:, b) = id for some sequence b.

Certainly, in these terms, the rrref(A) is a bound-form for A, but a matrix
A may have a b-form for many different b and, as we shall see, only the two
conditions (3.9)(i-ii) really matter. Moreover, we have, in effect, a b-form for
A in hand well before we get to rrref(A). For, there is no need to reorder the
rows of the working array; we merely eliminate each bound unknown from all
rows but its pivot row, being sure first to divide each pivot row by its pivot
element, drop any non-pivot rows, and then, with R the resulting array, have
in hand the b-form for A, with b the permutation of bound=find(p>0) for
which R(:, b) = id.

For the example worked out earlier, at the stage recorded in (3.3), we
would eliminate the fifth unknown from the second row, divide tbe fourth
row by its pivot element, −1, and drop the third row, and note that, for the
resulting matrix R, the permutation b:=(5,2,7) of bound = (2,5,7) gives
R(:, b) = id.

3.6 For each of the matrices A in H.P. 3.1 , determine its rrref.

A complete description for nullA obtained from a b-form

We show in this section that any b-form R for A readily supplies all
solutions of the homogeneous linear system A? = 0, i.e., all the elements of
nullA.

In recognition of the special case R = rrref(A), I’ll use f for a sequence
complementary to b in the sense that it contains all the indices in n but
not in b.

In MATLAB, one would obtain f from n and b by the commands
f = 1:n; f(b) = [];

We now obtain from any b-formR for A a 1-1 matrix C with the property
that nullA = ranC, thus getting a description both as a range and as a
nullspace. Since such a C is 1-1 onto nullA, this implies that every x ∈ nullA
can be written in exactly one way in the form x = Ca. We will soon agree
to call such a C a ‘basis’ for the vector space nullA.

In the discussion, we use the following notation introduced earlier: If
x is an n-vector and p is a list of length r with range in n, then xp is the
r-vector

xp = (xp(i) : i = 1:r).

With this, by property (3.9)(i),

x ∈ nullA ⇐⇒ 0 = Rx =
∑

j

R(:, j)xj = R(:, b)xb + R(:, f)xf .
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Since R(:, b) = id by property (3.9)(ii), we conclude that

x ∈ nullA ⇐⇒ xb = −R(:, f)xf.

We can write this even more succinctly in matrix form as follows:

nullA = ranC,

with C the (n × #f)-matrix whose ‘f-rows’ form an identity matrix, and
whose ‘b-rows’ are formed by the ‘f-columns’ of −R:

(3.10) C(f, :) = id, C(b, :) = −R(:, f).

E.g., for the earlier numerical example and with R = rrref(A),

C =




1 0 0 0 0
0 0 −1 −2 −3
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1




=




1 0 0 0 0
0 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

0 0 0 1 0
0 0 0 0 0

0 0 0 0 1




+




0 0 0 0 0

−0 −0 −1 −2 −3
0 0 0 0 0

0 0 0 0 0

−0 −0 −0 −0 −0
0 0 0 0 0

−0 −0 −0 −0 1
0 0 0 0 0




.

Note that C is 1-1, since x := Ca = 0 implies that 0 = xf = C(f, :)a = a.
Therefore, C is (or, the columns of C form) a ‘basis’ for nullA, in the sense
that C is a 1-1 onto column map to nullA.

Finally, when R = rrref(A), then the resulting C is ‘upper triangular’ in
the sense that then

(3.11) i > free(j) =⇒ C(i, j) = 0.

3.7 Determine a ‘basis’ for the nullspace of A :=

[
1 1
2 2

]
and use it to describe the

solution set of the system A? = (1, 2). Draw a picture indicating both the solution set and
null A.

3.8 For each of the matrices A in H.P. 3.1 , give a ‘basis’ for null A.
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The factorization A = A(:, bound)rrref(A)

Continuing with our b-form R for A, we claim that

A(:, b)R = A.

For the proof, we compare A(:, b)R =: M and A column by column. First,
M(:, b) = A(:, b)R(:, b) = A(:, b), by property (3.9)(ii). As to M(:, f) = A(:
, b)R(:, f), we observe that, for any c (of length #f), the vector x with

xb := R(:, f)c, xf := −c,

is in nullR = nullA, hence

0 = Ax = A(:, b)xb +A(:, f)xf = A(:, b)R(:, f)c+A(:, f)(−c).

In other words,

M(: f)c = A(:, b)R(:, f)c = A(:, f)c, ∀c ∈ IF#f,

showing that also M(:, f) = A(:, f). This proves our claim that A(:, b)R = A,
hence, in particular,

(3.12) A = A(:, bound) rrref(A).

3.9 Prove: If M is such that MA = rrref(A) =: R, and bound is the increasing
sequence of indices of bound columns of A, then M is a left inverse for A(:, bound).

A ‘basis’ for ranA

Here is a first consequence of the factorization A = A(:, b)R (with R sat-
isfying (3.9)(i–ii)): The factorization implies that ranA ⊂ ranA(:, b), while
certainly ranA(:, b) ⊂ ranA. Hence

ranA = ranA(:, b),

i.e., A(:, b) is onto ranA. Also, A(:, b) is 1-1: For, if A(:, b)a = 0, then
the n-vector x with xb = a and with xf = 0 is in nullA = nullR, hence
a = xb = −R(:, f)xf = −R(:, f)0 = 0. Consequently, A(:, b) is (or, the
columns of A(:, b) form) a ‘basis’ for ranA.

3.10 For each of the matrices A in H.P. 3.1 , give a ‘basis’ for ran A.

3.11 Let A be the n × n matrix [0, e1, . . . , en−1] (with ej denoting the jth unit
vector, of the appropriate length). (a) What is its rref? (b) In the equation A? = 0, which
unknowns are bound, which are free? (c) Give a ‘basis’ for nullA and a ‘basis’ for ran A.

3.12 Let M be the 6×3-matrix [e3, e2, e1]. (a) What is its rref? (b) Use (a) to prove
that M is 1-1. (c) Construct a left inverse for M . (d) (off the wall:) Give a matrix P for
which null P = ran M .
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3.13 Let N := M t, with M the matrix in the previous problem. (a) What is its
rref? (b) Use (a) to prove that N is onto. (c) Construct a right inverse for N .

3.14 Use the rref to prove that ran U = ranV , with

U :=

[
1 2 3
2 4 6
−1 1 3

]
, V :=

[
1 2
2 4
−4 −5

]
.

(Hints: Proving two sets to be equal usually involves showing that each is a subset of the

other. In this case, applying elimination to [V, U ] as well as to [U, V ] should provide all

the information you need.)

Uniqueness of the rrref(A)

If R is a b-form for A, then, as we just proved, A = A(:, b)R and A(:, b) is
1-1. Hence, if also S is a b-form for A, then we have A(:, b)R = A = A(:, b)S
and, since A(:, b) is 1-1, this implies that R = S. In other words, the matrix
R is uniquely determined by the condition that A(:, b)R = A. In particular,
rrref(A) is uniquely determined, since we already observed that, by (3.5), the
sequence bound only depends on nullA.

Further, since rref(A) differs from rrref(A) only by those additional m−
#bound zero rows, it follows that each A also has a unique rref.

This finishes the proof of the following summarizing theorem.

(3.13) Theorem: For given A ∈ IFm×n, there is exactly one ma-
trix R having the properties 1. and 2. (listed in (3.8)) of a rrref for
A. Further, with bound and free the indices of bound and free un-
knowns, A(:, bound) is 1-1 onto ranA, and C ∈ IFn×#free, given by
C(free, :) = id, C(bound, :) = −R(:, free), is 1-1 onto nullA, and C is
‘upper triangular’ in the sense that C(i, j) = 0 for i > free(j).

The rrref(A) and the solving of A? = y

(3.6)Corollary(i) is exactly what we need when considering the linear
system

(3.14) A? = y

for given A ∈ IFm×n and given y ∈ IFm. For, here we are hoping to write y
as a linear combination of the columns of A, and (3.6) tells us that this is
possible exactly when the last unknown in the homogeneous system

(3.15) [A, y]? = 0

is free. Further, the factorization (3.12), applied to the augmented matrix
[A, y], tells us how to write y as a linear combination of the columns of A in
case that can be done. For, with R = rrref([A, y]), it tells us that

y = [A, y](:, bound)R(:, n+ 1),
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and this gives us y in terms of the columns of A precisely when n+1 6∈ bound,
i.e., when the (n+ 1)st unknown is free.

(3.16) Proposition: For A ∈ IFm×n and y ∈ IFm, the equation

A? = y

has a solution if and only if the last column of [A, y] is free, in which
case the last column of rrref([A, y]) provides the unique solution to

A(:, bound)? = y.

More generally, if R = rrref([A,B]) for some arbitrary matrix B ∈ IFm×s

and all the unknowns corresponding to columns of B are free, then, by (3.12),
applied to [A,B] rather than A, we have

B = A(:, bound)R(:, n+ (1:s)).

3.15 Prove that rrref( idn) = idn.

A numerical example, continued: Recall our earlier example in
which we used elimination to convert a given matrix to its rrref, as follows:




0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7
0 1 0 1 3 2 −1 4


 →




0 0 0 0 1 0 0 0
0 1 0 1 2 2 0 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1




→




0 1 0 1 0 2 0 3
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 −1


 ,

hence bound = (2, 5, 7), free = (1, 3, 4, 6, 8). Now, the elimination algorithm
is entirely unaware of how we got the initial matrix. In particular, we are
free to interpret in various ways the array on the left as being of the form
[A,B]. As soon as we specify the number of columns, in A or B, we know A
and B exactly.

First, choose B to be a one-column matrix. Then, since the last unknown
is free, we conclude that

(6, 3, 7, 4) = A(:, bound)R(:, 8) =




2 5 0
1 2 0
2 5 −1
1 3 −1


 (3, 0,−1).
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If we choose B to be a three-column matrix instead, then the linear
system A? = B is unsolvable since now one of the columns of B (the second
one) corresponds to a bound unknown. What about the other two columns of
this B? The first one corresponds to a free unknown, hence is a weighted sum
of the columns to the left of it, hence is in ranA. But the last one fails to be
in ranA since its unknown is free only because of the presence of the seventh
column, and this seventh column is not a weighted sum of the columns to
the left of it, hence neither is the eighth column. Indeed, the corresponding
column of R has its last entry nonzero, showing that A(:, bound(3)) is needed
to write the last column of A as a weighted sum of columns to the left of it.

3.16 Use elimination to show that

[
2 −1 0
1 2 1
0 2 −1

]
is 1-1 and onto.

3.17 Use elimination to settle the following assertions, concerning the linear system
A? = y, with the (square) matrix A and the right side y given by

[A, y] :=

[
1 −2 3 1
2 k 6 6
−1 3 k − 3 0

]
.

(a) If k = 0, then the system has an infinite number of solutions. (b) For another specific
value of k, which you must find, the system has no solutions. (c) For all other values of k,
the system has a unique solution.

(To be sure, there probably is some preliminary work to do, after which it is straight-
forward to answer all three questions.)

3.18 Here are three questions that can be settled without doing any arithmetic.
Please do so.

(i) Can both of the following equalities be right?

[
−5 2
3 −1

] [
1 2
3 5

]
= id2 =

[
1 2
3 5

] [
−4 2
3 5

]

(ii) How does one find the coordinates of e1 ∈ R
2

with respect to the vector sequence
(1, 3), (2, 5) (i.e., numbers α, β for which e1 = (1, 3)α + (2, 5)β), given that

AV :=

[
−5 2
3 −1

] [
1 2
3 5

]
= id2 ?

(iii) How does one conclude at a glance that the following equation must be wrong?

[−5 2
3 −1
0 1

][
1 2 1
3 5 0

]
= id3 ?
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The pigeonhole principle for square matrices

We are ready for a discussion of our basic problem, namely solving A? =
y, in case A ∈ IFm×n, hence y ∈ IFm. When is A 1-1, onto, invertible? We
answer all these questions by applying elimination to the augmented matrix
[A, y].

If A is 1-1, then, by (3.6)Corollary, all its columns must be bound. In
particular, there must be enough rows to bind them, i.e., m ≥ n. Further,
if m = n, then, by the time we reach the last column of [A, y], there is no
row left to bind it. Therefore, the last column must be free regardless of the
choice of y, hence, by (3.6)Corollary, y ∈ ranA for every y ∈ IFm = tarA,
i.e., A is onto.

If A is onto, then, for i = 1:m, there is bi ∈ IFn so that Abi = ei ∈ IFm.
Hence, with B := [b1, . . . , bm] ∈ IFn×m, we have AB = A[b1, . . . , bm] =
[Ab1, . . . , Abm] = [e1, . . . , em] = idm. It follows that B is 1-1, hence B has
at least as many rows as columns, i.e., n ≥ m, and A is a left inverse for B.
Further, if n = m, then, by the previous paragraph, B is also onto, hence
invertible, hence any left inverse must be its inverse. In particular A = B−1

and therefore, in particular, A is 1-1.

Note that the argument just given provides the proof of the ‘Amazing
Fact’ (2.18), since it concludes from AB = id (with A, B square) that A
must be the inverse of B, and this implies, in particular, that also BA = id.

But we have proved much more, namely the following basic Theorem.

(3.17) Theorem (pigeonhole principle for square matrices): A
square matrix is 1-1 if and only if it is onto.

In other words, when dealing with a square matrix, 1-1 or onto is already
enough to have 1-1 and onto, i.e., to have invertibility.

We also now know that only square matrices are invertible.

(3.18) Proposition: An invertible matrix is necessarily square. More

precisely, if A ∈ IFm×n, then (i) A 1-1 implies that m ≥ n; and (ii) A
onto implies that m ≤ n.

(3.19) Example: Constructing the inverse by elimination If
A ∈ IFn×n is invertible, then the first n columns of [A, idn] are necessarily
bound and the remaining n columns are necessarily free. Therefore, if R :=
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rrref([A, idn]), then R = [ idn, ?] and, with (3.12), necessarily [A, idn] =
AR = [A idn, A?], hence ? = A−1, i.e., R = [ idn, A

−1].

Practical note: Although MATLAB provides the function inv(A)

to generate the inverse of A, there is usually no reason to compute the
inverse of a matrix, nor would you solve the linear system A? = y
in practice by computing rref([A, y]) or by computing inv(A)*y.
Rather, in MATLAB you would compute the solution of A? =y as A\y.
For this, MATLAB also uses elimination, but in a more sophisticated
form, to keep rounding error effects as small as possible. In effect,
the choice of pivot rows is more elaborate than we discussed above.

3.19 For each of the following matrices A, use elimination (to the extent necessary)
to (a) determine whether it is invertible and, if it is, to (b) construct the inverse.

(a)

[
1 2 3
2 3 4

]
; (b)

[
1 2
2 3
3 4

]
; (c)

[
1 2 3
2 3 4
3 4 5

]
; (d)

[
1 2 3
2 3 4
3 4 4

]
; (e)

[
1 1 1
1 2 4
1 3 8

]
;

(f) [e1 − e3, e2, e3 + e4, e4] ∈ R
4×4

.

3.20 Prove that A is invertible iff rrref(A) = idn.

3.21 One way to solve Laplace’s equation, ∆f := D2
1f + D2

2f = y on some domain

G in R
2

with f = g on the boundary, ∂G, of G numerically is to choose a regular grid
T = {(ih, jh) : i ∈ I, j ∈ J} of points, with I and J chosen so that (ih, jh) is either

strictly inside G or else is next to one such, and then to try to compute u ∈ R
T

so that
u(t) = (u(t + (h, 0)) + u(t − (h, 0)) + u(t + (0, h)) + u(t − (0, h)))/4 − y(t) for all t strictly
inside G, while, for the other points in T , u(t) is determined from the given boundary
values g in a linear manner.

Prove that the resulting linear system Au = b for the ‘vector’ u = (u(t) : t ∈ T ) has
exactly one solution. (Hint: if u(t) = max u(T ) for some t inside G for a solution u of
the corresponding homogeneous system, then, u(t) being the average of its four neighbors,
those neighbors must have the same value.)

3.22 Let L ∈ R
n×n

be the lower triangular matrix with all diagonal entries equal

to 1 and all the strictly lower triangular entries equal to −1, and let n > 1. Prove that

(L−1)n1 = 2n−2.

(3.20) Example: Triangular matrices There is essentially only
one class of square matrices whose invertibility can be settled by inspection,
namely the class of triangular matrices.

Assume that the square matrix A is upper triangular, meaning that
i > j =⇒ A(i, j) = 0. If all its diagonal elements are nonzero, then each
of its unknowns has a pivot row, hence is bound and, consequently, A is
1-1, hence, by (3.17)Theorem, it is invertible. Conversely, if some of its
diagonal elements are zero, then there must be a first zero diagonal entry,
say A(i, i) = 0 6= A(k, k) for k < i. Then, for k < i, row k is a pivot row
for xk, hence, when it comes time to decide whether xi is free or bound, all
rows not yet used as pivot rows do not involve xi explicitly, and so xi is free.
Consequently, nullA is nontrivial and A fails to be 1-1.
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Exactly the same argument can be made in case A is lower triangular,
meaning that i < j =⇒ A(i, j) = 0, provided you are now willing to carry
out the elimination process from right to left, i.e., in the order xn, xn−1, etc.,
and, correspondingly, recognize a row as pivot row for xk in case xk is the
last unknown that appears explicitly (i.e., with a nonzero coefficient) in that
row.

(3.21) Proposition: A square triangular matrix is invertible if and
only if all its diagonal entries are nonzero.

(3.22) Example: Interpolation If V ∈ L(IFn, X) andQ ∈ L(X, IFn),
then QV is a linear map from IFn to IFn, i.e., a square matrix, of order n.
If QV is 1-1 or onto, then (3.17)Theorem tells us that QV is invertible. In
particular, V is 1-1 and Q is onto, and so, for every y ∈ IFn, there exists
exactly one p ∈ ranV for which Qp = y. This is the essence of interpolation.

For example, take X = R
R, V = [()0, ()1, . . . , ()k−1], hence ranV equals

Π<k, the collection of all polynomials of degree < k. Further, take Q : X →
R

k : f 7→ (f(τ1), . . . , f(τk)) for some fixed sequence τ1 < · · · < τk of points.
Then the equation

QV ? = Qf

asks for the (power) coefficients of a polynomial of degree < k that agrees
with the function f at the k distinct points τ1, . . . , τk.

We investigate whether QV is 1-1 or onto, hence invertible. For this,
consider the matrix QW , with the columns of W := [w1, . . . , wk] the so-
called Newton polynomials

wj : t 7→
∏

h<j

(t− τh), j = 1:k.

Observe that (QW )(i, j) = (Qwj)(τi) =
∏

h<j(τi − τh) = 0 if and only if
i < j. Therefore, QW is square and lower triangular with nonzero diagonal
entries, hence invertible by (3.21)Proposition, while wj is a polynomial of
exact degree j − 1 < k, hence wj = V cj for some k-vector cj . It follows that
the invertible matrix QW equals

QW = [Qw1, . . . , Qwk] = [QV c1, . . . , QV ck] = (QV )[c1, . . . , ck].

In particular, QV is onto, hence invertible, hence also V is 1-1, therefore
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invertible as a linear map from R
k to its range, Π<k. We have proved:

(3.23) Proposition: For every f : R → R and every k distinct points
τ1, . . . , τk in R, there is exactly one choice of coefficient vector a for
which the polynomial [()0, . . . , ()k−1]a of degree < k agrees with f at
these τj .

In particular, (i) the column map [()0, . . . , ()k−1] : R
k → Π<k is invert-

ible, and (ii) any polynomial of degree < k with more than k−1 distinct
zeros must be 0. (Do not confuse this simple result with the Funda-
mental Theorem of Algebra which claims that every nonconstant
polynomial with complex coefficients has a zero.)

3.23 (a) Construct the unique element of ran[()0, ()2, ()4] that agrees with ()1 at the
three points 0, 1, 2.

(b) Could (a) have been carried out if the pointset had been -1, 0, 1 (instead of 0, 1,
2)?

3.24 Let τ1 6= τ2. Prove that, for an arbitrary a ∈ R
4
, there exists exactly one cubic

polynomial p for which
(p(τ1), Dp(τ1), p(τ2), Dp(τ2)) = a.

(Hint: Try W := [()0, (· − τ1), (· − τ1)2, (· − τ1)2(· − τ2)].)

3.25 T/F

(a)

[
1 0 1
0 2 0
0 0 0

]
is in row echelon form.

(b) If all unknowns in the linear system A? = 0 are free, then A = 0;

(c) If all unknowns in the linear system A? = 0 are bound, then A is invertible.

(d) If some unknowns in the linear system A? = 0 are free, then A cannot be invertible.

(e) The inverse of an upper triangular matrix is lower triangular.

(f) A linear system of n equations in n + 1 unknowns always has solutions.

(g) Any square matrix in row echelon form is upper triangular.

(h) If A and B are square matrices of the same order, then AB? = 0 has the same number
of bound unknowns as does BA? = 0.

(i) If A and B are square matrices of the same order, and AB is invertible, then also
BA is invertible.

(j) If nullA = null B, then A? = 0 and B? = 0 have the same free and bound unknowns.
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Bases

The only vector spaces in which we can carry out calculations are the
coordinate spaces IFn. To calculate with other vector spaces, we have to
relate them first to some coordinate space. This is true even when X is a
proper subspace of IFn, e.g., the nullspace of some matrix.

For example, we do not really compute with polynomials, we usually
compute with the coefficients of the polynomial. Precisely (see (3.23)Propo-
sition), one sets up the invertible linear map

IFn → Π<n : a 7→ a1 + a2t+ a3t
2 + · · ·+ ant

n−1

where I have, temporarily, followed the (ancient and sometimes confusing)
custom of describing the monomials by the list of symbols ( , t, t2, t3, . . .)
rather than by the nonstandard symbols ()j , j = 0, 1, 2, 3, . . . introduced
earlier. One adds polynomials by adding their coefficients, or evaluates poly-
nomials from their coefficients, etc. You may be so used to that, that you
haven’t even noticed until now that you do not work with the polynomials
themselves, but only with their coefficients.

It is therefore a practically important goal to provide ways of represent-
ing the elements of a given vector space X by n-vectors. We do this by using
linear maps from some IFn that have X as their range, i.e., we look for se-
quences v1, v2, . . . , vn in X for which the linear map [v1, v2, . . . , vn] : IFn → X
is onto. If there is such a map for some n, then we callX finitely generated.

Among such onto maps V ∈ L(IFn, X), those that are also 1-1, hence
invertible, are surely the most desirable ones since, for such V , there is, for
any x ∈ X , exactly one a ∈ IFn with x = V a. Any invertible column map to
X is, by definition, a basis for X .

Since idn ∈ L(IFn) is trivially invertible, it is a basis for IFn. It is called
the natural basis for IFn.

61
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The bound part, A(:, bound), of A ∈ IFm×n is a basis for ranA. You
also know (from pages 51ff) how to construct a basis for the nullspace of any
A ∈ IFm×n from its rrref(A).

Here is a small difficulty with this (and any other) definition of dimen-
sion: What is the dimension of the trivial space, i.e., the vector space that
consists of the zero vector alone? It is a perfectly well-behaved vector space
(though a bit limited, – except as a challenge to textbook authors when it
comes to discussing its basis).

We deal with it here by considering V ∈ L(IFn, X) even when n = 0.
Since IFn consists of lists of n items (each item an element from IF), the
peculiar space IF0 must consist of lists of no items, i.e., of empty lists. There
is only one empty list (of scalars), hence IF0 has just one element, the empty
list, ( ), and this element is necessarily the neutral element (or, zero vector)
for this space. Correspondingly, there is exactly one linear map from IF0

into X , namely the map IF0 → X : () = 0 7→ 0. Since this is a linear map
from IF0, we call it the column map into X with no columns or the empty
column map, and denote it by [ ]. Thus,

(4.1) [ ] : IF0 → X : () = 0 7→ 0.

Note that [ ] is 1-1. Note also that the range of [ ] consists of the trivial sub-
space, {0}. In particular, the column map [ ] is onto {0}, hence is invertible,
as map from IF0 to {0}. It follows that [ ] is a basis for {0}. Isn’t Mathemat-
ics wonderful! - As it turns out, the column map [ ] will also be very helpful
below.

Here are some standard terms related to bases of a vector space:

Definition: The range of V := [v1, v2, . . . , vn] is called the span of the
sequence v1, v2, . . . , vn:

span(v1, v2, . . . , vn) := ranV.

x ∈ X is said to be linearly dependent on v1, v2, . . . , vn in case x ∈
ranV , i.e., in case x is a linear combination of the vj . Otherwise x
is said to be linearly independent of v1, v2, . . . , vn.

v1, v2, . . . , vn is said to be linearly independent in case V is 1-1,
i.e., in case V a = 0 implies a = 0 (i.e., the only way to write the zero
vector as a linear combination of the vj is to choose all the weights equal
to 0).

v1, v2, . . . , vn is said to be spanning for X in case V is onto, i.e.,
in case span(v1, v2, . . . , vn) = X .

v1, v2, . . . , vn is said to be a basis for X in case V is invertible, i.e.,
1-1 and onto.
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If V is invertible, then V −1x is an n-vector, called the coordinate
vector for x with respect to the basis v1, v2, . . . , vn.

You may wonder why there are all these terms in use for the sequence

v1, v2, . . . , vn, particularly when the corresponding terms for the map V =
[v1, v2, . . . , vn] are so much shorter and to the point. I don’t know the an-
swer. However, bear in mind that the terms commonly used are those for
sequences. An even greater puzzle is the fact that many textbooks present
bases as sets rather than sequences. At least, that is what they say. But,
not surprisingly, whenever there is some action involving a basis, the basis is
written {v1, . . . , vn}, i.e., as a sequence in everything but in name. It is for
you to ask such authors whether {3, 3} is a basis for R

1 = R. They will say
that it is not even though it is since, after all, 3 = 3, hence {3, 3} = {3}.

A major use of the basis concept is the following which generalizes the
way we earlier constructed arbitrary linear maps from IFn.

(4.2) Proposition: Let V = [v1, . . . , vn] be a basis for the vector space
X , and let Y be an arbitrary vector space. Any map f : {v1, . . . , vn} →
Y has exactly one extension to a linear map A from X to Y . In other
words, we can choose the values of a linear map on the columns of a basis
arbitrarily and, once chosen, this pins down the linear map everywhere.

Proof: The map A := [f(v1), . . . , f(vn)]V −1 is linear, from X to Y ,
and carries vj to f(vj) since V −1vj = ej, all j. This shows existence. Further,
if also B ∈ L(X,Y ) with Bvj = f(vj), all j, then BV = [f(v1), . . . , f(vn)] =
AV , therefore B = A (since V is invertible).

4.1 Describe what the n × n-matrix A =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · ·
0 0 0 · · · 1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 0


 does to all the

vectors ej , i.e., give a simple formula for Aej . Deduce from your formula that ran An = {0},
hence that An = 0.

4.2 Prove: A ∈ L(X) commutes with every B ∈ L(X) if and only if A = α idX , i.e.,
A is a scalar multiple of the identity.

4.3 Let X × Y be the product space of the vector spaces X and Y . The map
f : X ×Y → IF is bilinear if it is linear in each slot, i.e., if f(·, y) ∈ L(X, IF) for all y ∈ Y ,
and f(x, ·) ∈ L(Y, IF) for every x ∈ X.

(i) Prove that, for every A ∈ IFm×n, the map fA : IFm × IFn : (x, y) 7→ ytAx is bilinear.

(ii) Prove that, for every bilinear f : IFm × IFn → IF, there exists exactly one A ∈ IFm×n

with fA = f .

(iii) Prove that the map A 7→ fA is an invertible linear map on IFm×n to the vector space
BL(IFm, IFn) of all bilinear maps on IFm × IFn under pointwise vector operations.
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4.4 MATLAB’s command yy = interp1(x,y,xx,’spline’) returns the value(s) at xx of
a certain function f that matches the data given by x, y, in the sense that f(x(i)) = y(i)
for i=1:n, with n the length of both x and y (and assuming that the entries of x are
pairwise distinct). (If you wanted to look at f on the interval [a . . b], you might choose xx
= linspace(a,b,N+1); with N some suitably large number, and then plot(xx,yy).)

(a) Generate some numerical evidence for the claim that (up to roundoff) the map y 7→ f
provided by this command is linear.

(b) Assuming that the map is linear, deduce from the above description of the map that
it must be 1-1, hence a basis for its range.

(c) Still assuming that the map y 7→ f provided by that command is indeed linear, hence
a column map, provide a plot of each of its columns, as functions on the interval
[0 . . 3], for the specific choice 0:3 for x.

(d) (quite open-ended) Determine as much as you can about the elements of the range
of this column map.

(e) Is the map still linear if you replace ’spline’ by ’cubic’?

Construction of a basis

Next, we consider the construction of a basis. This can be done either
by extending a 1-1 column map V to a basis, or by thinning an onto column

map W to a basis. For this, remember that, for two column maps V and
W into some vector space X , we agreed to mean by V ⊂ W that V can be
obtained from W by thinning, i.e., by omitting zero or more columns from
W , and W can be obtained from V by extending, i.e., by inserting zero or
more columns.

In the discussion to follow, it is convenient to classify the columns of a
column map as bound or free, using (3.6)Corollary as a guide. Specifically, we
call a column free if it is a weighted sum of the columns to its left; otherwise,
we call it bound.

For example, if V ⊂ W , then any free column of V is also free as a
column of W , while a bound column of V may possibly be free as a column
of W unless W = [V, U ].

(4.3) Lemma: The kth column of the column map V is free if and only
if nullV contains a vector whose last nonzero entry is its kth.

Proof: The kth column of V = [v1, . . . , vn] ∈ L(IFn, X) is free iff
vk ∈ ran[v1, . . . , vk−1]. In particular, the first column is free iff it is 0 (recall
that ran [ ] = {0}).

If the kth column is free, then vk = [v1, . . . , vk−1]a for some a ∈ IFk−1,
hence (a,−1, 0, . . . , 0) ∈ IFn is a vector in nullV whose last nonzero entry
is its kth. Conversely if x ∈ nullV with xk 6= 0 = xk+1 = · · · = xn, then
[v1, . . . , vk−1]x1:k−1 + vkxk = 0, therefore, as xk 6= 0,

vk = [v1, . . . , vk−1](x1:k−1/(−xk))

showing that the kth column is free.
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(4.4) Corollary: A column map is 1-1 if and only if all of its columns
are bound.

We are ready for the following algorithm which extracts from any column
map W a basis for its range.

(4.5) Basis Selection Algorithm:
input: the column map W
V ← [ ];
for w ∈W do:

if w 6∈ ranV , then V ← [V,w]; endif
enddo
output: the column map V

Proposition: The output of the Basis Selection Algorithm is a basis
for the range of its input.

Proof: The resulting V has the same range as W (since the only
columns of W not explicitly columns of V are those that are already in the
range of V ). In addition, by construction, every column of V is bound, hence
V is 1-1 by (4.4)Corollary, therefore a basis for its range.

(4.6) Proposition: Any onto column map can be thinned to a basis.

Now note that the Basis Selection Algorithm will put any bound column
of W into the resulting basis, V . In particular, if W = [U,Z] with U 1-1,
then, as already remarked just prior to (4.3)Lemma, all columns of U will be
bound also as columns of W , hence will end up in the resulting basis. This
proves

(4.7) Proposition: Any 1-1 column map into a finitely generated vec-
tor space can be extended to a basis for that space.
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If V is a 1-1 column map into X then, by (4.4)Corollary, all its columns
are bound. Hence if V is maximally 1-1 into X , meaning that [V,w] fails
to be 1-1 for every w ∈ X , then that additional column must be free, i.e.,
w ∈ ranV for all w ∈ X , showing that then V is also onto, hence a basis.
This proves

(4.8) Corollary: Any maximally 1-1 column map into a vector space
is a basis for that space.

If W is a column map onto X , then, by (4.6), it can always be thinned
to a basis. Hence, if W is minimally onto, meaning that no V ⊂W (other
than W ) is onto, then W itself must be that basis.

(4.9) Corollary: Any minimally onto column map into a vector space
is a basis for that space.

4.5 How would you carry out the (4.5) Basis Selection Algorithm for the special case
that W is a matrix? (Hint: (3.2)).

4.6 Try out your answer to the previous problem on the specific matrix W =[
0 2 0 2 5 4 0 6
0 1 0 1 2 2 0 3
0 2 0 2 5 4 −1 7

]
.

Dimension

(4.10) Lemma: Any two bases for a vector space have the same number
of columns.

This number of columns in any basis for X is denoted

dimX

and is called the dimension of X .

Proof: Let V ∈ L(IFn, X) and W ∈ L(IFm, X) be bases for X .
Then, W−1V is an invertible linear map from IFn to IFm, hence an invertible
matrix and therefore, by (3.18)Proposition(i), necessarily a square matrix,
i.e., n = m.
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See H.P. 4.11 for the classical proof of this lemma.

Notice that we have actually proved the stronger statement

(4.11) Lemma: If V and W are column maps into X , and V is 1-1
and W is onto, then #V ≤ #W .

Again, also this stronger result is an immediate consequence of something
proved in the previous chapter: Since W is onto, each column vj of V can be
written as vj = Wcj for some vector cj . Hence V = WC for some matrix C
and, since V is 1-1, so must C be. By (3.18)Proposition(i) or its antecedent,
(3.7)Theorem, this implies that C cannot have more columns than rows, i.e.,
#V = #C ≤ dim tarC = dimdomW = #W .

Since idn is a basis for IFn and has n columns, we conclude that the n-
dimensional coordinate space has, indeed, dimension n. In effect, IFn is the
prototypical vector space of dimension n. Any n-dimensional vector space X
is connected to IFn by invertible linear maps, the bases for X .

Note that the trivial vector space, {0}, has dimension 0 since its (unique)
basis has no columns.

(4.12) Example: The dimension of Π≤k(Rd). The space Π≤k(Rd)
of d-variate polynomials of degree ≤ k is, by definition, the range of the
column map V := [()α : |α| ≤ k], with

()α : R
d → R : t 7→ tα := tα1

1 · · · tαd

d

a nonstandard notation for the α-power function, with α ∈ Z
d
+, i.e., α any

d-vector with nonnegative integer entries, and with |α| := ∑j αj . For d = 1,
it is the space of univariate polynomials of degree ≤ k, and we showed in
(3.23)Proposition that V is 1-1, hence dimΠ≤k(R) = k + 1.

When d = 1, then V can be seen to be 1-1 also by considering the ‘data
map’

Q : Π≤k → R
k+1 : p 7→ (p(0), Dp(0), D2p(0)/2, . . . , Dkp(0)/k!),

for which we have QV = id, hence V is 1-1.

An analogous argument, involving the ‘data map’

p 7→ (Dαp(0)/α! : α ∈ Z
d
+, |α| ≤ k),

with α! := α1! · · ·αd!, shows that

dim Π≤k(Rd) = #{α ∈ Z
d
+ : |α| ≤ k},

and the latter number can be shown (see H.P. 4.8 ) to equal
(

k+d
d

)
.
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4.7 Prove that the space Π<3(R
2
) of bivariate polynomials of total degree < 3 has

dimension 6.

4.8 Verify that #{α ∈ Z
d
+ : |α| ≤ k} =

(
k+d

d

)
=
(

k+d
k

)
. (Hint:

(
s
t

)
is the number

t-subsets of an s-set.)

4.9 Prove that a vector space of dimension n has subspaces of dimension j for each
j = 0:n.

4.10 Prove (by induction on n) Steinitz Exchange: If V ∈ L(IFn, X) is 1-1 and
W ∈ L(IFm, X) is onto, then, for some U ⊂ W with #U = #W −#V , also [V, U ] is onto.

4.11 Use the previous homework to prove (4.11)Lemma.

Some uses of the dimension concept

Here is a major use of the dimension concept as it relates to vector

spaces .

(4.13) Proposition: If X , Y are vector spaces with X ⊂ Y and
dimY <∞, then dimX ≤ dimY , with equality iff X = Y .

Proof: Since there is some 1-1 column map into X (e.g., the unique
linear map from IF0 into X), while dim Y is an upper bound on the number
of columns in any 1-1 column map into X ⊂ Y (by (4.7)Proposition), there
exists a maximally 1-1 column map V into X . By (4.8)Corollary, any such
V is necessarily a basis for X , hence X is finitely generated. By (4.7)Propo-
sition, we can extend V to a basis [V,W ] for Y . Hence, dimX ≤ dimY with
equality iff W = [ ], i.e., iff X = Y .

Note the following important (nontrivial) part of (4.13)Proposition:

(4.14) Corollary: Any linear subspace of a finite-dimensional vector
space is finite-dimensional.

The dimension concept is usually applied to linear maps by way of the
following formula.

(4.15) Dimension Formula: For any linear map A with finite-dimens-
ional domain,

dimdomA = dim ranA+ dimnullA.

Proof: Since domA is finite-dimensional, so is nullA (by (4.14)
Corollary), hence nullA has a basis, V ∈ L(IFn, nullA) say. By (4.7)Propo-
sition, we can extend this to a basis [V, U ] for domA. Let r := #U . Then,
[V, U ] is invertible and dim domA− dimnullA = (n+ r)− n = r.
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It remains to prove that dim ranA = r. For this, we prove that AU :
IFr → ranA is invertible.

Since A[V, U ] = [AV,AU ] maps onto ranA and AV = 0, already AU
must map onto ranA, i.e., AU is onto.

Moreover, AU is 1-1: For, if AUa = 0, then Ua ∈ nullA, hence, since
V maps onto nullA, there is some b so that Ua = V b. This implies that
[V, U ](b,−a) = 0 and, since [V, U ] is 1-1, this shows that, in particular,
a = 0.

4.12 Prove: If the product AB of the two linear maps A and B is defined, then
dim ran(AB) ≤ min{dim ran A,dim ran B}.

4.13 Prove: If the product AB of the two linear maps A and B is defined, then
dim ran(AB) = dim ran B − dim(null A ∩ ran B).

4.14 Give an example, of two square matrices A and B, that shows that dim ran(AB)

need not equal dim ran(BA) when both AB and BA are defined.

(4.16) Corollary: Let A ∈ L(X,Y ).
(i) If dimX < dimY , then A cannot be onto.
(ii) If dimX > dimY , then A cannot be 1-1.
(iii) If dimX = dimY <∞, then A is onto if and only if A is 1-1. (This
implies (2.18)!)

Proof: (i) dim ranA ≤ dim domA = dimX < dimY = dim tarA,
hence ranA 6= tarA.

(ii) dimnullA = dimdomA−dim ranA = dimX−dim ranA ≥ dimX−
dimY > 0, hence nullA 6= {0}.

(iii) If dimX = dim Y , then dim tarA = dimdomA = dim ranA +
dimnullA, hence A is onto (i.e., tarA = ranA) if and only if dimnullA = 0,
i.e., A is 1-1.

(4.17) Lemma: Let X , Y be vector spaces, and assume that X is
finite-dimensional. Then dimX = dimY if and only if there exists an
invertible A ∈ L(X,Y ).

Proof: Let n := dimX . Since n < ∞, there exists an invertible
V ∈ L(IFn, X) (, a basis for X). If now A ∈ L(X,Y ) is invertible, then
AV is an invertible linear map from IFn to Y , hence dim Y = n = dimX .
Conversely, if dimY = dimX , then there exists an invertible W ∈ L(IFn, Y );
but then WV −1 is an invertible linear map from X to Y .
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For the next general result concerning the dimension concept, recall that
both the sum

Y + Z := {y + z : y ∈ Y, z ∈ Z}
and the intersection Y ∩Z of two linear subspaces is again a linear subspace.

(4.18) Proposition: If Y and Z are linear subspaces of the finite-
dimensional vector space X , then

(4.19) dim(Y + Z) = dimY + dimZ − dim(Y ∩ Z).

Proof 1: Y ∩Z is a linear subspace ofX , hence is finite-dimensional
(by (4.14)Corollary), hence Y ∩ Z has a basis, V say. Extend it, as we may
(by (4.7)Proposition), to a basis [U, V ] of Y and to a basis [V,W ] of Z, and
consider the column map [U, V,W ].

We claim that [U, V,W ] is 1-1. Indeed, if [U, V,W ](a, b, c) = 0, then
[U, V ](a, b) = −Wc, with the left side in Y and the right side in Z, hence
both are in Y ∩ Z = ranV . Therefore, −Wc = V d for some d, hence
[V,W ](d, c) = 0, and as [V,W ] is 1-1, it follows, in particular, that c = 0.
This leaves [U, V ](a, b) = 0 and, since [U, V ] is 1-1 by construction, now also
(a, b) = 0.

We conclude that [U, V,W ] is a basis for its range, and that range is
ran[U, V,W ] = ran[U, V, V,W ] = ran[U, V ] + ran[V,W ] = Y + Z. Therefore,
dim(Y + Z) = #U + #V + #W = #[U, V ] + #[V,W ] − #V = dimY +
dimZ − dim(Y ∩ Z).

Proof 2: The following alternative proof shows (4.19) to be a spe-
cial case of the (4.15)Dimension Formula, and provides a way to construct a
basis for Y ∩ Z from bases for Y and Z.

Consider the column map A := [U,W ] with U a basis for Y andW a basis
for Z. Since dim domA = #U+#W = dim Y +dimZ and ranA = Y +Z, the
formula (4.19) follows from the (4.15)Dimension Formula, once we show that
dimnullA = dimY ∩Z. For this, let x ∈ Y ∩Z. Then x = Ua = Wb for some
a and b, therefore A(a,−b) = [U,W ](a,−b) = Ua−Wb = x − x = 0, hence
(a,−b) ∈ nullA. Hence, (a,−b) = Cc for some c and with C =: [CU ;CW ] a
basis for nullA. In particular, a = CUc, showing that the column map UCU

has all of Y ∩ Z in its range. On the other hand, 0 = AC = UCU +WCW ,
hence UCU = −WCW and, in particular, UCU maps into Y ∩Z, hence onto
Y ∩ Z. Finally, UCU is 1-1: for, if UCUa = 0, then CUa = 0 since U is 1-1,
but then also WCW a = −UCUa = 0, hence also CW a = 0, therefore Ca = 0
and so a = 0 since C is 1-1 by assumption. Altogether, this shows that UCU

is a basis for Y ∩ Z, hence dim Y ∩ Z = #UCU = #C = dimnullA.
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Here are three of several corollaries of this basic proposition to be used
in the sequel.

(4.20) Corollary: If [V,W ] is 1-1, then ranV ∩ ranW is trivial.

(4.21) Corollary: If dimY +dimZ > dimX for some linear subspaces
Y and Z of the finite-dimensional vector space X , then Y ∩ Z is a
nontrivial linear subspace, i.e., Y ∩ Z contains nonzero elements.

(4.22) Corollary: If Y and Z are linear subspaces of the finite-dimens-
ional vector space X , and Y ∩ Z = {0}, then

dimY + dimZ ≤ dimX,

with equality if and only if X = Y +Z, in which case dimZ = dimX −
dimY =: codimY is called the codimension of Y (in X).

4.15 Prove: If AB is defined, then dim ran(AB) ≤ min{dim ranA, dim ran B}. (Hint:
ran(AB) = A(ran B).)

4.16 Make use of the dimension concept to shorten the solution of H.P. 3.14 .

4.17 For each of the following linear maps, determine its range and its nullspace.
Make as much use of the Dimension Formula as possible. (You may, if need be, use the
fact that, by (3.23)Proposition, Vk := [()0, ()1, . . . , ()k ] is a basis for Π≤k.) (a) D : Π≤k →
Π<k : p 7→ Dp, with Dp the first derivative of p. (b) I : Π<k → Π≤k : p 7→

∫ ·

0
p(s)ds, i.e.,

Ip is the primitive or antiderivative of p that vanishes at 0, i.e., (Ip)(t) =
∫ t

0
p(s)ds. (c)

A : Π≤k → Π≤k : p 7→ Dp + p.

4.18 Prove that V := [()0, ()1, ()2 −1, 4()3 −3()1, 8()4 −8()2 +1] is a basis for Π<5.

4.19 Prove: For any finite-dimensional linear subspace Y of the domain of a linear
map A, dimA(Y ) ≤ dimY .

4.20 Prove: If V and W are 1-1 column maps into the vector space X, then ran V
and ran W have a nontrivial intersection if and only if [V, W ] is not 1-1.

4.21 Use the preceding homework and elimination to determine for each of the ma-

trices given whether ranA and null A have nontrivial intersection: (a) A :=

[
1 2
2 4

]
; (b)

A :=

[
−2 −1
4 2

]
.



72 4 The dimension of a vector space

4.22 Call (Y0, . . . , Yr) a proper chain in the vector space X if each Yj is a subspace
and Y0 ⊆

′
Y1 ⊆

′
· · · ⊆

′
Yr. Prove that, for any such proper chain, r ≤ dim X, with equality

if and only if dim Yj = j, j = 0: dimX.

4.23 Let d be any scalar-valued map, defined on the collection of all linear subspaces
of a finite-dimensional vector space X, that satisfies the following two conditions: (i)
Y ∩ Z = {0} =⇒ d(Y + Z) = d(Y ) + d(Z); (ii) dimY = 1 =⇒ d(Y ) = 1.

Prove that d(Y ) = dimY for every linear subspace Y of X.

4.24 Prove: for any A ∈ L(X, Y ) and any linear subspace Z of X, dim A(Z) =
dimZ − dim(Z ∩ (null A)).

4.25 The defect of a linear map is the dimension of its nullspace: defect(A) :=
dimnull A. (a) Prove that defect(B) ≤ defect(AB) ≤ defect(A) + defect(B). (b) Prove: If
dimdom B = dimdom A, then also defect(A) ≤ defect(AB). (c) Give an example of linear
maps A and B for which AB is defined and for which defect(A) > defect(AB).

4.26 Let A ∈ L(X, Y ), B ∈ L(X, Z), with Y finite-dimensional. There exists C ∈
L(Y, Z) with A = CB if and only if null B ⊂ null A.

4.27 Prove: Assuming that the product ABC of three linear maps is defined,
dim ran(AB) + dim ran(BC) ≤ dim ran B + dim ran(ABC).

4.28 Factor space: Let Y be a linear subspace of the vector space X and consider
the collection

X/Y := {x + Y : x ∈ X}

of subsets of X, with

x + Y := {x} + Y = {x + y : y ∈ Y }.

(i) Prove that the map

f : X → X/Y : x 7→ x + Y

is linear with respect to the addition

M + N := {m + n : m ∈ M, n ∈ N}

and the multiplication by a scalar

αM :=

{
{αm : m ∈ M}, if α 6= 0;
Y, if α = 0,

and has Y as its nullspace.

(ii) Prove that, with these vector operations, X/Y is a linear space. (X/Y is called a
factor space.)

(iii) Prove that dimX/Y = codim Y .

The dimension of IFT

Recall from (2.2) that IFT is the set of all scalar-valued maps on the set
T , with the set T , offhand, arbitrary.

The best known instance is n-dimensional coordinate space

IFn := IFn,

with T = n := {1, 2, . . . , n}. The vector space IFm×n of all (m× n)-matrices
is another instance; here T = m× n := {(i, j) : i = 1:m; j = 1:n}.
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(4.23) Proposition: If T is a finite set, then dim IFT = #T .

Proof: Since T is finite, #T =: n say, we can order its elements, i.e.,
there is an invertible map s : n→ T (in fact, there are n! = 1 · 2 · · ·n such).
This induces the map

V : IFn → IFT : f 7→ f ◦ s−1

which is linear (since, in both spaces, the vector operations are pointwise),
and is invertible since it has

IFT → IFn : g 7→ g ◦ s

as its inverse. Hence, V is a basis for IFT (the natural basis).

Note how we managed this without even exhibiting the columns of V .
To be sure, the jth column V is the function vj : T → IF : sk 7→ δkj that
maps sj to 1 and maps any other t ∈ T to 0.

Corollary: dim IFm×n = mn.

Proof: In this case, IFm×n = IFT with T = m × n := {(i, j) : i =
1:m; j = 1:n}, hence #T = mn.

(4.24) Corollary: dimL(X,Y ) = dimX · dimY .

Proof: Assuming that n := dimX and m := dimY are finite, we
can represent every A ∈ L(X,Y ) as a matrix Â := W−1AV ∈ IFm×n, with
V a basis for X and W a basis for Y . This sets up a map

R : L(X,Y )→ IFm×n : A 7→ Â = W−1AV,

and this map is linear and invertible (indeed, its inverse is the map IFm×n →
L(X,Y ) : B 7→ WBV −1). Consequently, by (4.17)Lemma, L(X,Y ) and
IFm×n have the same dimension.
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Corollary: If #T 6<∞, then IFT is not finite-dimensional.

Proof: For every finite S ⊂ T , IFT contains the linear subspace

{f ∈ IFT : f(t) = 0, all t 6∈ S}

of dimension equal to dim IFS = #S. If #T 6< ∞, then T contains fi-
nite subsets S of arbitrarily large size, hence IFT contains linear subspaces
of arbitrarily large dimension, hence cannot itself be finite-dimensional, by
(4.13)Proposition.

4.29 Prove: The dimension of the vector space of all upper triangular matrices of

order n is (n + 1)n/2.

Direct sums

A very useful coarsening of the basis concept concerns the sum of sub-
spaces.

Let Y1, . . . , Yr be linear subspaces of the vector space X , let Vj be a
column map onto Yj , all j, and consider the column map

V := [V1, . . . , Vr].

To be sure, we could have also started with some arbitrary column map V
into X , arbitrarily grouped its columns to obtain V = [V1, . . . , Vr], and then
defined Yj := ranVj , all j.

Either way, any a ∈ domV is of the form (a1, . . . , ar) with aj ∈ domVj ,
all j. Hence

ranV = {V1a1 + · · ·+ Vrar : aj ∈ domVj , j = 1:r}
= {y1 + · · ·+ yr : yj ∈ Yj , j = 1:r} =: Y1 + · · ·+ Yr,

the sum of the subspaces Y1, . . . , Yr.

Think of this sum, as you may, as the range of the map

(4.25) A : Y1 × · · · × Yr → X : (y1, . . . , yr) 7→ y1 + · · ·+ yr.

Having this map A onto says that every x ∈ X can be written in the
form y1 + · · · + yr with yj ∈ Yj , all j. In other words, X is the sum of the
Yj . In symbols,

X = Y1 + · · ·+ Yr.
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Having A also 1-1 says that there is exactly one way to write each x ∈ X as
such a sum. In this case, we write

X = Y1 +̇ · · · +̇Yr,

and say that X is the direct sum of the subspaces Yj . Note the dot atop
the plus sign, to indicate the special nature of this sum. Some books would
use instead the encircled plus sign, ⊕, but we reserve that sign for an even
more special direct sum in which the summands Yj are ‘orthogonal’ to each
other; see the chapter on inner product spaces.

(4.26) Proposition: Let Vj be a basis for the linear subspace Yj of the
vector space X , j = 1:r, and set V := [V1, . . . , Vr]. Then, the following
are equivalent.

(i) X = Y1 +̇ · · · +̇Yr.

(ii) V is a basis for X .

(iii) X = Y1 + · · ·+ Yr and dimX ≥ dimY1 + · · ·+ dimYr.

(iv) For each j, Yj∩Y\j = {0}, with Y\j := Y1+· · ·+Yj−1+Yj+1+· · ·+Yr,
and dimX ≤ dimY1 + · · ·+ dim Yr.

Proof: Since domV = domV1 × · · · × domVr , and Vj is a basis for
Yj , all j, the linear map

C : domV → Y1 × · · · × Yr : a = (a1, . . . , ar) 7→ (V1a1, . . . , Vrar)

is invertible and V = AC, with A as given in (4.25). Hence, V is invertible
if and only if A is invertible. This proves that (i) and (ii) are equivalent.

Also, (ii) implies (iii). As to (iii) implying (ii), the first assumption of
(iii) says that V is ontoX , and the second assumption says that dim domV =
#V ≤ dimX , hence V is minimally onto and therefore a basis for X .

As to (ii) implying (iv), the first claim of (iv) is a special case of
(4.20)Corollary, and the second claim is immediate.

Finally, as to (iv) implying (ii), assume that 0 = V a =
∑

j Vjaj . Then,
for any j, y := Vjaj = −∑i6=j Viai ∈ Yj ∩ Y\j , hence y = 0 by the first
assumption and, since Vj is a basis for Yj , hence 1-1, this implies that aj = 0.
In other words, V is 1-1, while, by the second assumption, #V =

∑
j dimYj ≥

dimX , hence V is maximally 1-1, therefore a basis for X .

(4.27) Corollary: If V is a basis for X , then, for any grouping V =:
[V1, . . . , Vr] of the columns of V , X is the direct sum of the linear sub-
spaces ranVj , j = 1:r.



76 4 The dimension of a vector space

One particular grouping is, of course, Vj = [vj ], all j, in which case each
Yj := ranVj is a one-dimensional linear subspace, i.e., a straight line through
the origin, and we see X = ranV as the direct sum of these straight lines,
each of which we are accustomed to think of as a coordinate axis.

This is illustrated in (4.28)Figure for the special case ranV = R
2, hence

V has just two columns. We see each x ∈ R
2 written as the sum x = y1 + y2,

with yj = ajvj ∈ Yj = ran[vj ] the Yj -component of x (and, of course,
a = (a1, a2) the coordinate vector of x with respect to the basis V ).

v1

x

y1

y2

v2

ran[v1]

ran[v2]

(4.28) Figure. A basis provides a coordinate system.

The direct sum construct is set up in just the same way, except that
the Yj may be planes or even higher-dimensional subspaces rather than just
straight lines.

4.30 When X is the direct sum of Y and Z, then Z is said to be a complement
of Y . With Y and Z linear subspaces of the finite-dimensional vector space X, prove the
following assertions concerning complements.

(i) Y has a complement.

(ii) If both Z and Z1 complement Y , then dimZ = dimZ1 = codimY . In particular,
codim Y = dimX − dimY .

(iii) codim(Y + Z) = codim Y + codim Z − codim(Y ∩ Z).

(iv) If Y has only one complement, then Y = {0} or Y = X.

(v) If codim Y > dim Z, then Y + Z 6= X.

(vi) If dimY > codim Z, then Y ∩ Z 6= {0}.
4.31 Let (d1, . . . , dr) be a sequence of natural numbers, and let X be an n-dimensional

vector space. There exists a direct sum decomposition

X = Y1 +̇ · · · +̇ Yr
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with dimYj = dj , all j, if and only if
∑

j
dj = n.

4.32 Prove: If the vector space X is the direct sum of subspaces Xi, i = 1:r, with
each Xi the direct sum of subspaces Xij , j = 1:ri, then X is the direct sum of Xij , j = 1:ri,
i = 1:r.

4.33 Let d be any scalar-valued map, defined on the collection of all linear subspaces
of a finite-dimensional vector space X, that satisfies the following two conditions: (i)
Y ∩ Z = {0} =⇒ d(Y + Z) = d(Y ) + d(Z); (ii) dimY = 1 =⇒ d(Y ) = 1.

Prove that d(Y ) = dim(Y ) for every linear subspace of X.

4.34 Prove that the cartesian product Y1 × · · · × Yr of vector spaces, all over the
same scalar field IF, becomes a vector space under pointwise or slotwise addition and
multiplication by a scalar.

This vector space is called the product space with factors Y1, . . . , Yr.

Elimination in vector spaces

In the discussion of the (4.5)Basis Selection Algorithm, we left unan-
swered the unspoken question of just how one would tell which columns of
W ∈ L(IFm, X) are bound, hence end up in the resulting 1-1 map V .

The answer is immediate in case X ⊂ IFr for some r, for then W is
just an r ×m-matrix, and elimination does the trick since it is designed to
determine the bound columns of a matrix. It works just as well when X is,
more generally, a subset of IFT for some set T , as long as T is finite, since we
can then apply elimination to the ‘matrix’

(4.29) W = (wj(t) : (t, j) ∈ T ×m)

whose rows are indexed by the (finitely many) elements of T .

Elimination even works when T is not finite, since looking for a pivot row
in the matrix (4.29) with infinitely many rows is only a practical difficulty.
If τi is the row ‘index’ of the pivot row for the ith bound column of W ,
i = 1:r, then we know that W has the same nullspace as the (finite-rowed)
matrix (wj(τi) : i = 1:r, j = 1:m). This proves, for arbitrary T , the following
important

(4.30) Proposition: For any W ∈ L(IFm, IFT ), there exists a sequence
(τ1, . . . , τr) in T , with r equal to the number of bound columns in W , so
that nullW is equal to the nullspace of the matrix (wj(τi) : i = 1:r, j =
1:m).

In particular, W is 1-1 if and only if the matrix (wj(τi) : i, j = 1:m)
is invertible for some sequence (τ1, . . . , τm) in T .

If T is not finite, then we may not be able to determine in finite time
whether or not a given column is bound since we may have to look at infinitely
many rows not yet used as pivot rows. The only efficient way around this is
to have W given to us in the form

W = UA,
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with U some 1-1 column map, hence A a matrix. Under these circumstances,
the kth column of W is free if and only if the kth column of A is free, and
the latter we can determine by elimination applied to A.

Indeed, if U is 1-1, then both W and A have the same nullspace, hence,
by (4.3)Lemma, the kth column of W is bound if and only if the kth column
of A is bound.

As an example, consider W = [w1, w2, w3, w4], with wj : R → R : t 7→
sin(t− j), j = 1, 2, 3, 4. Hence, by the addition formula,

W = UA, with U := [sin, cos], and

A :=

[
cos(−1) cos(−2) cos(−3) cos(−4)
sin(−1) sin(−2) sin(−3) sin(−4)

]
,

and we see at once that U is 1-1 ( e.g. from the fact that QU = id2, with
Q : f 7→ (f(π/2), f(0))). We also see at once that the first two columns of
A are bound (e.g., since cos(1) cos(2) < 0 while sin(1) sin(2) > 0), hence the
remaining columns of A must be free (since there are no rows left to bind
them). Consequently, the first two columns of W are bound, while the last
two columns are free.

Note that, necessarily, U is a basis for ranW since W = UA implies
that ranW ⊂ ranU , hence having two columns of W bound implies that
2 ≤ dim ranW ≤ dim ranU ≤ #U = 2, and so U is 1-1 onto ranW .

In general, it may be hard to find such a handy factorization W = UA
for givenW ∈ L(IFm, X). In that case, we may have to discretize our problem
by finding somehow some Q ∈ L(X, IFn) that is 1-1 on ranW . With such
a ‘data map’ Q in hand, we know that nullW equals the nullspace of the
matrix QW . In particular, the kth column of W is bound if and only if the
kth column of the matrix QW is bound, and elimination applied to QW will
ferret out all those columns.

The need for suitable ‘data maps’ here in the general case is one of many
reasons why we now turn to the study of this second way of connecting our
vector space X to some coordinate space, namely via linear maps from X to
IFn.

4.35 For each of the following column maps V = [v1, . . . , vr ] into the vector space
Π<5 of all real polynomials of degree < 5, determine whether or not it is 1-1 and/or onto.

(a) [()3 − ()1 + 1, ()2 + 2()1 + 1, ()1 − 1]; (b) [()4 − ()1, ()3 + 2, ()2 + ()1 − 1, ()1 + 1];
(c) [1 + ()4, ()4 + ()3, ()3 + ()2, ()2 + ()1, ()1 + 1].

4.36 For each of the specific column maps V = [fj : j = 0:r] given below (with
fj certain real-valued functions on the real line), determine which columns are bound and
which are free. Use this information to determine (i) a basis for ran V ; and (ii) the smallest
n so that fn ∈ ran[f0, f1, . . . , fn−1].

(a) r = 6, and fj : t 7→ (t − j)2, all j.

(b) r = 4 and fj : t 7→ sin(t − j), all j.

(c) r = 4 and fj : t 7→ exp(t − j), all j. (If you know enough about the exponential
function, then you need not carry out any calculation on this problem.)
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4.37 Assume that τ1 < · · · < τ2k+1. Prove that W = [w0, . . . , wk] with wj : t 7→
(t− τj+1) · · · (t− τj+k) is a basis for Π≤k. (Hint: Consider QW with Q : p 7→ (p(τk+1+i) :
i = 0:k).)

4.38 Assume that (τ1, . . . , τ2k+1) is nondecreasing. Prove that W = [w0, . . . , wk]
with wj : t 7→ (t − τj+1) · · · (t − τj+k) is a basis for Π≤k if and only if τk < τk+1.

4.39 T/F

(a) If one of the columns of a column map is 0, then the map cannot be 1-1.

(b) If the column map V into R
n

is 1-1, then V has at most n columns.

(c) If the column map V into R
n

is onto, then V has at most n columns.

(d) If a column map fails to be 1-1, then it has a zero column.

(e) If a vector space has only one basis, then it must be the trivial space.

(f) If a column of a matrix A is free, then it cannot be part of a basis for ran A.
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Data maps (i.e., row maps)

There are two ways to connect a given vector spaceX with the coordinate
space IFn in a linear way, namely by a linear map from IFn to X , and by a
linear map to IFn from X . By now, you are thoroughly familiar with the first
kind, the column maps. It is time to learn something about the other kind.

A very important example of such a map is the inverse of a basis V :
IFn → X for the vector space X . This inverse is also known as the coordi-
nate map for that basis because it provides, for each x ∈ X , its coordinates
with respect to the basis, i.e., the n-vector a := V −1x for which x = V a.
In effect, every invertible linear map from X to IFn is a coordinate map,
namely the coordinate map for its inverse. However, (nearly) every linear
map from X to IFn, invertible or not, is of interest, as a means of extracting
numerical information from the elements of X . For, we can, offhand, only
compute with numbers, hence can ‘compute’ with elements of an abstract
vector space only in terms of numerical data about them.

Any linear map from the vector space X to IFn is necessarily of the form

f : X → IFn : x 7→ (fi(x) : i = 1:n),

with each fi = ei
t ◦ f a linear functional on X , i.e., a scalar-valued linear

map on X .

5.1 For each of the following maps, determine whether or not it is a linear functional.

(a) Π≤k → R : p 7→ deg p; (b) R
3 → R : x 7→ 3x1 − 2x3; (c) C([a . . b]) → R :

f 7→ maxa≤t≤b f(t); (d) C([a . . b]) → R : f 7→
∫ b

a
f(s)w(s) ds, with w ∈ C([a . . b]); (e)

C(2)(R) → R : f 7→ a(t)D2f(t) + b(t)Df(t) + c(t)f(t), for some functions a, b, c defined

on [a . . b] and some t ∈ [a . . b]. (f) C(2)(R) → C(R) : f 7→ aD2f + bDf + cf , for some
a, b, c ∈ C(R).

Here are some standard examples of linear functionals. Assume that X
is a space of functions, hence X is a linear subspace of IFT for some set T .
Then, for each t ∈ T ,

δt : X → IF : x 7→ x(t)

80
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is a linear functional on X , the linear functional of evaluation at t. For any
n-sequence s = (s1, . . . , sn) in T ,

X → IFn : f 7→ (f(s1), . . . , f(sn))

is a standard linear map from X to IFn.

If, more concretely, X is a linear subspace of C(n−1)[a. .b] and s ∈ [a. .b],
then

X → IFn : f 7→ (f(s), Df(s), . . . , Dn−1f(s))

is another standard linear map from such X to IFn.

Finally, if X = IFm, then any linear map from X to IFn is necessarily
a matrix. But it is convenient to write this matrix in the form At for some
A ∈ IFn×m, as such At acts on X via the rule

X 7→ IFn : x 7→ Atx = (A(:, j)tx : j = 1:n).

Because of this last example, we will call all linear maps from a vector
space to a coordinate space row maps, and use the notation

(5.1) Λt : X → IFn : x 7→ (λix : i = 1:n) =: [λ1, . . . , λn]tx,

calling the linear functional λi the ith row of this map. We will also call
such maps data maps since they extract numerical information from the
elements of X . There is no hope of doing any practical work with the vector
space X unless we have a ready supply of such data maps on X . For, by and
large, we can only compute with numbers.

(5.2) Proposition: If Λt = [λ1, λ2, . . . , λn]t : X → IFn and B ∈
L(U,X), then ΛtB = [λ1B, . . . , λnB]t.

This raises the question what, in this setting, the map [λ1, λ2, . . . , λn]
might be. Well, it is a column map whose columns are linear functionals on
X , hence it is a column map into the space L(X, IF) of all linear functionals
on X . This space is the dual of X , to be discussed in Chapter 9.

A formula for the coordinate map

Let V ∈ L(IFn, X) be a basis for the vector space X . How do we find
the coordinates

(5.3) a = V −1x

for given x ∈ X?
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Offhand, we solve the (linear) equation V ? = x for a. Since V is a basis,
we know that this equation has exactly one solution. But that is not the
same thing as having a concrete formula for a in terms of x.

If X = IFn, then V −1 is a matrix; in this case, (5.3) is an explicit
formula. However, even if X ⊂ IFn but X 6= IFn, then (5.3) is merely a
formal expression.

(5.4) Example: If V is a basis for some linear subspace X of IFn, then
we can obtain a formula for V −1 via elimination as follows.

Act as if V were invertible, i.e., apply elimination to [V, idn]. Let r :=
#V . Since V is 1-1, the first r columns in [V, idn] are bound, hence we are
able to produce, via elimination, an equivalent matrixR for which R(q, 1:r) =
idr, for some r-sequence q. Since we obtain R from [V, idn] by (invertible)
row operations, we know that R = M [V, idn] = [MV,M ] for some invertible
matrix M . In particular,

idr = R(q, 1:r) = (MV )(q, :) = M(q, :)V,

showing M(q, :) = R(q, r + (1:n)) to be a left inverse for V , hence equal to
V −1 when restricted to ranV .

Suppose, in particular, that we carry elimination all the way through, to
obtain R = rref([V, idn]). Then, q = 1:r and, with r+b and r+f the bound
and free columns of [V, idn] other than the columns of V , we necessarily have
M(q, b) = 0, hence, for this choice of M , we get

V −1x = M(q, :)x = M(q, f)x(f), x ∈ X := ranV.

In effect, we have replaced here the equation V ? = x by the equivalent

equation
V (f, :)? = x(f)

whose coefficient matrix is invertible. In particular, #f = #V ; see H.P. 5.3 .

5.2 For each of the following bases V of the linear subspace ran V of IFn, give a
matrix U for which Ux gives the coordinates of x ∈ ranV with respect to the basis V .
How would you check your answer?

(a) V =

[
1
1

]
; (b) V = [e2, e1, e3] ∈ R

3×3
; (c) V =

[
1 2
2 4
0 6

]
; (d) V =




1 0
0 0
−1 1
2 −2



.

5.3 Prove the claim at the end of (5.4)Example.

The reduction in (5.4)Example, of the abstract linear equation V ? = x
to a uniquely solvable square linear system, also works in the general setting.

To obtain a concrete expression, we discretize the abstract equation
V ? = x by considering instead the numerical equation

ΛtV ? = Λtx
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for some suitable data map Λt ∈ L(Y, IFn) defined on some vector space
Y ⊃ X . Here, ‘suitable’ means that the matrix ΛtV is invertible, for then
the unique solution of this equation must be the sought-for coordinate vector
for x ∈ X with respect to the basis V , i.e.,

a = V −1x = (ΛtV )−1Λtx.

In (5.4)Example, we simply chose the linear map y 7→ y(f) as our Λt,
i.e., Λt = idn(f, :) = [ej : j ∈ f]t, with f chosen, in effect, to ensure that
ΛtV = V (f, :) is invertible. We indeed obtained there V −1 as

x 7→ U(:, f)x(f) = V (f, :)−1x(f) = (ΛtV )−1Λtx.

How would one find a ‘suitable’ data map in general? That depends
on the particular circumstances. For example, if V ∈ L(IFn, Y ) and Λt ∈
L(Y, IFn), and we somehow know that Λt maps X := ranV = V (IFn) onto

IFn, then we know that ΛtV maps IFn onto IFn, hence, being a square matrix,
ΛtV must be invertible. Conversely, if ΛtV is invertible, then V must be 1-1,
hence provides a basis for its range, and Λt must map ranV onto IFn.

(5.5) Proposition: If the linear map V : IFn → X ⊂ Y is onto, and
Λt ∈ L(Y, IFn) is such that their (square) Gramian matrix, ΛtV , is
1-1 or onto, hence invertible, then V is a basis for X , and its inverse is

V −1 : X → IFn : x 7→ (ΛtV )−1Λtx.

In this connection, let V −1 =: [µ1, µ2, . . . , µn]t =: Mt. Then, M X is a
basis for L(X, IF), called the basis dual to V , since id = MtV = (µi Xvj :
i, j = 1:n), i.e., µivj = δij .

Change of basis

To be sure, under the assumptions of (5.5)Proposition, we also know
that Λt maps X onto IFn, hence, since both X and IFn are of the same finite
dimension, the restriction of Λt to X must be invertible as a linear map to
IFn. Consequently, there must be an invertible W ∈ L(IFn, X), i.e., a basis
W for X , with ΛtW = idn.

Hence, the right side in our numerical equation ΛtV ? = Λtx is the
coordinate vector for x ∈ X with respect to this basis W for X . In other
words, our great scheme for computing the coordinates of x ∈ X with respect
to the basis V for X requires us to know the coordinates of x with respect to
some basis for X . In other words, the entire calculation is just a change of
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basis , with ΛtV = W−1V the socalled transition matrix that carries the
V -coordinates of x to the W -coordinates of x.

However, this in no way diminishes its importance. For, we really have
no choice in this matter. We cannot compute without having numbers to
start with. Also, we often have ready access to the coordinate vector Λtx
without having in hand the corresponding basis W . At the same time, we
may much prefer to know the coordinates of x with respect to a different
basis.

For example, we know from (3.23)Proposition that, with (τ1, . . . , τk)
any sequence of pairwise distinct real numbers, the linear map Λt : p 7→
(p(τ1), . . . , p(τk)) is 1-1 on the k-dimensional space Π<k, hence provides the
coordinates of p ∈ Π<k with respect to a certain basis W of Π<k, namely the
socalled Lagrange basis whose columns can be verified to be the so-called
Lagrange fundamental polynomials

(5.6) ℓj : t 7→
∏

h 6=j

t− τh
τj − τh

, j = 1:k.

However, you can imagine that it is a challenge to differentiate or inte-
grate a polynomial written in terms of this basis. Much better for that
to have the coordinates of the polynomial with respect to the power basis
V = [()0, . . . , ()k−1].

5.4 What are the coordinates of p ∈ Π≤k with respect to the Lagrange basis for Π<k

for the points τ1, . . . , τk?

5.5 Find the value at 0 of the quadratic polynomial p, for which p(−1) = p(1) = 3
and Dp(1) = 6.

5.6 Find a formula for p(0) in terms of p(−1), p(1) and Dp(1), assuming that p is a
quadratic polynomial.

5.7 Find the coordinates for the polynomial q(t) = 3 − 4t + 2t2 with respect to the
basis W := [()0, ()0 + ()1, ()0 + ()1 + ()2] of the space of quadratic polynomials. (Hint:
you are given the coordinates for q wrto V := [()0, ()1, ()2] = W (W−1V ) and can easily
determine (W−1V )−1 = V −1W .)

5.8 Let v1, . . . , vn be a sequence of (n−1)-times continuously differentiable functions,
all defined on the interval [a . . b]. For x ∈ [a . . b], the matrix

W (v1, . . . , vn; x) := (Di−1vj(x) : i, j = 1:n)

is called the Wronski matrix at x for the sequence (vj : j = 1:n).

Prove that V := [v1, . . . , vn] is 1-1 in case, for some x ∈ [a. . b], W (v1, . . . , vn; x) is in-

vertible. (Hint: Consider the Gram matrix ΛtV with Λtf := (f(x), f ′(x), . . . , Dn−1f(x)).)

Interpolation and linear projectors

As (3.22)Example already intimates, our formula in (5.5) for the inverse
of a basis V ∈ L(IFn, X) can be much more than that. It is useful for
interpolation in the following way. Assuming that ΛtV is invertible, it follows
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that, for any y ∈ Y , x = V (ΛtV )−1Λty is the unique element in X that
agrees with y at Λt in the sense that

Λtx = Λty.

To recall the specifics of (3.22)Example, if X = Π<k and Λt : g 7→
(g(τi) : i = 1:k), with τ1 < · · · < τk, then, by (3.23)Proposition, for arbitrary
g : R → R, there is exactly one polynomial p of degree < k for which
p(τi) = g(τi), i = 1:k.

One can readily imagine other examples.

Example: In Hermite interpolation, one specifies not only values
but also derivatives. For example, in two-point Hermite interpolation from
Π<k, one picks two points, t 6= u, and two nonnegative integers r and s with
r + 1 + s+ 1 = k, and defines

Λt : g 7→ (g(t), Dg(t), . . . , Drg(t), g(u), Dg(u), . . . , Dsg(u)).

Now the requirement that Λtp = Λtg amounts to looking for p ∈ Π<k that
agrees with g in the sense that p and g have the same derivative values of
order 0, 1, . . . , r at t and the same derivative values of order 0, 1, . . . , s at u.

Example: Recall from Calculus the bivariate Taylor series

g(s, t) = g(0) +Dsg(0) s+Dtg(0) t +

+
(
Ds

2g(0)s2 +DsDtg(0)st+DtDsg(0)ts+Dt
2g(0)t2

)
/2 + h.o.t.

In particular, for any smooth function g, the quadratic polynomial

p : (s, t) 7→ g(0) +Dsg(0) s+Dtg(0) t +

+
(
Ds

2g(0)s2 + 2DsDtg(0)st+Dt
2g(0)t2

)
/2

is the unique quadratic polynomial that matches the information about g
given by the data map

Λt : g 7→ (g(0), Dsg(0), Dtg(0), Ds
2g(0), DsDtg(0), Dt

2g(0)).

Example: When dealing with Fourier series, one uses the data map

Λt : g 7→ (

∫ 2π

0

g(t) cis(jt) dt : j = 0:N),

with cis standing for ‘cosine or sine’. One looks for a trigonometric poly-
nomial

p = [cis(j·) : j = 0:N ]a

that satisfies Λtp = Λtg, and finds it in the truncated Fourier series for
g.
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Directly from (5.5)Proposition, we obtain (under the assumptions of that
proposition) the following pretty formula

(5.7) x = Py := V (ΛtV )−1Λty

for the interpolant x ∈ X to given y ∈ Y with respect to the data map Λt.
The linear map P := V (ΛtV )−1Λt so defined on Y is very special:

(5.8) Proposition: Let the linear map V : IFn → Y be onto X ⊂ Y ,
and let Λt ∈ L(Y, IFn) be such that their Gramian matrix, ΛtV , is
invertible. Then V is 1-1 and Λt is onto, and P := V (ΛtV )−1Λt is a
linear map on Y with the following properties:

(i) P is the identity on X = ranV .

(ii) ranP = ranV = X .

(iii) P is a projector or idempotent, i.e., PP = P , hence P ( id−P ) =
0.

(iv) nullP = null Λt = ran( id − P ).

(v) Y is the direct sum of ranP and nullP , i.e., Y = ranP +̇ nullP .

Proof: (i) PV = V (ΛtV )−1Λt V = V id = V , hence P (V a) = V a
for all a ∈ IFn.

(ii) Since P = V A for some A, we have that ranP ⊂ ranV , while
PV = V implies that ranP ⊃ ranV .

(iii) By (i) and (ii), P is the identity on its range, hence, in particular,
PP = P , or, equivalently, P ( id − P ) = 0.

(iv) The fact that P = AΛt for some A implies that nullP ⊃ null Λt,
while also

ΛtP = Λt V (ΛtV )−1Λt = idnΛt = Λt,

hence also nullP ⊂ null Λt. As to nullP = ran( id−P ), note that x ∈ nullP
implies that x = x − Px = ( id − P )x ∈ ran( id − P ), while, conversely,
nullP ⊃ ran( id − P ) since, by (iii), P ( id − P ) = 0.

(v) For any y ∈ Y , y = Py + ( id − P )y ∈ ranP + nullP , by (iv),
hence Y = ranP + nullP . If also y = x + z for some x ∈ ranP and some
z ∈ nullP , then, by (i) and (iv), Py = P (x + z) = Px + Pz = x, therefore
also z = y − x = y − Py = ( id − P )y, showing such a decomposition to be
unique.

5.9 Let P ∈ L(X). (i) Prove that P is a projector if and only if R := id − 2P is
involutory or self-inverse (meaning that RR = id). (ii) For the linear projector P of
(5.10)Example, work out the corresponding map R, and add to (5.9)Figure the point Ry.

5.10 Consider the linear map Q given on X = {f : R → R} by Qf(t) = (f(t) +
f(−t))/2. Prove that Q is a linear projector. Also, give a succinct description of its range
and its nullspace. (Hint: consider the map F : X → X defined by (Ff)(t) = −f(t).)
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v

y

Py

( id − P )y

w

ranP = ran[v]

nullP = w⊥ = null[w]t

(5.9) Figure. The direct sum decomposition provided by a certain linear
projector. Compare this to (4.28)Figure.

(5.10) Example: We specialize the general situation of (5.8)Proposi-
tion to the case V : R

1 → X ⊂ R
2, so we can draw a figure like (5.9)Figure.

Take Y = R
2, and let v ∈ R

2 6= 0, hence X := ranV with V := [v]
is 1-dimensional. The general linear map Λt : R

2 → R
1 is of the form [w]t

for some w ∈ R
2, and the requirement that ΛtV be invertible reduces to the

requirement that [w]t[v] = wtv 6= 0.

With V = [v] and Λt = [w]t so chosen, the linear projector P becomes

P :=
vwt

wtv
: y 7→ v

wty

wtv
.

We verify directly that

PP =
vwt

wtv

vwt

wtv
=

v wtv wt

(wtv) (wtv)
=
vwt

wtv
= P,

i.e., that P is a linear projector. Its range equals ran[v], i.e., the straight
line through the origin in the direction of v. Its nullspace equals null[w]t and
this is necessarily also 1-dimensional, by (4.15)Dimension Formula, hence is
the straight line through the origin perpendicular to w. The two lines have
only the origin in common since y ∈ ranP ∩ nullP implies that y = vα for
some scalar α, therefore 0 = wty = wtvα and this implies that α = 0 since
wtv 6= 0 by assumption.
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We can locate the two summands in the split

y = Py + ( id − P )y

graphically (see (5.9)Figure): To find Py, draw the line through y parallel
to nullP ; its unique intersection with ranP = ran[v] is Py. The process of
locating ( id − P )y is the same, with the roles of ranP and nullP reversed:
Now draw the line through y parallel to ranP ; its unique intersection with
nullP is the element ( id − P )y.

This shows graphically that, for each y, Py is the unique element of
ranP for which wtPy = wty, i.e., the unique point in the intersection of
ranP and y + null[w]t.

It is useful to note that, for any linear projector P , also ( id − P ) is a
linear projector (since ( id − P )( id − P ) = id − P − P + PP = id − P ),
and that any direct sum decomposition Y = X +̇Z of a finite-dimensional Y
necessarily has X = ranP and Z = nullP for some linear projector P . The
following is a more general such claim, of use later.

(5.11) Proposition: Let X1, . . . , Xr be linear subspaces of the finite-
dimensional vector space Y . Then the following are equivalent.

(i) Y is the direct sum of the Xj, i.e., Y = X1 +̇ · · · +̇Xr.

(ii) There exist Pj ∈ L(Y ) with ranPj = Xj so that

(5.12) idY = P1 + · · ·+ Pr

and

(5.13) PjPk =
{
Pj = Pk if j = k;
0 otherwise.

In particular, each Pj is a linear projector.

Also, the conditions in (ii) uniquely determine the Pj .

Proof: Let Vj be a basis for Xj , all j. By (4.26)Proposition, (i) is
equivalent to having V := [V1, . . . , Vr] be a basis for Y .

‘(i) =⇒ (ii)’: By assumption, V is a basis for Y . Let V −1 =: Λt =:
[Λ1, . . . ,Λr]

t be its inverse, grouped correspondingly. Then

iddim Y = ΛtV = [Λ1, . . . ,Λr]
t[V1, . . . , Vr] = (Λi

tVj : i, j = 1:r),

i.e.,

Λi
tVj =

{
id if i = j;
0 otherwise.
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Hence, the linear maps

Pj := VjΛj
t, j = 1:r,

satisfy (5.13), and ranPj = Xj, for all j. But also

idY = V Λt = [V1, . . . , Vr][Λ1, . . . ,Λr]
t =

∑

j

VjΛj
t,

showing (5.12).

‘(ii) =⇒ (i)’: By assumption, ranPj = ranVj , all j. Therefore, by
assumption (5.13),

(5.14) PjVi =
{
Vj if j = i;
0 otherwise.

Therefore, 0 = V a =
∑

i Viai implies, for any particular j, that 0 = Pj0 =
PjV a =

∑
i PjViai = PjVjaj = Vjaj , hence aj = 0 (since Vj is 1-1). It

follows that V is 1-1. On the other hand, the assumption (5.12) implies that
V is onto. Hence, V is a basis for Y .

Finally, to prove the uniqueness of the Pj satisfying (ii), notice that
(5.14) pins down Pj on all the columns of V . Since (ii) implies that V is a
basis for Y , this therefore determines Pj uniquely (by (4.2)Proposition).

Returning to the issue of interpolation, this gives the following

(5.15)Corollary: If V ∈ L(IFn, Y ) is 1-1, and Λt ∈ L(Y, IFn) is such
that ranV ∩ null Λt = {0}, then P := V (ΛtV )−1Λt is well-defined; it is
the unique linear projector P with

(5.16) ranP = ranV, nullP = null Λt.

In particular, then Λt is onto, and

(5.17) Y = ranV +̇ null Λt.

For an arbitrary abstract vector space, it may be very hard to come
up with suitable concrete data maps. For that reason, we now consider a
particular kind of vector space for which it is very easy to provide suitable
data maps, namely the inner product spaces.



6 Inner product spaces

Definition and examples

Inner product spaces are vector spaces with an additional operation, the
inner product . Here is the definition.

(6.1) Definition: An inner product space is a vector space Y (over
the field IF = R or C) and an inner product, meaning a map

〈 , 〉 : Y × Y → IF : (x, y) 7→ 〈x, y〉

that is

(a) positive definite, i.e., ‖x‖2 := 〈x, x〉 ≥ 0, with equality iff x = 0;

(b) linear in its first argument, i.e., 〈·, y〉 ∈ L(Y, IF);

(c) hermitian, or skew-symmetric, i.e., 〈y, x〉 = 〈x, y〉.

You already know an inner product space, namely n-dimensional Eu-
clidean space, i.e., the space of n-vectors with the inner product

〈x, y〉 := ytx =
∑

j

xjyj =: ycx,

though you may know it under the name scalar product or dot product.
In particular, (b) and (c) are evident in this case. As to (a), observe that,
for any complex number z = u+ iv,

zz = (u− iv)(u + iv) = u2 + v2 = |z|2 ≥ 0,

with equality if and only if u = 0 = v, i.e., z = 0. Hence, for any x ∈ IFn,

〈x, x〉 = xtx = |x1|2 + · · ·+ |xn|2 ≥ 0,

90
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with equality iff all the xj are zero, i.e., x = 0.

Of course, if the scalar field is R, we can forget about taking complex
conjugates since then x = x. But if IF = C, then it is essential that we
define 〈x, y〉 as ycx = ytx rather than as ytx since we would not get positive
definiteness otherwise. Indeed, if z is a complex number, then there is no
reason to think that z2 is nonnegative, and the following calculation

(1, i)t(1, i) = 12 + (i)2 = 1− 1 = 0

shows that, for a complex x, xtx can be zero without x being zero.

So, why not simply stick with IF = R? Work on eigenvalues requires
consideration of complex scalars (since it relies on zeros of polynomials, and
a polynomial may have complex zeros even if all its coefficients are real).
For this reason, we have taken the trouble all along to take into account the
possibility that IF might be C. It is a minor nuisance at this point, but will
save time later.

Another example of an inner product space of great practical interest

is the space Y =
◦

C of all continuous 2π-periodic functions, with the inner
product

〈f, g〉 :=
∫ 2π

0

f(t)g(t) dt.

Of course, we can also think of the space C([a . . b]) as an inner product
space, with respect to the inner product

〈f, g〉 :=
∫ b

a

f(t)g(t) dt.

Often, it is even useful to consider on C([a . . b]) the more general inner
product

〈f, g〉 :=
∫ b

a

f(t)g(t)w(t) dt

with w some positive function on [a. .b], and there are analogous inner product
spaces consisting of functions of several variables.

In order to stress the fact that a general inner product space Y behaves
just like IFn with the standard inner product, I will use the notation

yc : Y → IF : x 7→ 〈x, y〉, ∀y ∈ Y,
for the linear functional provided, according to (6.1)(b), by the inner product,
hence will feel free to write ycx rather than 〈x, y〉 for the inner product of x
with y. Correspondingly, you can read the rest of this chapter as if we were
just talking about the familiar space of n-vectors with the dot product, yet
be certain that, when the time comes, you will have in hand very useful facts

about an arbitrary inner product space, for example the space
◦

C.
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The conjugate transpose

Here is the promised ready supply of data maps available for an inner
product space.

Any column map W = [w1, . . . , wn] ∈ L(IFn, Y ) into an inner product
space Y provides the corresponding data map

W c : Y 7→ IFn : x 7→ (wj
cx : j = 1:n),

called its conjugate transpose or Hermitian.

The terminology comes from the special case Y = IFm. In that case,
W ∈ IFm×n, and then W c is, indeed, just the conjugate transpose of the
matrix W since then wj = W (:, j), hence

wj
cx = W (:, j)cx =

∑

k

W (k, j)xk =
∑

k

(W c)(j, k)xk = (W cx)j .

Further, if W ∈ L(IFn, Y ) and A ∈ IFn×m, then, with WA = [uj :=∑
k wkA(k, j) : j = 1:n], one verifies that

((WA)cx)j = uj
cx =

∑

k

A(k, j)wk
cx =

∑

k

Ac(j, k)wk
cx = (Ac(W cx))j .

This proves

(6.2): If W ∈ L(IFn, Y ) and A ∈ IFn×m, then WA ∈ L(IFm, Y ) and
(WA)c = AcW c.

This observation shows that the above definition of the conjugate trans-
pose of a column map is a special case of the abstract definition of the con-
jugate transpose of A ∈ L(X,Y ) as the unique map Ac : Y → X (necessarily
linear) for which

(6.3) 〈x,Acy〉 = 〈Ax, y〉, ∀(x, y) ∈ X × Y.

Indeed, if also 〈x, z〉 = 〈Ax, y〉 for all x ∈ X , then 〈x, z − Acy〉 = 0 for all
x ∈ X , including x = z−Acy, hence, by the definiteness of the inner product,
z − Acy = 0, showing that Acy is uniquely determined by (6.3). Since, for
arbitrary x ∈ X , y, z ∈ Y and a ∈ IF,

〈Ax, y + az〉 = 〈Ax, y〉+ a〈Ax, z〉 = 〈x,Acy〉+ a〈x,Acz〉 = 〈x,Acy + aAcz〉,

therefore, by the uniqueness,

Ac(y + az) = Acy + aAcz,
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i.e., Ac is a linear map. Also, the conjugate transpose of an n-column map
into Y is, indeed, the conjugate transpose in the sense of (6.3) (withX = IFn),
and

(6.4) (BA)c = AcBc

in case BA makes sense, hence, in particular,

(6.5) A−c := (A−1)c = (Ac)−1.

The only fly in the ointment is the fact that, for some A ∈ L(X,Y ), there
may not be any map Ac : Y → X satisfying (6.3) unless X is ‘complete’, a
condition that is beyond the scope of these notes. However, if both X and Y
are finite-dimensional inner-product spaces, then, with V and W bases for X
and Y , respectively, we can write any A ∈ L(X,Y ) as A = WÂV −1 (using

the matrix Â := W−1AV ), hence, with (6.4), have available the formula

Ac = (WÂV −1)c = V −cÂcW c

for the conjugate transpose of A, – another nice illustration of the power of
the basis concept.

With that, we are ready for the essential fact about the conjugate trans-
pose needed now.

(6.6) Lemma: If the range of the 1-1 column map V is contained in
the range of some column map W , then W cV is 1-1, hence W c is 1-1 on
ranV .

Proof: Assume that W cV a = 0 and let b := V a. Then b ∈ ranV ⊂
ranW , hence we must have b = Wc for some vector c. Therefore, using (6.2),

0 = cc0 = ccW cV a = (Wc)cV a = bcb.

By the definiteness of the inner product, this implies that b = 0, i.e., V a = 0,
therefore that a = 0, since V is assumed to be 1-1.

By taking now, in particular, W = V , it follows that, for any basis
V of the linear subspace X of the inner product space Y , the linear map
(V cV )−1V c is well-defined, hence provides a formula for V −1.

In MATLAB, the conjugate transpose of a matrix A is obtained
as A’, hence the corresponding formula is inv(V’*V)*V’. It is, in
effect, used there to carry out the operation V\ for a matrix V that
is merely 1-1.
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6.1 Prove (6.4) and (6.5).

Orthogonal projectors and closest points

We conclude that, with V a basis for the linear subspace X of the inner
product space Y , the linear projector

PV := V (V cV )−1V c

is well-defined. Moreover, by (5.8), nullPV = nullV c = {y ∈ Y : V cy = 0}.
Since x ∈ ranPV = ranV is necessarily of the form x = V a, it follows that,
for any x ∈ ranPV and any y ∈ nullPV ,

xcy = (V a)cy = ac(V cy) = 0.

In other words, ranPV and nullPV = ran( id − PV ) are perpendicular or
orthogonal to each other, in the sense of the following definition.

Definition: We say that the elements u, v of the inner product space
Y are orthogonal or perpendicular to each other, and write this

u ⊥ v,

in case 〈u, v〉 = 0.

More generally, for any F,G ⊂ Y , we write F ⊥ G to mean that,
∀f ∈ F, g ∈ G, f ⊥ g.

The orthogonal complement

F⊥ := {y ∈ Y : y ⊥ F}

of F is the largest set G perpendicular to F .

Note that u ⊥ v iff v ⊥ u since 〈v, u〉 = 〈u, v〉.

Because of the orthogonality

nullPV = ran( id − PV ) ⊥ ranPV

just proved, PV is called the orthogonal projector onto ranV . Correspond-
ingly, we write

(6.7) Y = ranPV ⊕ nullPV

to stress the fact that, in this case, the summands in this direct sum are
orthogonal to each other. Since they sum to Y , it follows (see H.P. 6.11
below) that each is the orthogonal complement of the other.
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This orthogonality, as we show in a moment, has the wonderful conse-
quence that, for any y ∈ Y , PV y is the unique element of ranPV = ranV
that is closest to y in the sense of the (Euclidean) norm

(6.8) ‖ · ‖ : Y → R : y 7→ √ycy.

Thus, for every y ∈ Y , our formula for the coordinate vector a = (V cV )−1V cy
of y ∈ ranV with respect to V gives the coordinates of the point in ranV
closest to y. If y ∈ ranV , then this is, of course, y itself.

(6.9) Example: We continue with (5.10)Example. In that example,
the choice Λt = V c amounts to choosing w = v. Now P becomes P =
vvc/vcv, and, correspondingly,

Py = v
vcy

vcv
,

which we recognize as the standard formula for the orthogonal projection of
the vector y onto the line spanned by the vector v.

Correspondingly, (5.9)Figure changes to the following.

v

y

Py

( id − P )y

ranP = ran[v]

nullP = v⊥

x

(6.10) Figure. If y − Py is perpendicular to ranP , then Py is the closest
point to y from ranP since then, for any x ∈ ranP , ‖y−x‖2 = ‖y−Py‖2 +
‖x− Py‖2.
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The proof that, for any y ∈ Y , PV y is the unique element of ranV
closest to y in the sense of the norm (6.8) is based on nothing more than the
following little calculation.

(6.11) ‖u+ v‖2 = (u+ v)c(u + v) = ‖u‖2 + vcu+ ucv + ‖v‖2.
Since vcu = ucv, this proves

(6.12) Pythagoras: u ⊥ v =⇒ ‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Since, for any x ∈ X , y−x = (y−PV y) + (PV y−x), while (y−PV y) ∈
nullPV ⊥ ranPV = X ∋ (PV y − x) we conclude that

(6.13) ‖y − x‖2 = ‖y − PV y‖2 + ‖PV y − x‖2.
Here, the first term on the right is independent of x. This shows that ‖y−x‖
is uniquely minimized over x ∈ X by the choice x = PV y, as we claimed.

Here is the formal statement.

(6.14) Theorem: For any basis V for the linear subspace X of the
inner product space Y , the linear map

PV = V (V cV )−1V c

equals PX , the orthogonal projector onto X , in the sense that, for
all y ∈ Y , PV y ∈ X and y − PV y ⊥ X .

Therefore, Y is the orthogonal direct sum

Y = ranV ⊕ nullV c = ranPV ⊕ nullPV = X ⊕ ran( id − PV ),

and
∀{y ∈ Y, x ∈ X} ‖y − x‖ ≥ ‖y − PV y‖,

with equality if and only if x = PV y.

Incidentally, by choosing x = 0 in (6.13), – legitimate since ranV is a
linear subspace, – we find the following very useful fact.

(6.15) Proposition: For any 1-1 column map V into Y and any y ∈ Y ,

‖y‖ ≥ ‖PV y‖,

with equality if and only if y = PV y, i.e., if and only if y ∈ ranV .
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This says that PV strictly reduces norms, except for those elements that
it doesn’t change at all.

6.2 Construct the orthogonal projection of the vector (1, 1, 1) onto the line L =
ran[1;−1; 1].

6.3 Construct the orthogonal projection of the vector x := (1, 1, 1) onto the straight
line y + ran[v], with y = (2, 0, 1) and v = (1,−1, 1). (Hint: you want to minimize ‖x −
(y + αv)‖ over all α ∈ R.)

6.4 Compute the distance between the two straight lines y + ran[v] and z + ran[w],
with y = (2, 0, 1), v = (1, 1, 1), z = (−1, 1,−1) and w = (0, 1, 1). (Hint: you want to
minimize ‖y + αv − (z + βw)‖ over α, β.)

6.5 With v1 = (1, 2, 2), v2 = (−2, 2,−1), (a) construct the matrix that provides the

orthogonal projection onto the subspace ran[v1, v2] of R
3
; (b) compute the orthogonal

projection of the vector y = (1, 1, 1) onto ran[v1, v2].

6.6 Taking for granted that the space Y := C([−1 . . 1]) of real-valued continuous
functions on the interval [−1. .1] is an inner product space with respect to the inner product

〈f, g〉 :=

∫ 1

−1

f(t)g(t) dt,

do the following: (a) Construct (a formula for) the orthogonal projector onto X := Π<2,
using the power basis, V = [()0, ()1] for X. (b) Use your formula to compute the orthogonal
projection of ()2 onto Π<2.

6.7 (a) Prove: If IF = R, then u ⊥ v if and only if ‖u + v‖2 = ‖u‖2 + ‖v‖2. (b)
What goes wrong with your argument when IF = C?

6.8 For each of the following maps f : IFn × IFn → IF, determine whether or not it
is an inner product.

(a) IF = R, n = 3, and f(x, y) = x1y1 + x3y3; (b) IF = R, n = 3, and f(x, y) =
x1y1 − x2y2 + x3y3; (c) IF = R, n = 2, and f(x, y) = x2

1 + y2
1 + x2y2; (d) IF = C, n = 3,

and f(x, y) = x1y1 + x2y2 + x3y3; (e) IF = R, n = 3, and f(x, y) = x1y2 + x2y3 + x3y1;

6.9 Prove that, for any invertible A ∈ IFn×n, 〈·, ·〉 : IFn × IFn → IF : (x, y) 7→
(Ay)cAx = yc(AcA)x is an inner product on IFn.

6.10 Prove that, for any subset F of the inner product space Y , the orthogonal
complement F⊥ is a linear subspace. (Hint: F⊥ = ∩f∈F null fc.)

6.11 Prove that, whenever Y = X ⊕ Z, then X⊥ = Z and Z⊥ = X.

6.12 Prove that, for any linear subspace X of a finite-dimensional inner product
space Y , ( id − PX) = PX⊥ .

6.13 Prove that, for any finite-dimensional linear subspace X of an inner product
space Y , (X⊥)⊥ = X.

6.14 An isometry or rigid motion in an inner product space X is any map f : X →
X that preserves distances, i.e., for which ‖f(x) − f(y)‖ = ‖x − y‖ for all x, y ∈ X. Prove

that any rigid motion of R
2

that maps the origin to itself is necessarily a linear map. (Hint:

you might prove first that, for any x 6= y and any α ∈ R, the point (1 − α)x + αy is the

unique point in the plane whose distance from x is |α|‖y−x‖ and from y is |1−α|‖y−x‖.)

Least-squares

Note that PV y = V a, with the coefficient vector a the unique solution
to the linear equation

V cV a = V cy.

This equation is also referred to as the normal equation since it requires
that V c(y − V a) = 0, i.e., that the residual, y − V a, be perpendicular or
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normal to every column of V , hence to all of ranV (see (6.10)Figure). In
effect, given that the equation V ? = y doesn’t have a solution for y ∈ Y \X ,
our particular V a = PV y gives us the closest thing to a solution.

In particular, if y ∈ Y = R
n and V ∈ R

n×r is 1-1, then PV y minimizes
‖y − V a‖ over all a ∈ R

r. For that reason, the coefficient vector a :=
V −1PV y is called the least-squares solution to the (usually inconsistent
or overdetermined) linear system V ? = y.

In MATLAB, the vector PV y is computed as V*(V\y), in line with
the fact mentioned earlier that the action of the matrix (V cV )−1V c

is provided by the operator V\, i.e., (up to roundoff and for any
vector y) the three vectors

a1 = V\y, a2 = inv(V’*V)*V’*y, a3 = (V’*V)\(V’*y)

are all the same. However, the first way is preferable since it avoids
actually forming the matrix V’*V (or its inverse) and, therefore, is
less prone to roundoff effects.

A practically very important special case of this occurs when X = ranV
consists of functions on some domain T and, for some finite subset S of T ,

QS : X → R
S : f 7→ (f(s) : s ∈ S)

is 1-1. Then

(6.16) 〈f, g〉S :=
∑

s∈S

f(s)g(s) =: (QSf)t(QSg)

is an inner product on X since it is evidently linear in the first argument
and also hermitian and nonnegative, and is definite since 〈f, f〉S = 0 implies
QSf = 0, hence f = 0 since QS is 1-1. Then, for arbitrary g ∈ R

S , we can
compute

V cg := (〈g, v〉S : v ∈ V ) = (QSV )tg,

hence can construct
PV,Sg := V (V cV )−1V cg

as the unique element V a of ranV closest to g in the sense that the sum of
squares

∑
s∈S |g(s)− (V a)(s)|2 is as small as possible. For this reason, PV,Sg

is also called the discrete least-squares approximation from ranV to g,
or, more explicitly, to the data ((s, g(s)) : s ∈ S). If #V = #S, then PV,Sg
is the unique interpolant to these data from ranV .

In any calculation of such a discrete least-squares approximation, we
would, of course, have to list the elements of S in some fashion, say as the
entries sj of the sequence s := (s1, . . . , sn). Then we can think of QS as the
data map into R

n given by f 7→ (f(sj) : j = 1:n). Correspondingly, QSV
becomes an n× r-matrix, and this matrix is 1-1, by the assumption that QS
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is 1-1 on X = ranV . Further, the coefficient vector a := (V cV )−1V cg for
PV,Sg is the least-squares solution to the linear equation

QSV ? = g

which seeks a coefficient vector a so that V a interpolates to the data
((sj , g(sj)) : j = 1:n). Such an interpolant exists if and only if the matrix
QSV is invertible. Otherwise, one has to be content with a least-squares so-
lution, i.e., a discrete least-squares approximation to these data, from ranV .

6.15 Compute the discrete least squares approximation by straight lines (i.e., from
Π<2) to the data (j, j2), j = 1:10 using (a) the basis [()0, ()1]; (b) the basis [()0, ()1−5.5()0].
(c) Why might one prefer (b) to (a)?

Orthonormal column maps

The formula
PV = V (V cV )−1V c

for the orthogonal projector onto the range of the 1-1 column map V becomes
particularly simple in case

(6.17) V cV = id;

it then reduces to
PV = V V c.

We call V orthonormal (or, o.n., for short) in this case since, written out
entry by entry, (6.17) reads

〈vj , vk〉 =
{

1 if j = k;
0 otherwise,

}
=: δjk.

In other words, each column of V is normalized , meaning that it has norm
1, and different columns are orthogonal to each other. Such bases are special
in that they provide their own inverse, i.e.,

x = V (V cx), ∀x ∈ ranV.

The term ‘orthonormal’ can be confusing, given that earlier we men-
tioned the normal equation, V cV ? = V cy, socalled because it expresses the
condition that the residual, y−V a, be orthogonal or ‘normal’ to the columns
of V . In fact, norma is the Latin name for a mason’s tool for checking that
a wall is at right angles to the ground. In the same way, the normal to a
surface at a point is a vector at right angles to the surface at that point.
Nevertheless, to normalize the vector y does not mean to change it into a
vector that is perpendicular to some subspace or set. Rather, it means to
divide it by its norm, thereby obtaining the vector y/‖y‖ that points in the
same direction as y but has norm 1. To be sure, this can only be done for
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y 6= 0 and then ‖ y/‖y‖ ‖ = 1 because the Euclidean norm is absolutely
homogeneous, meaning that

(6.18) ‖αy‖ = |α|‖y‖, ∀(α, y) ∈ IF× Y.

We now show that every finite-dimensional linear subspace of an inner-
product space Y has o.n. bases.

(6.19) Proposition: For every 1-1 V ∈ L(IFn, Y ), there exists an o.n.
Q ∈ L(IFn, Y ) so that, for all j, ran[q1, q2, . . . , qj] = ran[v1, v2, . . . , vj ],
hence V = QR with R (invertible and) upper triangular, a QR factor-
ization for V .

Proof: For j = 1:n, define uj := vj − PV<j
vj , with V<j := Vj−1 :=

[v1, . . . , vj−1]. By (6.14)Theorem, uj ⊥ ranV<j , all j, hence uj ⊥ uk for
j 6= k. Also, each uj is nonzero (since uj = Vj(a, 1) for some a ∈ IFj−1, and
Vj is 1-1), hence qj := uj/‖uj‖ is well-defined and, still, qj ⊥ qk for j 6= k.

It follows that Q := [q1, . . . , qn] is o.n., hence, in particular, 1-1. Finally,
since qj = uj/‖uj‖ ∈ ranVj , it follows that, for each j, the 1-1 map [qj , . . . , qj ]
has its range in the j-dimensional space ranVj , hence must be a basis for it.

Since Q<j = [q1, . . . , qj−1] is an o.n. basis for ranV<j , it is of help in
constructing qj since it gives
(6.20)

uj = vj −PV<j
vj , with PV<j

vj = PQ<j
vj =

∑

k<j

qk〈vj , qk〉 =
∑

k<j

uk
〈vj , uk〉
〈uk, uk〉

.

For this reason, it is customary to construct the uj or the qj ’s one by one,
from the first to the last, using (6.20). This process is called Gram-Schmidt
orthogonalization. To be sure, as (6.20) shows, there is no real need (other
than neatness) to compute the qj from the uj and, by skipping the calculation
of qj , one avoids taking square-roots.

Since any 1-1 column map into a finite-dimensional vector space can be
extended to a basis for that vector space, we have also proved the following.

(6.21) Corollary: Every o.n. column map Q into a finite-dimensional
inner product space can be extended to an o.n. basis for that space.

Given any 1-1 matrix V, the MATLAB command [q,r] = qr(V,0)

provides an o.n. basis, q, for ran V, along with the upper trian-
gular matrix r for which q*r equals V. The (simpler) statement
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[Q,R]=qr(V) provides a unitary, i.e., a square o.n., matrix Q and an
upper triangular matrix R so that Q*R equals V. If V is itself square,
then q equals Q. In the contrary case, Q equals [q,U] for some o.n.
basis U of the orthogonal complement of ranV. Finally, the simplest
possible statement, p = qr(V), gives the most complicated result,
namely a matrix p of the same size as V that contains r in its upper
triangular part and complete information about the various House-
holder matrices used in its strictly lower triangular part.

While, for each j = 1:#V, ranV(:, [1:j]) = ranQ(:, [1:j]), the
construction of q or Q does not involve the Gram-Schmidt algorithm,
as that algorithm is not reliable numerically when applied to an
arbitrary 1-1 matrix V. Rather, the matrix V is factored column by
column with the aid of certain elementary matrices, the so-called
Householder reflections id − 2wwc/wcw.

As already observed, it is customary to call a square o.n. matrix uni-
tary. It is also customary to call a real unitary matrix orthogonal. However,
the columns of such an ‘orthogonal matrix’ are not just orthogonal to each
other, they are also normalized. Thus it would be better to call such a ma-
trix ‘orthonormal’, freeing the term ‘orthogonal matrix’ to denote one whose
columns are merely orthogonal to each other. But such naming conventions
are hard to change. I will simply not use the term ‘orthogonal matrix’, but
use ‘real unitary matrix’ instead.

An o.n. column map Q has many special properties, all of which derive
from the defining property, QcQ = id, by the observation that therefore, for
any a, b ∈ IFn,

(6.22) 〈Qa,Qb〉 = 〈QcQa, b〉 = 〈a, b〉.

This says that Q is inner-product preserving. In particular, any o.n.
Q ∈ L(IFn, X) is an isometry in the sense that

(6.23) ∀a ∈ IFn ‖Qa‖ = ‖a‖.

More than that, any o.n. Q ∈ L(IFn, X) is angle-preserving since a
standard definition of the angle ϕ between two real nonzero n-vectors x and
y is the following implicit one:

cos(ϕ) :=
〈x, y〉
‖x‖‖y‖ .

To be sure, this definition makes sense only if we can be sure that the right-
hand side lies in the interval [−1 . . 1]. But this is a consequence of the
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Cauchy-Bunyakovski-Schwarz or CBS Inequality: For any u, v in
the inner product space Y ,

(6.24) |〈u, v〉| = |vcu| ≤ ‖u‖‖v‖,

with equality if and only if [u, v] is not 1-1.

Be sure to remember not only the inequality, but also exactly when it
is an equal ity.

Proof: If v = 0, then there is equality in (6.24) and [u, v] is not
1-1. Otherwise, v 6= 0 and, in that case, by (6.15)Proposition, the or-
thogonal projection P[v]u = v(vcu)/‖v‖2 onto ran[v] of an arbitrary u ∈ Y
has norm smaller than ‖u‖ unless u = P[v]u. In other words, |vcu|/‖v‖ =
‖v(vcu)/‖v‖2‖ ≤ ‖u‖, showing that (6.24) holds in this case, with equality if
and only if u ∈ ran[v].

6.16 Prove (6.18).

6.17 Prove that V =

[
1 1 1
−1 1 −1
0 1 2

]
is a basis for R

3
and compute the coordinates

of x := (1, 1, 1) with respect to V .

6.18 Verify that V =




1 −1 1
1 −1 −1
1 2 0
0 0 2


 is an orthogonal basis for its range, and extend

it to an orthogonal basis for R
4
.

6.19 (a) Use the calculations in H.P. 6.15 to construct an orthogonal basis for Π<3

from the power basis V = [()0, ()1, ()2] with respect to the (discrete) inner product in H.P.
6.15 .

(b) Use (a) to compute the discrete least-squares approximation from Π<3 to the
data (j, j3), j = 1:10.

6.20 Use the result of H.P. 6.6 to construct an o.n. basis for Π<3 wrto the inner

product 〈f, g〉 :=
∫ 1

−1
f(t)g(t) dt.

6.21 What is the angle between (1, 2, 2) and (3,−1,−2)?

6.22 Consider the Vandermonde matrix

A := [δz0
, . . . , δzk

]c[()0, . . . , ()k ] = (zj
i

: i, j = 0:k)

for some sequence z0, . . . , zk of complex numbers.

Prove that A is a scalar multiple of a unitary matrix if and only if, for some real α,

{z0, . . . , zk} = {exp(2πi(α + i/(k + 1))) : i = 0:k}.
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ranA and nullAc form an orthogonal direct sum for tarA

The two basic linear subspaces associated with A ∈ L(X,Y ) are its
range, ranA, and its kernel or nullspace, nullA. However, when X and Y
are inner product spaces, it is also very useful to consider the range of A and
the nullspace of the (conjugate) transpose Ac of A together. For, then, by
the definiteness of the inner product, Acy = 0 iff 〈x,Acy〉 = 0 for all x ∈ X ,
while, by (6.3), 〈x,Acy〉 = 〈Ax, y〉, hence

nullAc = {y ∈ Y : y ⊥ ranA}.

Recalling the notation

M⊥ := {y ∈ Y : y ⊥M}

for the it orthogonal complement of the subset M of Y , we get the following.

(6.25) Proposition: For any A ∈ L(X,Y ), (ranA)⊥ = nullAc.

(6.26) Corollary: For any A ∈ L(X,Y ), Y is the orthogonal direct
sum Y = ranA⊕ nullAc. Hence

dim tarA = dim ranA+ dimnullAc.

Proof: Let V be any basis for ranA. By (6.14)Theorem,

Y = ranV ⊕ nullV c,

while, by choice of V , ranV = ranA, and so, by (6.25), nullV c = (ranV )⊥ =
(ranA)⊥ = nullAc.

In particular, A is onto if and only if Ac is 1-1. Further, since (Ac)c = A,
we also have the following complementary statement.

(6.27) Corollary: For any A ∈ L(X,Y ), X is the orthogonal direct
sum X = ranAc ⊕ nullA. Hence,

dim domA = dim ranAc + dimnullA.
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In particular, Ac is onto if and only if A is 1-1. Also, on comparing (6.27)
with the Dimension Formula, we see that dim ranA = dim ranAc.

The fact (see (6.26)Corollary) that tarA = ranA⊕ nullAc is often used
as a characterization of the elements y ∈ tarA for which the equation A? = y
has a solution. For, it says that y ∈ ranA if and only if y ⊥ nullAc. Of
course, since nullAc consists exactly of those vectors that are orthogonal to
all the columns of A, this is just a special case of the fact (see H.P. 6.13 )
that the orthogonal complement of the orthogonal complement of a linear
subspace is that linear subspace itself.

The inner product space IFm×n and the trace of a matrix

At the outset of these notes, we introduced the space IFm×n as a special
case of the space IFT of all scalar-valued functions on some set T , namely
with

T = m× n.

This set being finite, there is a natural inner product on IFm×n, namely

〈A,B〉 :=
∑

i,j

B(i, j)A(i, j).

This inner product can also be written in the form

〈A,B〉 =
∑

i,j

Bc(j, i)A(i, j) =
∑

j

(BcA)(j, j) = trace(BcA).

Here, the trace of a square matrix C is, by definition, the sum of its diagonal
entries,

traceC :=
∑

j

C(j, j).

Note that

(6.28) trace(AB) =
∑

i,j

A(i, j)B(j, i) =
∑

j,i

B(j, i)A(i, j) = trace(BA).

The norm in this inner product space is called the Frobenius norm,

(6.29) ‖A‖F :=
√

traceAcA =
∑

i,j

|A(i, j)|2.

The Frobenius norm is compatible with the Euclidean norm ‖ ‖ on IFn and
IFm in the sense that

(6.30) ‖Ax‖ ≤ ‖A‖F ‖x‖, x ∈ IFn.
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Not surprisingly, the map IFm×n → IFn×m : A 7→ At is unitary, i.e.,
inner-product preserving:

(6.31) 〈At, Bt〉 =
∑

i,j

Bt(i, j)At(i, j) =
∑

i,j

B(j, i)A(j, i) = 〈A,B〉.

6.23 T/F

(a) (x, y) 7→ yc

[
1 1
1 1

]
x is an inner product on R

2
;

(b) ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2.



7 Norms, map norms, and the condition of a basis

Assume that V is a basis for the nontrivial linear subspaceX of the inner
product space Y . The coordinate vector a for x ∈ X is the unique solution
of the equation

V ? = x.

We may not be able to compute the solution exactly. Even if we know the
entries of the solution exactly, as common fractions say, we may not be able
to use them exactly if we use some floating-point arithmetic, as is common.
It is for this reason that one is interested in gauging the effect of an erroneous
coordinate vector â on the accuracy of V â as a representation for x = V a.

How to judge the error by the residual

Since, presumably, we do not know a, we cannot compute the error

ε := a− â;

we can only compute the residual

r := x− V â.

Nevertheless, can we judge the error by the residual? Does a ‘small’ relative
residual

‖r‖/‖x‖
imply a ‘small’ relative error

‖ε‖/‖a‖ ?

By definition, the condition (or, condition number) κ(V ) of the basis
V is the greatest factor by which the relative error, ‖ε‖/‖a‖, can exceed the
relative residual, ‖r‖/‖x‖ = ‖V ε‖/‖V a‖; i.e.,

(7.1) κ(V ) := sup
a,ε

‖ε‖/‖a‖
‖V ε‖/‖V a‖ .

106
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However, by interchanging here the roles of a and ε and then taking recipro-
cals, this also says that

1/κ(V ) = inf
ε,a

‖ε‖/‖a‖
‖V ε‖/‖V a‖ .

Hence, altogether,

(7.2)
1

κ(V )

‖r‖
‖x‖ ≤

‖ε‖
‖a‖ ≤ κ(V )

‖r‖
‖x‖ .

In other words, the larger the condition number, the less information about
the size of the relative error is provided by the size of the relative residual.

For a better feel for the condition number, note that we can also write
the formula (7.1) for κ(V ) in the following fashion:

κ(V ) = sup
ε

‖ε‖
‖V ε‖ sup

a

‖V a‖
‖a‖ .

Also,

‖V a‖/‖a‖ = ‖V (a/‖a‖)‖,

with a/‖a‖ normalized , i.e., of norm 1. Hence, altogether,

(7.3) κ(V ) =
sup{‖V a‖ : ‖a‖ = 1}
inf{‖V a‖ : ‖a‖ = 1} .

This says that we can visualize the condition number κ(V ) in the following
way; see (7.5)Figure. Consider the image

(7.4) {V a : ‖a‖ = 1}

under V of the unit sphere

{a ∈ IFn : ‖a‖ = 1}

in IFn. It will be some kind of ellipsoid, symmetric with respect to the origin.
In particular, there will be a point amax with ‖amax‖ = 1 for which V amax

will be as far from the origin as possible. There will also be a point amin

with ‖amin‖ = 1 for which V amin will be as close to the origin as possible. In
other words,

κ(V ) = ‖V amax‖/‖V amin‖,

saying that the condition number gives the ratio of the largest to the smallest
diameter of the ellipsoid (7.4). The larger the condition number, the skinnier
is the ellipsoid.
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In particular, if a = amax while ε = amin, then the relative error is 1
while the relative residual is ‖V amin‖/‖V amax‖, and this is tiny to the extent
that the ellipsoid is ‘skinny’.

On the other hand, if a = amin while ε = amax, then the relative error is
still 1, but now the relative residual is ‖V amax‖/‖V amin‖, and this is large
to the extent that the ellipsoid is ‘skinny’.

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

V (amax + .2amin)

V (amin + .2amax)

(7.5) Figure. Extreme effects of a 20% relative error on the relative residual,

for V =

[
3 2
2 3

]
.

The worst-conditioned column maps V are those that fail to be 1-1 since,
for them, V amin = 0, hence κ(V ) =∞.

On the other extreme, it follows directly from (7.3) that κ(V ) ≥ 1, and
this lower bound is reached by any o.n. basis V since any o.n. basis is an
isometry, by (6.23), i.e., ‖V a‖ = ‖a‖ for all a ∈ IFn. Thus o.n. bases are
best-conditioned, and rightfully prized for that. It was for this reason that
we took the trouble to prove that every finite-dimensional linear subspace
of an inner product space has o.n. bases, and even discussed just how to
construct such bases.

The map norm

As we now explain, the numbers ‖V amax‖ = max{‖V a‖ : ‖a‖ = 1} and
1/‖V amin‖ = 1/min{‖V a‖ : ‖a‖ = 1} both are examples of a map norm
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according to the following

(7.6) Definition: The map norm, ‖A‖, of A ∈ L(X,Y ) is the smallest
nonnegative number c for which

‖Ax‖ ≤ c‖x‖, ∀x ∈ X.

If X is trivial, then ‖A‖ = 0 for the sole A ∈ L(X,Y ). Otherwise

(7.7) ‖A‖ = sup
x 6=0
‖Ax‖/‖x‖ = sup{‖Ax‖ : ‖x‖ = 1}.

Here, the last equality follows from the absolute homogeneity of the norm
and the homogeneity of A which combine to permit the conclusions that

‖Ax‖/‖x‖ = ‖A(x/‖x‖)‖ and ‖(x/‖x‖)‖ = 1.

In these notes, we are only interested in finite-dimensional X and, for
such X ,

(7.8) ‖A‖ = max
x 6=0
‖Ax‖/‖x‖ = max{‖Ax‖ : ‖x‖ = 1}.

The reason for this is beyond the scope of these notes, but is now stated for
the record: If X is finite-dimensional, then

F : x 7→ ‖Ax‖

is continuous and the unit sphere

{x ∈ X : ‖x‖ = 1}

is compact, hence F achieves its maximum value on that sphere. (See the
Backgrounder for more details.) For the same reason, F also achieves its
minimum value on the unit sphere, and this justifies the existence of amax

and amin in the preceding section.

We conclude that determination of the map norm is a two-part process,
as formalized in the following.

(7.9) Calculation of ‖A‖: The number c equals the norm ‖A‖ if and
only if

(i) for all x, ‖Ax‖ ≤ c‖x‖; and

(ii) for some x 6= 0, ‖Ax‖ ≥ c‖x‖.
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The first says that ‖A‖ ≤ c, while second says that ‖A‖ ≥ c, hence, together
they say that ‖A‖ = c.

(7.10) Example: We compute ‖A‖ in case A ∈ IFm×n is of the simple
form

A = [v][w]c = vwc

for some v ∈ IFm and some w ∈ IFn. Since

Ax = (vwc)x = v(wcx),

we have
‖(vwc)x‖ = ‖v‖|wcx| ≤ ‖v‖‖w‖‖x‖,

the equality by the absolute homogeneity of the norm, and the inequality by
(6.24)Cauchy’s Inequality. This shows that ‖vwc‖ ≤ ‖v‖‖w‖. On the other
hand, for the specific choice x = w, we get (vwc)w = v(wcw) = v‖w‖2,
hence ‖(vwc)w‖ = ‖v‖‖w‖‖w‖. Assuming that w 6= 0, this shows that
‖vwc‖ ≥ ‖v‖‖w‖. However, this inequality is trivially true in case w = 0
since then vwc = 0. So, altogether, we have that

‖vwc‖ = ‖v‖‖w‖.

Note that we have, incidentally, proved that, for any v ∈ IFn,

(7.11) ‖[v]‖ = ‖v‖ = ‖[v]c‖.

As another example, note that, if also B ∈ L(Y, Z) for some inner prod-
uct space Z, then BA is defined and

‖(BA)x‖ = ‖B(Ax)‖ ≤ ‖B‖ ‖Ax‖ ≤ ‖B‖ ‖A‖‖x‖.

Therefore,

(7.12) ‖BA‖ ≤ ‖B‖ ‖A‖.

We are ready to discuss the condition (7.3) of a basis V in terms of map
norms.

Directly from (7.8), max{‖V a‖ : ‖a‖ = 1} = ‖V ‖.

(7.13) Proposition: If A ∈ L(X,Y ) is invertible and X 6= {0} is
finite-dimensional, then

‖A−1‖ = 1/min{‖Ax‖ : ‖x‖ = 1}.
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Proof: Since A is invertible, y ∈ Y is nonzero if and only if y = Ax
for some nonzero x ∈ X . Hence,

‖A−1‖ = max
y 6=0

‖A−1y‖
‖y‖ = max

x 6=0

‖A−1Ax‖
‖Ax‖ = 1/min

x 6=0

‖Ax‖
‖x‖ ,

and this equals 1/min{‖Ax‖ : ‖x‖ = 1} by the absolute homogeneity of the
norm and the homogeneity of A.

In particular, 1/‖A−1‖ is the largest number c for which

c‖x‖ ≤ ‖Ax‖, ∀x ∈ X.

We conclude that

(7.14) κ(V ) = ‖V ‖‖V −1‖.

7.1 Complement (7.13)Proposition by discussing the situation when X = {0}.
7.2 Prove that κ(V ) ≥ 1 for any basis V with at least one column.

7.3 Determine κ([ ]).

Vector norms and their associated map norms

MATLAB provides the map norm of the matrix A by the statement
norm(A) (or by the statement norm(A,2), indicating that there are
other map norms available).

The norm command gives the Euclidean norm when its argu-
ment is a ‘vector’. Specifically, norm(v) and norm(v,2) both give
‖v‖ =

√
vcv. However, since in (present-day) MATLAB, everything

is a matrix, there is room here for confusion since experimentation
shows that MATLAB defines a ‘vector’ to be any 1-column matrix and
any 1-row matrix. Fortunately, there is no problem with this, since,
by (7.11), the norm of the vector v equals the norm of the matrices

v and vc.

The best explicit expression available for ‖A‖ for an arbitraryA ∈ IFm×n

is the following:

(7.15) ‖A‖ =
√
ρ(AcA) = σ1(A).

This formula cannot be evaluated in finitely many steps since the number
ρ(AcA) is, by definition, the ‘spectral radius’ ofAcA, i.e., the smallest possible
radius of a disk centered at the origin that contains all the eigenvalues of
AcA. The 2-norm of A also equals σ1(A) which is, by definition, the largest
‘singular value’ of A. In general, one can only compute approximations to
this number.
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For this reason (and others), other vector norms are in common use,
among them the max-norm

‖x‖∞ := max
j
|xj |, ∀x ∈ IFn,

for which the associated map norm is easily computable. It is

(7.16) ‖A‖∞ := max
x 6=0
‖Ax‖∞/‖x‖∞ = max

i

∑

j

|A(i, j)| = max
i
‖A(i, :)‖1,

with

(7.17) ‖v‖1 :=
∑

j

|vj |

yet another vector norm, the socalled 1-norm. The map norm associated
with the 1-norm is also easily computable. It is

(7.18)

‖A‖1 := max
x 6=0
‖Ax‖1/‖x‖1 = max

j

∑

i

|A(i, j)|

= max
j
‖A(:, j)‖1 = ‖At‖∞ = ‖Ac‖∞.

In this connection, the Euclidean norm is also known as the 2-norm,
since

‖x‖ =
√
xcx =

√∑

j

|xj |2 =: ‖x‖2.

Therefore, when it is important, one writes the corresponding map-norm with
a subscript 2, too. For example, compare (7.18) with

(7.19) ‖A‖ = ‖A‖2 = ‖Ac‖2 = ‖At‖2.
For the proof of these identities, recall from (6.24) that

(7.20) ‖x‖2 = max
y 6=0
|〈x, y〉|/‖y‖2, x ∈ IFn.

Hence,
(7.21)

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

= max
x 6=0

max
y 6=0

|〈Ax, y〉|
‖x‖2‖y‖2

= max
y 6=0

max
x 6=0

|〈x,Acy〉|
‖x‖2‖y‖2

= max
y 6=0

‖Acy‖2
‖y‖2

= ‖Ac‖2.

The equality ‖At‖ = ‖Ac‖ holds in any of the map-norms discussed since
they all depend only on the absolute values of the entries of the matrix A.

The MATLAB statement norm(A,inf) provides the norm ‖A‖∞
in case A is a ‘matrix’, i.e., not a ‘vector’. If A happens to equal
[v] or [v]t for some vector v, then norm(A,inf) returns the max-
norm of that vector, i.e., the number ‖v‖∞. By (7.16), this is ok if
A = [v], but gives, in general, the wrong result if A = vt. This is
an additional reason for sticking with the rule of using only (n, 1)-
matrices for representing n-vectors in MATLAB.

The 1-norm, ‖A‖1, is supplied by the statement norm(A,1).
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All three (vector-)norms mentioned so far are, indeed, norms in the sense
of the following definition.

(7.22) Definition: The map ‖ ‖ : X → R : x 7→ ‖x‖ is a vector norm,
provided it is

(i) positive definite, i.e., ∀{x ∈ X} ‖x‖ ≥ 0 with equality if and only
if x = 0;

(ii) absolutely homogeneous, i.e., ∀{α ∈ IF, x ∈ X} ‖αx‖ = |α|‖x‖;
(iii) subadditive, i.e., ∀{x, y ∈ X} ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

This last inequality is called the triangle inequality, and the vec-
tor space X supplied with a vector norm is called a normed vector
space.

The absolute value is a vector norm for the vector space IF = IF1. From
this, it is immediate that both the max-norm and the 1-norm are vector
norms for IFn. As to the norm x 7→

√
xcx on an inner product space and,

in particular, the Euclidean or 2-norm on IFn, only the triangle inequality
might still be in doubt, but it is an immediate consequence of (6.24)Cauchy’s
Inequality, which gives that

〈x, y〉+ 〈y, x〉 = 2 Re〈x, y〉 ≤ 2|〈x, y〉| ≤ 2‖x‖‖y‖,

and therefore:

‖x+ y‖2 = ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2 ≤ (‖x‖+ ‖y‖)2.

Also, for X finite-dimensional, and both X and Y normed vector spaces,
with norms ‖ ‖X and ‖ ‖Y respectively, the vector space L(X,Y ) is a normed
vector space with respect to the corresponding map norm

(7.23) ‖A‖ := ‖A‖X,Y := max
x 6=0

‖Ax‖Y
‖x‖X

.

All statements about the map norm ‖A‖ made in the preceding section
hold for any of the map norms ‖A‖X,Y since their proofs there use only the
fact that x 7→

√
xcx is a norm according to (7.22)Definition. In particular,

we will feel free to consider

κ(A)p := ‖A‖p‖A−1‖p, p = 1, 2,∞, A ∈ IFn.

Why all these different norms? Each norm associates with a vector just
one number, and, as with bases, any particular situation may best be handled
by a particular norm.
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For example, in considering the condition of the power basis V := [()j−1 :
j = 1:k] for Π<k, we might be more interested in measuring the size of the
residual p− V â in terms of the max-norm

‖f‖[c..d] := max{|f(t)| : c ≤ t ≤ d}

over the interval [c . . d] of interest, rather than in the averaging way supplied
by the corresponding 2-norm

(∫ b

a

|f(t)|2 dt

)1/2

.

In any case, any two norms on a finite-dimensional vector space are
equivalent in the following sense.

(7.24) Proposition: For any two norms, ‖ ‖′ and ‖ ‖′′, on a finite-
dimensional vector space X , there exists a positive constant c so that

‖x‖′′ ≤ c‖x‖′, ∀x ∈ X.

This is just the statement that the map norm

‖ idX‖ := max
x 6=0
‖x‖′′/‖x‖′

is finite.

For example, for any x ∈ IFn,
(7.25)
‖x‖1 ≤

√
n‖x‖2, and ‖x‖2 ≤

√
n‖x‖∞, while ‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞.

Finally, given that it is very easy to compute the max-norm ‖A‖∞ of
A ∈ IFm×n and much harder to compute the 2-norm ‖A‖ = ‖A‖2, why
does one bother at all with the 2-norm? One very important reason is the
availability of a large variety of isometries , i.e., matrices A with

‖Ax‖ = ‖x‖, ∀x.

Each of these provides an o.n. basis for its range, and, by (6.19)Proposition,
each finite-dimensional linear subspace of an inner product space has o.n.
bases.

In contrast, the only A ∈ IFn×n that are isometries in the max-norm,
i.e., satisfy

‖Ax‖∞ = ‖x‖∞, ∀x ∈ IFn,
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are of the form
diag(ε1, . . . , εn)P,

with P a permutation matrix and each εj a scalar of absolute value 1.

For this reason, we continue to rely on the 2-norm. In fact, any norm
without a subscript or other adornment is meant to be the 2-norm (or, more
generally, the norm in the relevant inner product space).

7.4 Prove that, for any α ∈ IF, the linear map Mα : X → X : x 7→ αx on the normed
vector space X 6= {0} has map norm |α|.

7.5 Prove that, for any diagonal matrix D ∈ IFm×n and for p = 1, 2,∞, ‖D‖p =
maxj |D(j, j)|.
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The need for factoring linear maps

In order to compute with a linear map A ∈ L(X,Y ), we have to factor
it through a coordinate space. This means that we have to write it as

A = V Λt, with V ∈ L(IFr, Y ), hence Λt ∈ L(X, IFr) .

The following picture might be helpful:

A
X −→ Y

ց րΛt
V

IFr

For example, recall how you apply the linear map D of differentiation
to a polynomial p ∈ Π≤k: First you get the polynomial coefficients of that
polynomial, and then you write down Dp in terms of those coefficients.

To test my claim, carry out the following thought experiment: You know
that there is exactly one polynomial p of degree ≤ k that matches given
ordinates at given k + 1 distinct abscissae, i.e., that satisfies

p(τi) = yi, i = 0:k

for given data (τi, yi), i = 0:k. Now, try, e.g., to compute the first derivative
of the polynomial p of degree ≤ 3 that satisfies p(j) = (−1)j, j = 1, 2, 3, 4.
Can you do it without factoring the linear map D : Π<4 → Π<4 through
some coordinate space?

As another example, recall how we dealt with coordinate maps, i.e.,
the inverse of a basis. We saw that, even though a basis V : IFn → IFm

116
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for some linear subspace X of IFm is a concrete matrix, its inverse, V −1 is,
offhand, just a formal expression. For actual work, we made use of any matrix

Λt : IFm → IFn that is 1-1 on X , thereby obtaining the factorization

V −1 = (ΛtV )−1Λt

in which ΛtV is a square matrix, hence (ΛtV )−1 is also a matrix.

The smaller one can make #V in a factorization A = V Λt of A ∈
L(X,Y ), the cheaper is the calculation of A.

Definition: The smallest r for which A ∈ L(X,Y ) can be factored as
A = V Λt with V ∈ L(IFr, Y ) (hence Λt ∈ L(X, IFr)) is called the rank
of A. This is written

r = rankA.

Any factorization A = V Λt with #V = rankA is called minimal.

As an example,

A :=




1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5


 =




1
1
1
1


 [ 1 2 3 4 5 ] ,

hence this A has rank 1 (since we can write it as A = V Λt with domV = IF1,
but we couldn’t do it with domV = IF0). To calculate Ax, we merely need
to calculate the number α := (1, 2, 3, 4, 5)tx, and then obtain Ax as the
particular scalar multiple yα of the vector y := (1, 1, 1, 1). That is much
cheaper than computing the matrix product of the 4× 5-matrix A with the
1-column matrix [x].

As the example illustrates, any matrix

A := [v][w]t = vwt

with v ∈ IFm and w ∈ IFn has rank 1 unless it is trivial, i.e., unless either
v or w is the zero vector. This explains why an elementary matrix is also
called a rank-one perturbation of the identity.

The only linear map of rank 0 is the zero map. If A is not the zero map,
then its range contains some nonzero vector, hence so must the range of any
V for which A = V Λt with domV = IFr, therefore such r must be > 0.

As another example, for any vector space X ,

dimX = rank idX .
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Indeed, if n = dimX , then, for any basis V ∈ L(IFn, X) for X , idX =
V V −1, therefore rank idX ≤ n, while, for any factorization idX = V Λt

for some V ∈ L(IFr, X), V must necessarily be onto, hence dimX ≤ r, by
(4.6)Proposition, and therefore dimX ≤ rank idX . In fact, it is possible to
make the rank concept the primary one and define dimX as the rank of idX .

When A is an m× n-matrix, then, trivially, A = A idn = idmA, hence
rankA ≤ min{m,n}.

At times, particularly when A is a matrix, it is convenient to write the
factorization A = V Λt more explicitly as

(8.1) A =: [v1, v2, . . . , vr][λ1, λ2, . . . , λr]
t =

r∑

j=1

[vj ]λj .

Since each of the maps

vjλj := [vj ]λj = [vj ] ◦ λj : x 7→ (λjx)vj

has rank ≤ 1, this shows that the rank of A gives the smallest number of
terms necessary to write A as a sum of rank-one maps.

(8.2) Proposition: A = V Λt is minimal if and only if V is a basis for
ranA. In particular,

rankA = dim ranA.

Proof: Let A = V Λt. Then ranA ⊂ ranV , hence

dim ranA ≤ dim ranV ≤ #V,

with equality in the first ≤ iff ranA = ranV (by (4.13)Proposition), and in
the second ≤ iff V is 1-1. Thus, dim ranA ≤ #V , with equality iff V is a
basis for ranA.

One can prove in a similar way that A = V Λt is minimal if and only if
Λt is onto and nullA = null Λt.

(8.3) Corollary: The factorization A = A(:, bound)rrref(A) provided
by elimination (see (3.12)) is minimal.

(8.4) Corollary: If A = V Λt is minimal and A is invertible, then also
V and Λt are invertible.

Proof: By (8.2)Proposition, V ∈ L(IFr, Y ) is a basis for ranA, while
ranA = Y since A is invertible. Hence, V is invertible. Therefore, also
Λt = V −1A is invertible.
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But note that the matrix [ 1 ] = [ 1 0 ]

[
1
0

]
is invertible, even though

neither of its two factors is.

8.1 Determine a minimal factorization for the matrix

A :=




1 2 0 3 4
2 4 0 6 8
1 1 0 1 1
8 7 0 6 5





8.2 With A the matrix of the previous problem, give a basis for ran A and a basis
for ran At.

8.3 Give an example of a pair of matrices, A and B, of order 4, each of rank 2, yet
ran A ∩ ran B = {0}.

8.4 Prove: For any two linear maps A and B for which AB is defined, rank(AB) ≤
min{rank A, rank B}. (Hint: If A = VAΛA

t and B = VBΛB
t, then AB = VA(ΛA

tVBΛB
t)

= (VAΛA
tVB)ΛB

t. Totally different hint: Use the Dimension Formula together with the
fact that rank C = dim ranC.)

8.5 Prove: If A = V Λt is a minimal factorization and A is a projector (i.e., A2 = A),
then ΛtV = id. (Hint: H.P. 1.26 .)

The trace of a linear map

Each A ∈ L(X) can be factored in possibly many different ways as

A = V Λt = [v1, . . . , vn][λ1, . . . , λn]t

for some n (necessarily ≥ rankA). It may therefore be surprising that, nev-
ertheless, the number ∑

j

λjvj

only depends on A. For the proof of this claim, we notice that

∑

j

λjvj = trace(ΛtV ).

Now, let W be a basis for X , with dual basis M := W−1. Then

Â := MtAW = MtV ΛtW,

while
ΛtWMtV = ΛtV.

Hence, by (6.28),

trace(Â) = trace(MtV ΛtW ) = trace(ΛtWMtV ) = trace(ΛtV ).

By holding our factorization A = V Λt fixed, this implies that trace(Â) does
not depend on the particular basisW forX we happen to use here, hence only
depends on the linear map A. With that, holding now this linear map A fixed,
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we see that also trace(ΛtV ) does not depend on the particular factorization
A = V Λt we picked, but only depends on A. This number is called the trace
of A, written

trace(A).

The problems provide the basic properties of the trace of a linear map.

8.6 trace( idX) = dimX.

8.7 If P ∈ L(X) is a projector (i.e., P 2 = P ), then trace(P ) = dim ranP .

8.8 A 7→ trace(A) is the unique scalar-valued linear map on L(X) for which
trace([x]λ) = λx for all x ∈ X and λ ∈ X′.

8.9 If A ∈ L(X, Y ) and B ∈ L(Y, X), then (both AB and BA are defined and)
trace(AB) = trace(BA).

8.10 Prove that, for column maps V , W into X, and row maps Λt, Mt from X,

V Λt = WMt implies that trace(ΛtV ) = trace(MtW ) even if X is not finite-dimensional.

The rank of a matrix and of its (conjugate) transpose

In this section, let A′ denote either the transpose or the conjugate trans-
pose of the matrix A. Then, either way, A = VW ′ iff A′ = WV ′. This
trivial observation implies all kinds of things about the relationship between
a matrix and its (conjugate) transpose.

As a starter, it says that A = VW ′ is minimal if and only if A′ = WV ′

is minimal. Therefore:

Proposition: rankA = rankAc = rankAt.

(8.5) Corollary: If A is a matrix, then dim ranA = dim ranAc =
dim ranAt.

(8.6) Corollary: For any matrix A, A′ is 1-1 (onto) if and only if A is
onto (1-1).

Proof: If A ∈ IFm×n, then A is onto iff rankA = m iff rankA′ = m
iff the natural factorization A′ = A′ idm is minimal, i.e., iff A′ is 1-1.

The other equivalence follows from this since (A′)′ = A.
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For a different proof of these results, see the comments that follow
(6.26)Corollary and (6.27)Corollary.

Elimination as factorization

The description (3.2) of elimination does not rely on any particular or-
dering of the rows of the given (m × n)-matrix A. At any stage, it only
distinguishes between pivot rows and those rows not yet used as pivot rows.
We may therefore imagine that we initially place the rows of A into the
workarray B in exactly the order in which they are going to be used as pivot
rows, followed, in any order whatsoever, by those rows (if any) that are never
going to be used as pivot rows.

In terms of the n-vector p provided by the (3.2)Elimination Al-
gorithm, this means that we start with B = A(q, :), with q obtained
from p by

q = p(find(p>0)); 1:m; ans(q) = []; q = [q, ans];

Indeed, to recall, p(j) is positive if and only if the jth unknown
is bound, in which case row p(j) is the pivot row for that un-
known. Thus the assignment q = p(find(p>0)) initializes q so
that A(q,:) contains the pivot rows in order of their use. With
that, 1:m; ans(q) = []; leaves, in ans, the indices of all rows not
used as pivot rows.

Note that q is a permutation of order m. Hence B = QA,
with Q the corresponding permutation matrix, meaning the ma-
trix obtained from the identity matrix by the very same reordering,
Q =eye(m)(q,:).

We prefer to write this as A = PB, with P the inverse of Q,
hence obtainable from q by

P = eye(m); P(q,:) = P;

With that done, we have, at the beginning of the algorithm,

B = P−1A

for some permutation matrix P , and all the work in the algorithm consists
of repeatedly subtracting some multiple α of some row h of B from some
later row, i.e., some row i with i > h. In terms of matrices, this means the
repeated replacement

B ← Ei,h(−α)B

with i > h. Since, by (2.19), Ei,h(−α)−1 = Ei,h(α), this implies that

A = PLU,
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with L the product of all those elementary matrices Ei,h(α) (in the appro-
priate order), and U the final state of the workarray B. Specifically, U is in
row-echelon form (as defined in (3.8)); in particular, U is upper triangular.

Each Ei,h(α) is unit lower triangular, i.e., of the form id + N with
N strictly lower triangular, i.e.,

N(r, s) 6= 0 =⇒ r > s.

For, because of the initial ordering of the rows in B, only Ei,h(α) with i > h
appear. This implies that L, as the product of unit lower triangular matrices,
is itself unit lower triangular.

If we apply the elimination algorithm to the matrix [A,C], with A ∈
IFm×m invertible, then the first m columns are bound, hence the remaining
columns are free. In particular, both P and L in the resulting factorization
depend only on A and not at all on C.

In particular, in solving A? = y, there is no need to subject all of [A, y]
to the elimination algorithm. If elimination just applied to A gives the fac-
torization

(8.7) A = PLU

for an invertible A, then we can find the unique solution x to the equation
A? = y by the two-step process:

c← L−1P−1y

x← U−1c

and these two steps are easily carried out. The first step amounts to subject-
ing the rows of the matrix [y] to all the row operations (including reordering)
used during elimination applied to A. The second step is handled by the
Backsubstitution Algorithm (3.4), with input B = [U, c], p = (1, 2, . . . ,m, 0),
and z = (0, . . . , 0,−1).

Once it is understood that the purpose of elimination for solving A? = y
is the factorization of A into a product of “easily” invertible factors, then it is
possible to seek factorizations that might serve the same goal in a better way.
The best-known alternative is the QR factorization, in which one obtains

A = QR,

with R upper triangular and Q o.n., i.e., QcQ = id. Such a factorization is
obtained by doing elimination a column at a time, usually with the aid of
Householder matrices. These are elementary matrices of the form

Hw := Ew,w(−2/wcw) = id − 2

wcw
wwc,
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and are easily seen to be self-inverse or involutory (i.e., HwHw = id),
hermitian (i.e., Hw

c = Hw), hence unitary (i.e., Hw
cHw = id = HwHw

c).

While the computational cost of constructing the QR factorization is
roughly double that needed for the PLU factorization, the QR factorization
has the advantage of being more impervious to the effects of rounding errors.
Precisely, the relative rounding error effects in both a PLU factorization
A = PLU and in a QR factorizationA = QR can be shown to be proportional
to the condition numbers of the factors. Since Q is o.n., κ(Q) = 1 and
κ(R) = κ(A), while, for a PLU factorization A = PLU , only the permutation
matrix, P , is o.n., and κ(L) and κ(U) can be quite large.

8.11 Prove: If L1D1U1 = A = L2D2U2, with Li unit lower triangular, Di invertible
diagonal, and Ui unit upper triangular matrices, then L1 = L2, D1 = D2, and U1 = U2.

SVD

Let A = VW c be a minimal factorization for the m×n-matrix A of rank
r. Then Ac = WV c is a minimal factorization for Ac. By (8.2), this implies
that V is a basis for ranA and W is a basis for ranAc.

Can we choose both these bases to be o.n.?

Well, if both V and W are o.n., then, for any x, ‖Ax‖ = ‖VW cx‖ =
‖W cx‖, while, for x ∈ ranAc, x = WW cx, hence ‖x‖ = ‖W cx‖. Therefore,
altogether, in such a case, A is an isometry on ranAc, a very special situation.

Nevertheless and, perhaps, surprisingly, there is an o.n. basis W for
ranAc for which the columns of AW are orthogonal, i.e., AW = V Σ with V
o.n. and Σ diagonal, hence A = V ΣW c with also V o.n.

(8.8) Theorem: For every A ∈ IFm×n, there exist o.n. bases V and W
for ranA and ranAc, respectively, and a diagonal matrix Σ with positive
diagonal entries, so that

(8.9) A = VΣW c.

Proof: For efficiency, the proof given here uses results, concerning
the eigenstructure of hermitian positive definite matrices, that are established
only later in these notes. This may help to motivate the study to come of
the eigenstructure of matrices.

For motivation of the proof, assume for the moment that A = V ΣW c is a
factorization of the kind we claim to exist. Then, with Σ =: diag(σ1, . . . , σr),
it follows that

AcA = WΣcV c V ΣW c = WΣcΣW c,

hence

(8.10) AcAW = WT, with T := diag(τ1, . . . , τr)
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and W o.n., and the τj = σjσj = |σj |2 all positive.

Just such an o.n. W ∈ IFn×r and positive scalars τj do exist by (12.2)
Corollary and (15.2)Proposition, since the matrix AcA is hermitian (i.e.,
(AcA)c = AcA) and positive semidefinite (i.e., 〈AcAx, x〉 ≥ 0 for all x)
and has rank r.

With W and the τj so chosen, it follows thatW is an o.n. basis for ranAc,
since (8.10) implies that ranW ⊂ ranAc, and W is a 1-1 column map of order
r = dim ranAc. Further, U := AW satisfies U cU = W cAcAW = W cWT =
T, hence

V := AWΣ−1, with Σ := T1/2 := diag(
√
τj : j = 1:r),

is o.n., and so V ΣW c = A, because WW c = P := Pran Ac , hence ran( id −
P ) = nullP = ranAc⊥ = nullA, and so AWW c = AP = A(P + ( id−P )) =
A.

It is customary to order the numbers

σj :=
√
τj , j = 1:r.

Specifically, one assumes that

σ1 ≥ σ2 ≥ · · · ≥ σr .

These numbers σj are called the (nonzero) singular values of A, and with
this ordering, the factorization

A =

rank A∑

j=1

vjσjwj
c

is called a (reduced) singular value decomposition or svd for A.

Offhand, a svd is not unique. E.g., any o.n. basis V for IFn provides the
svd V idnV

c for idn.

Some prefer to have a factorization A = Ṽ Σ̃W̃ c in which both Ṽ and
W̃ are o.n. bases for all of IFm and IFn, respectively (rather than just for
ranA and ranAc, respectively). This can always be achieved by extending V
and W from (8.9) in any manner whatsoever to o.n. bases Ṽ := [V, V1] and
W̃ := [W,W1] and, correspondingly, extending Σ to

Σ̃ := diag(Σ, 0) =

[
Σ 0
0 0

]
∈ IFm×n

by the adjunction of blocks of 0 of appropriate size. With this, we have

(8.11) A = Ṽ Σ̃W̃ c =

min{m,n}∑

j=1

vjσjwj
c,
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and the diagonal entries

σ1 ≥ σ2 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σmin{m,n}

of Σ̃ are altogether referred to as the singular values of A. Note that
this sequence is still ordered. We will refer to (8.11) as a Singular Value
Decomposition or SVD.

The MATLAB command svd(A) returns the SVD rather than the
svd of A when issued in the form [V,S,W] = svd(A). Specifically, A
= V*S*W’, with V and W both unitary, of orderm and n, respectively,
if A is an m× n-matrix. By itself, svd(A) returns, in a one-column
matrix, the (ordered) sequence of singular values of A.

The Pseudo-inverse

Here is a first of many uses to which the svd has been put. It concerns
the solution of the equation

A? = y

in case A is not invertible (for whatever reason). In a previous chapter (see
page 98), we looked in this case for a solution of the ‘projected’ problem

(8.12) A? = Pran Ay =: ŷ

for the simple reason that any solution x of this equation makes the residual
‖Ax− y‖2 as small as it can be made by any x. For this reason, any solution
of (8.12) is called a least-squares solution for A? = y.

If now A is 1-1, then (8.12) has exactly one solution. The question is
what to do in the contrary case. One proposal is to get the best least-
squares solution, i.e., the solution of minimal norm. The svd for A makes
it easy to find this particular solution.

If A = V ΣW c is a svd for A, then V is an o.n. basis for ranA, hence

b̂ = Pran Ab = V V cb.

Therefore, (8.12) is equivalent to the equation

V ΣW c? = V V cb.

Since V is o.n., hence 1-1, and Σ is invertible, this equation is, in turn,
equivalent to

W c? = Σ−1V cb,

hence to

(8.13) WW c? = WΣ−1V cb.
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Since W is also o.n., WW c = PW is an o.n. projector, hence, by (6.15)Propo-
sition, strictly reduces norms unless it is applied to something in its range.
Since the right-hand side of (8.13) is in ranW , it follows that the solution
of smallest norm of (8.13), i.e., the best least-squares solution of A? = y, is
that right-hand side, i.e., the vector

x̂ := A+y,

with the matrix
A+ := WΣ−1V c

the Moore-Penrose pseudo-inverse of A.

Note that
A+A = WΣ−1V cV ΣW c = WW c,

hence A+ is a left inverse for A in case W is square, i.e., in case rankA = #A.
Similarly,

AA+ = V ΣW cWΣ−1V c = V V c,

hence A+ is a right inverse for A in case V is square, i.e., in case rankA =
#Ac. In any case,

A+A = Pran Ac , AA+ = Pran A,

therefore, in particular,
AA+A = A.

2-norm and 2-condition of a matrix

Recall from (6.23) that o.n. matrices are 2-norm-preserving, i.e.,

‖x‖2 = ‖Ux‖2, ∀x ∈ IFn, o.n. U ∈ IFm×n.

This implies that

‖TB‖2 = ‖B‖2 = ‖BU c‖2, ∀ o.n. T ∈ IFr×m, B ∈ IFm×n, o.n. U ∈ IFr×n.

Indeed,

‖TB‖2 = max
x 6=0

‖TBx‖2
‖x‖2

= max
x 6=0

‖Bx‖2
‖x‖2

= ‖B‖2.

By (7.21), this implies that also

‖BU c‖2 = ‖UBc‖2 = ‖Bc‖2 = ‖B‖2.

It follows that, with A = VΣW c ∈ IFm×n a svd for A,

(8.14) ‖A‖2 = ‖Σ‖2 = σ1,
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the last equality because of the fact that Σ = diag(σ1, . . . , σr) with σ1 ≥
σ2 ≥ · · · ≥ 0.

Assume that, in addition, A is invertible, therefore r = rankA = n = m,
making also V andW square, hence A+ is both a left and a right inverse forA,
therefore necessarily A−1 = A+ = V Σ−1W c. It follows that ‖A−1‖2 = 1/σn.
Hence, the 2-condition of A ∈ IFn×n is

κ2(A) = ‖A‖2‖A−1‖2 = σ1/σn,

and this is how this condition number is frequently defined.

The effective rank of a noisy matrix

The problem to be addressed here is the following. If we construct a
matrix in the computer, we have to deal with the fact that the entries of
the constructed matrix are not quite exact; rounding errors during the cal-
culations may have added some noise. This is even true for a matrix merely
entered into the computer, in case some of its entries cannot be represented
exactly by the floating point arithmetic used (as is the case, e.g., for the num-
ber .1 or the number 1/3 in any of the standard binary-based floatingpoint
arithmetics).

This makes it impossible to use, e.g., the rref algorithm to determine the
rank of the underlying matrix. However, if one has some notion of the size
of the noise involved, then one can use the svd to determine a sharp lower

bound on the rank of the underlying matrix, because of the following.

(8.15) Proposition: If A = V ΣW c is a svd for A and rank(A) > k,
then min{‖A−B‖2 : rank(B) ≤ k} = σk+1 = ‖A−Ak‖2, with

Ak :=
k∑

j=1

vjσjwj
c.

Proof: If B ∈ IFm×n with rank(B) ≤ k, then dim null(B) > n −
(k + 1) = dim IFn − dim ranWk+1, with

Wk+1 := [w1, . . . , wk+1].

Therefore, by (4.21)Corollary, the intersection null(B)∩ ranWk+1 contains a
vector z of norm 1. Then Bz = 0, and W cz = Wk+1

cz, and ‖Wk+1
cz‖2 =

‖z‖2 = 1. Therefore, Az = V ΣW cz = Vk+1Σk+1Wk+1
cz, hence

‖A−B‖2 ≥ ‖Az −Bz‖2 = ‖Az‖2 = ‖Σk+1Wk+1
cz‖2

≥ σk+1‖Wk+1
cz‖2 = σk+1.

On the other hand, for the specific choice B = Ak, we get ‖A−Ak‖2 =
σk+1 by (8.14), since A−Ak =

∑
j>k vjσjwj

c is a svd for it, hence its largest
singular value is σk+1.
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In particular, if we have in hand a svd

A+ E = V diag(σ̂1, . . . , σ̂r̂)W
c

for the perturbed matrix A + E, and know (or believe) that ‖E‖2 ≤ ε, then
the best we can say about the rank of A is that it must be at least

rε := max{j : σ̂j > ε}.

For example, the matrix

A =




2/3 1 1/3
4/3 2 2/3
1 1 1





is readily transformed by elimination into the matrix

B =




0 1/3 −1/3
0 0 0
1 1 1


 ,

hence has rank 2. However, on entering A into a computer correct to four
decimal places after the decimal point, we get (more or less) the matrix

Ac =



.6667 1 .3333
1.3333 2 .6667

1 1 1


 ,

and for it, MATLAB correctly returns id3 as its rref. However, the singular
values of Ac, as returned by svd, are

(3.2340..., 0.5645..., 0.000054...)

indicating that there is a rank-2 matrix B with ‖Ac −B‖2 < .000055. Since
entries of Ac are only accurate to within 0.00005, the safe conclusion is that
A has rank ≥ 2; it happens to have rank 2 in this particular example.

The polar decomposition

The svd can also be very helpful in establishing results of a more theo-
retical flavor, as the following discussion is intended to illustrate.

This discussion concerns a useful extension to square matrices of the
polar form (see Backgrounder)

z = |z| exp(iϕ)

of a complex number z, i.e., a factorization of z into a nonnegative number
|z| =

√
zz (its modulus or absolute value) and a number whose absolute value

is equal to 1, a socalled unimodular number.
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There is, for any A ∈ C
n×n, a corresponding decomposition

(8.16) A =
√
AAcE,

called a polar decomposition, with
√
AAc ‘nonnegative’ in the sense that

it is hermitian and positive semidefinite, and E ‘unimodular’ in the sense
that it is unitary, hence norm-preserving, i.e., an isometry.

The polar decomposition is almost immediate, given that we already
have a SVD A = Ṽ Σ̃W̃ c for A (see (8.11)) in hand. Indeed, from that,

A = Ṽ Σ̃Ṽ c Ṽ W̃ c,

with P := Ṽ Σ̃Ṽ c evidently hermitian, and also positive semidefinite since

〈Px, x〉 = xcṼ Σ̃Ṽ cx =
∑

j

σ̃j |(Ṽ cx)j |2

is nonnegative for all x, given that σ̃j ≥ 0 for all j; and

P 2 = Ṽ Σ̃Ṽ cṼ Σ̃Ṽ c = Ṽ Σ̃Σ̃cṼ c = Ṽ Σ̃W̃ cW̃ Σ̃cṼ c = AAc;

and, finally, E := Ṽ W̃ c unitary as the product of unitary maps.

Equivalence and similarity

The SVD provides a particularly useful example of equivalence. The
linear maps A and Â are called equivalent if there are invertible linear maps
V and W so that

A = V ÂW−1.

Since both V and W are invertible, such equivalent linear maps share all
essential properties, such as their rank, being 1-1, or onto, or invertible.

Equivalence is particularly useful when the domains of V and W are
coordinate spaces, i.e., when V and W are bases, and, correspondingly, Â is
a matrix, as in the following diagram:

A
X −→ Y

↑ ↑W V

IFn IFm−→
Â

In this situation, Â = V −1AW is called a matrix representation for A.
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For example, we noted earlier that the matrix

D̂k :=




0 1 0 0 · · · 0
0 0 2 0 · · · 0
0 0 0 3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · k




is the standard matrix representation used in Calculus for the linear map
D : Π≤k → Π<k of differentiation of polynomials of degree ≤ k.

In practice, one looks, for given A ∈ L(X,Y ), for matrix representations

Â that are as simple as possible. If that means a matrix with as many zero
entries as possible and, moreover, all the nonzero entries the same, say equal
to 1, then a simplest such matrix representation is of the form

Â = diag( idrank A, 0) =

[
idrank A 0

0 0

]
,

with 0 indicating zero matrices of the appropriate size to make Â of size
dim tarA× dimdomA.

The situation becomes much more interesting and challenging when
domA = tarA and, correspondingly, we insist that also V = W . Linear
maps A and Â for which there exists an invertible linear map V with

A = V ÂV −1

are called similar. Such similarity will drive much of the rest of these notes.

8.12 For the given linear maps A, B, C : IF2×3, find their matrix representation

with respect to the basis V = [e1 + e2, e2 + e3, e3 + e1] for IF3 and W :=

[
−1 1
1 1

]
for

IF2: (a) Ax = (5x1 + 2x2 + 7x3, x1 + x2 − x3); (b) Bx = (x1 + x2 + x3, x2 − x3); (c)
Cx = (−x1 − x2 − x3, x3).

8.13 What is the matrix representation of the linear map C → C : x 7→ zx with
respect to the basis [1, i] for C (as a vector space with IF = R) and with z =: a+ib a given
complex number?

8.14 T/F

(a) If A, B, M are matrices such that rank AM = rank B, then M is invertible.

(b) If M is invertible and AM = B, then rank A = rank B.

(c) If M is invertible and MA = B, then rank A = rank B.



9 Duality

This short chapter can be skipped without loss of continuity. Much of
it can serve as a review of what has been covered so far. It owes much to the
intriguing book [ citGL ].

Complementary mathematical concepts

Duality concerns mathematical concepts that come in pairs, that com-

plement one another. Examples of interest in these notes include:

◦ ⊂ and ⊃;

◦ A subset S of T and its complement, \S := T \S;

◦ ∩ and ∪;
◦ ∀ and ∃;
◦ 1-1 and onto;

◦ right and left inverse;

◦ bound and free;

◦ nullspace and range of a linear map;

◦ an invertible map and its inverse;

◦ column map and row map;

◦ synthesis and analysis ;

◦ a basis and its inverse;

◦ columns and rows of a matrix;

◦ a matrix and its (conjugate) transpose;

◦ a linear subspace and one of its complements;

◦ dim and codim;

◦ the vector space X and its dual, X ′ := L(X, IF);

◦ the linear map A ∈ L(X,Y ) and its dual, A′ : Y ′ → X ′ : λ 7→ λA;

◦ a norm on the vector space X and the dual norm on X ′.
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Each such pair expresses a kind of symmetry. Such symmetry provides,
with each result, also its ‘dual’, i.e., the result obtained by replacing one
or more concepts appropriately by its complement. This leads to efficiency,
both in the proving and in the remembering of results.

A classical example is that of points and lines in a geometry, and results
concerning lines through points. E.g., through every two distinct points there
goes exactly one line; its ‘dual’ statement is: any two distinct lines have
exactly one point in common.

Another classical example is DeMorgan’s Law, according to which any
statement concerning the union, intersection and containment of subsets is
true if and only if its ‘dual’ statement is true, i.e., the statement obtained
by replacing each set by its complement and replacing (⊂,⊃,∩,∪) by (⊃,⊂
,∪,∩), respectively. For example, the two ‘distributive’ laws

(R ∩ S) ∪ T = (R ∪ T ) ∩ (S ∪ T ), (R ∪ S) ∩ T = (R ∩ T ) ∪ (S ∩ T )

are ‘dual’ to each other. Again, having verified that the intersection of a
collection of sets is the largest set contained in all of them, we have, by
‘duality’, also verified that the union of a collection of sets is the smallest set
containing all of them.

Here are some specific examples concerning the material covered in these
notes so far.

Let V,W be column maps. If V ⊂ W and W is 1-1, then so is V . Its
‘dual’: If V ⊃ W and W is onto, then so is V . This makes maximally 1-1
maps and a minimally onto maps particularly interesting as, by now, you
know very well: A column map is maximally 1-1 if and only if it is minimally
onto if and only if it is a basis.

Let A ∈ IFm×n. Then, A is 1-1(onto) if and only if At is onto(1-1). In
terms of the rows and columns of the matrix A and in more traditional terms,
this says that the columns form a linearly independent (spanning) sequence if
and only if the rows form a spanning (linearly independent) sequence. This is
a special case of the result that nullA = (ranAt)⊥, hence that dimnullA =
codim ranAt. By going from A to At, and from a subspace to its orthogonal
complement, we obtain from these the ‘dual’ result that ranA = (nullAt)⊥,
hence that dim ranA = codimnullAt.

Recall from (3.12) the factorization A = A(:, bound)rrref(A). It supplies
the corresponding factorization At = At(:, rbound)rrref(At) with rbound the
index sequence of bound columns of At, i.e. of bound rows of A. By com-
bining these two factorizations, we get the more symmetric factorization

A = (rrref(At))tA(rbound, bound)rrref(A),

which is called the car-factorization in [ citGS ].

9.1 Prove that, for any A ∈ L(X, Y ), codim null A = dim ran A.
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9.2 In the list of pairs of complementary concepts, given at the beginning of this
chapter, many of the pairs have been ordered so as to have the first term in each pair
naturally correspond to the first term in any related pair.

For example, a right (left) inverse is necessarily 1-1 (onto).

Discover as many such correspondences as you can.

The dual of a vector space

The dual of the vector space X is, by definition, the vector space

X ′ := L(X, IF)

of all linear maps into the underlying scalar field. Each such map is called a
linear functional on X . (The term ‘functional’ is used to indicate a map,
on a vector space, whose target is the underlying scalar field. Some books
use the term ‘form’ instead.)

We have made much use of linear functionals, namely as the rows λ1, . . . ,
λn of specific row maps (or data maps)

Λt = [λ1, . . . , λn]t ∈ L(X, IFn)

from the vector space X to n-dimensional coordinate space.

Example: If X = IFn, then

X ′ = L(IFn, IF) = IF1×n ∼ IFn,

and it has become standard to identify (IFn)′ with IFn via

IFn → (IFn)′ : a 7→ at.

While this identification is often quite convenient, be aware that, strictly
speaking, IFn and its dual are quite different objects.

Here is a quick discussion of X ′ for an arbitrary finite-dimensional vector
space, X . X being finite-dimensional, it has a basis, V ∈ L(IFn, X) say. Let

V −1 =: Λt =: [λ1, . . . , λn]t

be its inverse. Each of its rows λi is a linear functional on X , hence

Λ := [λ1, . . . , λn]

is a column map into X ′.

Λ is 1-1: Indeed, if Λa = 0, then
∑

i a(i)λi is the zero functional, hence,
in particular,

∑
i a(i)λivj = 0 for all columns vj of V . This implies that

0 = (
∑

i a(i)λivj : j = 1:n) = at(ΛtV ) = at idn = at, hence a = 0.
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It follows that dim ranΛ = dimdomΛ = n, hence we will know that Λ
is also onto as soon as we know that the dimension of its target is ≤ n, i.e.,

dimX ′ ≤ n.

For the proof of this inequality, observe that, for each λ ∈ X ′, the composition
λV is a linear map from IFn to IF, hence a 1-by-n matrix. Moreover, the
resulting map

X ′ → IF1×n ∼ IFn : λ→ λV

is linear. It is also 1-1 since λV = 0 implies that λ = 0 since V is invertible.
Hence, indeed, dimX ′ ≤ n.

(9.1) Proposition: For each basis V of the n-dimensional vector space
X , the rows of its inverse, V −1 =: Λt =: [λ1, . . . , λn]t, provide the
columns for the basis Λ = [λ1, . . . , λn] for X ′. In particular, dimX ′ =
dimX .

The two bases, Λ and V , are said to be dual or bi-orthonormal
to signify that

λivj = δij , i, j = 1:n.

Here is the ‘dual’ claim.

(9.2)Proposition: Let X be an n-dimensional linear subspace of the
vector space Y . Then, for each Λt ∈ L(Y, IFn) that is 1-1 on X , there
exists exactly one basis, V , for X that is dual or bi-orthonormal to Λ.

For every λ ∈ Y ′, there exists exactly one a ∈ IFn so that

(9.3) λ = Λa on X.

In particular, each λ ∈ X ′ has a unique such representation Λa in
ranΛ.

Proof: Since dimX = dim tarΛt and the restriction of

Λt =: [λ1, . . . , λn]t

to X is 1-1, it must be invertible, i.e., there exists exactly one basis V for X
with ΛtV = idn, hence with Λ and V dual to each other.
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In particular, Λ := [λ1, . . . , λn] is a basis for its range. Let now λ ∈ Y ′

and consider the equation

Λ? = λ on X.

Since V is a basis for X , this equation is equivalent to the equation (Λ?)V =
λV . Since

(Λa)V = (
∑

i

a(i)λivj : j = 1:n) = at(ΛtV ),

this equation, in turn, is equivalent to

?tΛtV = λV,

and, since ΛtV = idn, this has the unique solution ? = λV = (λvj : j = 1:n).

If X is not finite-dimensional, it may be harder to provide a complete
description of its dual. In fact, in that case, one calls X ′ the algebraic dual
and, for even some very common vector spaces, like C([a . . b]), there is no
constructive description for its algebraic dual. If X is a normed vector space,
one focuses attention instead on its topological dual. The topological dual
consists of all a continuous linear functionals on X , and this goes beyond the
level of these notes. Suffice it to say that, for any finite-dimensional normed
vector space, the algebraic dual coincides with the topological dual.

The very definition of 0 ∈ L(X, IF) ensures that λ ∈ X ′ is 0 if and only
if λx = 0 for all x ∈ X . What about its dual statement: x ∈ X is 0 if and
only if λx = 0 for all λ ∈ X ′? For an arbitrary vector space, this turns out
to require the Axiom of Choice. However, if X is a linear subspace of IFT for
some set T , then, in particular,

δt : X → IF : x 7→ x(t)

is a linear functional on X , hence the vanishing at x of all linear functionals
in X ′ implies that, in particular, x(t) = 0 for all t ∈ T , hence x = 0.

(9.4) Fact: For any x in the vector space X , x = 0 if and only if λx = 0
for all λ ∈ X ′.

Proof: If X is finite-dimensional, then, by (9.1), the condition λx =
0 for all λ ∈ X ′ is equivalent, for any particular basis V for X with dual
basis Λ for X ′, to having btΛtV a = 0 for all b ∈ IFn and for x =: V a. Since
ΛtV = idn, it follows that a = ΛtV a must be zero, hence x = 0.
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Finally, one often needs the following

(9.5) Fact: Every linear functional on some linear subspace of a vector
space can be extended to a linear functional on the whole vector space.

Proof: If X is a linear subspace of the finite-dimensional vector
space Y , then there is a basis [V,W ] for Y with V a basis for X . If now
λ ∈ X ′, then there is a unique µ ∈ Y ′ with µ[V,W ] = [λV, 0], and it extends
λ to all of Y .

If Y is not finite-dimensional, then it is, once again, a job for the Axiom
of Choice to aid in the proof.

The dual of an inner product space

We introduced inner-product spaces as spaces with a ready supply of
linear functionals. Specifically, the very definition of an inner product 〈, 〉
on the vector space Y requires that, for each y ∈ Y , yc := 〈·, y〉 be a linear
functional on Y . This sets up a map

c : Y → Y ′ : y 7→ yc

from the inner product space to its dual. This map is additive. It is also ho-
mogeneous in case IF = R. If IF = C, then the map is skew-homogeneous,
meaning that

(αy)c = αyc, α ∈ IF, y ∈ Y.
Either way, this map is 1-1 if and only if its nullspace is trivial. But, since
yc = 0 implies, in particular, that ycy = 0, the positive definiteness required
of the inner product guarantees that then y = 0, hence the map y 7→ yc is
1-1.

If now n := dimY <∞, then, by (9.1)Proposition, dimY ′ = dim Y = n,
hence, by the Dimension Formula, y 7→ yc must also be onto. This proves

(9.6) Proposition: If Y is a finite-dimensional inner product space,
then every λ ∈ Y ′ can be written in exactly one way as λ = yc for some
y ∈ Y .

We say in this case that yc represents λ.

If Y is not finite-dimensional, then the conclusion of this proposition still
holds, provided we consider only the topological dual of Y and provided Y
is ‘complete’, the very concept we declared beyond the scope of these notes
when, earlier, we discussed the Hermitian (aka conjugate transpose) of a
linear map between two inner product spaces.
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The dual of a linear map

Any A ∈ L(X,Y ) induces in a natural way the linear map

A′ : Y ′ → X ′ : λ 7→ λA.

This map is called the dual to A.

If also B ∈ L(Y, Z), then BA ∈ L(X,Z) and, for every λ ∈ Z ′, λ(BA) =
(λB)A = A′(B′(λ)), hence

(9.7) (BA)′ = A′B′, A ∈ L(X,Y ), B ∈ L(Y, Z).

If both X and Y are coordinate spaces, hence A is a matrix, then, with
the identification of a coordinate space with its dual, the dual of A coincides
with its transpose i.e.,

A′ = At, A ∈ IFm×n = L(IFn, IFm).

If Y = IFm, hence A is a row map, A = Λt = [λ1, . . . , λm]t say, then,
with the identification of (IFm)′ with IFm, (Λt)′ becomes the column map

(Λt)′ = [λ1, . . . , λm] = Λ.

In this way, we now recognize a row map on X as the pre-dual of a column
map into X ′.

If X = IFn, hence A is a column map, A = V = [v1, . . . , vn] say, then,
with the identification of (IFn)′ with IFn, V ′ becomes a row map on Y ′,
namely the row map that associates λ ∈ Y ′ with the n-vector (λvj : j = 1:n).
Its rows are the linear functionals

Y ′ → IF : λ 7→ λvj

on Y ′ ‘induced’ by the columns of V . Each of these rows is therefore a
linear functional on Y ′, i.e., an element of (Y ′)′, the bidual of Y . Also if,
in addition, V is 1-1, the V ′ is onto. Indeed, in that case, V is a basis for
its range, hence has an inverse, Λt say. Now, for arbitrary bt ∈ (IFn)′, bt =
bt(ΛtV ) = (Λb)V , with Λb a linear functional on ranV . By (9.5)Fact, there is
some λ ∈ Y ′ that agrees with Λb on ranV . In particular, λV = (Λb)V = bt,
showing that V ′ is, indeed onto.

Finally, if X and Y are arbitrary vector spaces but A is of finite rank,
then, for any basis V for ranA with dual basis M, we have

A = VMtA =: V Λt,

and, by (8.2)Proposition, this is a minimal factorization for A. It follows that

A′ = ΛV ′,

and, since V is 1-1, hence V ′ is onto, and also Λ is 1-1, we conclude that Λ
is a basis for ranA′, hence ΛV ′ is a minimal factorization for ranA′.

In particular, rankA′ = rankA. Also, if A is onto, then A′ 1-1.



10 The powers of a linear map and its spectrum

If tarA = domA, then we can form the powers

Ak := AA · · ·A︸ ︷︷ ︸
k factors

of A. Here are some examples that show the importance of understanding
the powers of a linear map.

Examples

Fixed-point iteration: A standard method for solving a large linear
system A? = y (with A ∈ IFn×n) is to split the matrix A suitably as

A = M −N

with M ‘easily invertible’, and to generate the sequence x0, x1, x2, . . . of ap-
proximate solutions by the iteration

(10.1) xk := M−1(Nxk−1 + y), k = 1, 2, . . . .

Assuming this iteration to converge, with x := limk→∞ xk its limit, it follows
that

(10.2) x = M−1(Nx+ y),

hence that Mx = Nx + y, therefore finally that Ax = (M − N)x = y, i.e.,
the limit solves our original problem A? = y.

Let εk := x − xk be the error in our kth approximate solution. Then
on subtracting the iteration equation (10.1) from the exact equation (10.2),
we find that

εk = x− xk = M−1(Nx+ b − (Nxk−1 + y)) = M−1Nεk−1.
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Therefore, by induction,

εk = Bkε0, with B := M−1N

the iteration map. Since we presumably don’t know the solution x, we have
no way of choosing the initial guess x0 in any special way. For convergence,
we must therefore demand that

lim
k→∞

Bkz = 0 for all z ∈ IFn.

It turns out that this will happen if and only if all eigenvalues of B are less
than 1 in absolute value.

random walk: Consider a random walk on a graph G. The specifics
of such a random walk are given by a stochastic matrix M of order n, with
n the number of vertices in the graph. This means that all the entries of M
are nonnegative, and all the entries in each row add up to 1, i.e.,

M ≥ 0, Me = e,

with e the vector with all entries equal to 1,

e := (1, 1, 1, . . . , 1).

The entries of M are interpreted as probabilities: Mi,j gives the probability
that, on finding ourselves at vertex i, we would proceed to vertex j. Thus,
the probability that, after two steps, we would have gone from vertex i to
vertex j is the sum of the probabilities that we would have gone from i to
some k in the first step and thence to j in the second step, i.e., the number

∑

k

Mi,kMk,j = M2
i,j .

More generally, the probability that we have gone after m steps from vertex
i to vertex j is the number Mm

i,j , i.e., the (i, j)-entry of the mth power of the
matrix M .

A study of the powers of such a stochastic matrix reveals that, for large
m, all the rows of Mm look more and more alike. Precisely, for each row i,

lim
m→∞

Mm
i: = x∞

for a certain (i-independent) vector x∞ with nonnegative entries that sum
to one; this is part of the so-called Perron-Frobenius Theory. In terms of the
random walk, this means that, for large m, the probability that we will be
at vertex j after m steps is more or less independent of the vertex we started
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off from. One can find this limiting probability distribution x∞ as a properly
scaled eigenvector of the transpose M t of M belonging to the eigenvalue 1.

As the simple example M =

[
0 1
1 0

]
shows, the last paragraph isn’t

quite correct. Look for the discussion of the Perron-Frobenius theorem later
in these notes (see pages 190ff).

polynomials in a map: Once we know the powers Ak of A, we can
also construct polynomials in A, in the following way. If p is the polynomial

p : t 7→ c0 + c1t+ c2t
2 + · · ·+ ckt

k,

then we define the linear map p(A) to be what we get when we substitute A
for t:

p(A) := c0 id + c1A+ c2A
2 + · · ·+ ckA

k.

We can even consider power series. The most important example is the
matrix exponential:

(10.3) exp(A) := id +A+A2/2 +A3/6 + · · ·+Ak/k! + · · · .

The matrix exponential is used in solving the first-order system

(10.4) Dy(t) = Ay(t) for t > 0, y(0) = b

of constant-coefficient ordinary differential equations. Here A is a square
matrix, of order n say, and y(t) is an n-vector that depends on t. Further,

Dy(t) := lim
h→0

(y(t+ h)− y(t))/h

is the first derivative at t of the vector-valued function y. One verifies that
the particular function

y(t) := exp(tA)b, t ≥ 0,

solves the differential equation (10.4). Practical application does require
efficient ways for evaluating the power series

exp((tA)) := id + tA+ (tA)2/2 + (tA)3/6 + · · ·+ (tA)k/k! + · · · ,

hence for computing the powers of tA.
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Eigenvalues and eigenvectors

The calculation of Akx is simplest if A maps x to a scalar multiple of
itself, i.e., if

Ax = µx = xµ

for some scalar µ. For, in that case, A2x = A(Ax) = A(xµ) = Axµ = xµ2

and, more generally,

(10.5) Ax = xµ =⇒ Akx = xµk, k = 0, 1, 2, . . . .

If x = 0, this will be so for any scalar µ. If x 6= 0, then this will be true for at
most one scalar µ. That scalar is called an eigenvalue for A with associated
eigenvector x.

(10.6) Definition: Let A ∈ L(X). Any scalar µ for which there is
a nontrivial vector x ∈ X so that Ax = xµ is called an eigenvalue
of A, with (µ, x) the corresponding eigenpair. The collection of all
eigenvalues of A is called the spectrum of A and is denoted spec(A).
Thus

spec(A) = {µ ∈ IF : A− µ id is not invertible}.
All the elements of null(A − µ id)\0 are called the eigenvectors of A
associated with µ. The number

ρ(A) := max | spec(A)| = max{|µ| : µ ∈ spec(A)}

is called the spectral radius of A.

Since µ ∈ spec(A) exactly when (A − µ id) is not invertible, this puts
a premium on knowing whether or not a given linear map is invertible. We
pointed out in Chapter 3 that the only matrices for which we could tell this
at a glance are the triangular matrices. To recall, by (3.21)Proposition, a
triangular matrix is invertible if and only if none of its diagonal entries is
zero. Since (A − µ id) is triangular for any µ in case A is triangular, this
gives the important

(10.7) Proposition: For any triangular matrix of order n, spec(A) =
{Ajj : n = 1:n}.

In the best of circumstances, there is an entire basis V = [v1, v2, . . . , vn]
for X = domA consisting of eigenvectors for A. In this case, it is very easy
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to compute Akx for any x ∈ X . For, in this situation, Avj = vjµj , j = 1:n,
hence

AV = [Av1, . . . , Avn] = [v1µ1, . . . , vnµn] = VM,

with M the diagonal matrix

M := diag(µ1, . . . , µn).

Therefore, for any k,

AkV = VMk = V diag(µk
1 , . . . , µ

k
n).

Also, since V is a basis for X , any x ∈ X can be written (uniquely) as x = V a
for some n-vector a and thus

Akx = AkV a = VMka = v1µ
k
1a1 + v2µ

k
2a2 + · · ·+ vnµ

k
nan

for any k. For example, for such a matrix and for any t,

exp(tA) = V exp(tM)V −1 = V diag(. . . , exp(tµj), . . .)V
−1.

To be sure, if A is not 1-1, then at least one of the µj must be zero, but this
doesn’t change the fact that M is a diagonal matrix.

(10.8) Example: The matrix A :=

[
2 1
1 2

]
maps the 2-vector x :=

(1, 1) to 3x and the 2-vector y := (1,−1) to itself. Hence, A[x, y] = [3x, y] =
[x, y] diag(3, 1) or

A = V diag(3, 1)V −1, with V := [x, y] =

[
1 1
1 −1

]
.

Elimination gives

[V, id] =

[
1 1 1 0
1 −1 0 1

]
→
[
1 1 1 0
0 −2 −1 1

]
→

→
[

1 0 1/2 1/2
0 −2 −1 1

]
→
[

1 0 1/2 1/2
0 1 1/2 −1/2

]
,

hence

V −1 =

[
1 1
1 −1

]
/2.

It follows that, for any k,

Ak = V diag(3k, 1)V −1 =

[
3k 1
3k −1

] [
1 1
1 −1

]
/2 =

[
3k + 1 3k − 1
3k − 1 3k + 1

]
/2.

In particular,

A−1 =

[
1/3 + 1 1/3− 1
1/3− 1 1/3 + 1

]
/2 =

[
2 −1
−1 2

]
/3.

Also,

exp(tA) = V diag(e3t, et)V −1 =

[
e3t + et e3t − et

e3t − et e3t + et

]
.
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10.1 Let A =

[
1 2
2 4

]
. (i) Find a basis V and a diagonal matrix M so that A =

V MV −1. (ii) Determine the matrix exp(A).

10.2 Let A =

[
4 1 −1
2 5 −2
1 1 2

]
.

Use elimination to determine all eigenvectors for this A belonging to the eigenvalue
3, and all eigenvectors belonging to the eigenvalue 5. (It is sufficient to give a basis for
null(A − 3 id) and for null(A − 5 id).)

10.3 If A is a triangular matrix, then one of its eigenvectors can be determined
without any calculation. Which one?

10.4

(a) Prove that the matrix A =

[
4 1 −1
2 5 −2
1 1 2

]
maps the vector space Y := ran V with

V :=

[
0 2
3 1
1 1

]
into itself, hence the restriction of A to Y , i.e.,

A|Y := B : Y → Y : y 7→ Ay

is a well-defined linear map. (You will have to verify that ran AV ⊆ ran V ; looking
at rref([V AV ]) should help.)

(b) Determine the matrix representation of B with respect to the basis V for dom B = Y ,
i.e., compute the matrix V −1BV . (Hint: (5.4)Example tells you how to read off this
matrix from the calculations in (a).)

(c) Determine the spectrum of the linear map B = A|Y defined in (a). (Your answer in

(b) could be helpful here since similar maps have the same spectrum.)

10.5 Prove that 0 is the only eigenvalue of the matrix A =

[
0 1 2
0 0 3
0 0 0

]
and that, up

to scalar multiples, e1 is the only eigenvector for A.

10.6 Let µ ∈ spec(A) (hence Ax = µx for some x 6= 0). Prove:

(i) For any scalar α, αµ ∈ spec(αA).

(ii) For any scalar α, µ + α ∈ spec(A + α id).

(iii) For any natural number k, µk ∈ spec(Ak).

(iv) If A is invertible, then µ 6= 0 and µ−1 ∈ spec(A−1).

(v) If A is a matrix, then µ ∈ spec(At) and µ ∈ spec(Ac).

Diagona(liza)bility

Definition: A linear map A ∈ L(X) is called diagona(liza)ble if it
has an eigenbasis, i.e., if there is a basis for its domain X consisting
entirely of eigenvectors for A.

(10.9) Lemma: If Vµ is a basis for null(A − µ id), then [Vµ : µ ∈
spec(A)] is 1-1.
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Proof: Note that, for any µ ∈ spec(A) and any ν,

(A− ν id)Vµ = (µ− ν)Vµ,

and, in particular, (A− µ id)Vµ = 0. Hence, if
∑

µ Vµaµ = 0, then, for each
µ ∈ spec(A), after applying to both sides of this equation the product of all
(A − ν id) with ν ∈ spec(A)\µ, we are left with the equation (

∏
ν 6=µ(µ −

ν))Vµaµ = 0, and this implies that aµ = 0 since Vµ is 1-1 by assumption. In
short, [Vµ : µ ∈ spec(A)]a = 0 implies a = 0.

(10.10) Corollary: #spec(A) ≤ dimdomA, with equality only if A is
diagonable.

(10.11) Proposition: A linear map A ∈ L(X) is diagonable if and
only if

(10.12) dimX =
∑

µ∈spec(A)

dim null(A− µ id).

Proof: By (10.9)Lemma, (10.12) implies that domA has a basis
consisting of eigenvectors for A.

Conversely, if V is a basis for X = domA consisting entirely of eigen-
vectors for A, then A = VMV −1 for some diagonal matrix

M =: diag(µ1, . . . , µn),

hence, for any scalar µ, (A − µ id) = V (M − µ id)V −1. In particular,
null(A − µ id) = ran[vj : µ = µj ], hence

∑
µ∈spec(A) dim null(A − µ id) =∑

µ∈spec(A) #{j : µj = µ} = n = #V = dimX .

(10.11)Proposition readily identifies a circumstance under which A is
not diagonable, namely when null(A − µ id) ∩ ran(A − µ id) 6= {0} for some
µ. For, with Vν a basis for null(A − ν id) for any ν ∈ spec(A), we compute
AVν = νVν , hence (A − µ id)Vν = (ν − µ)Vν and therefore, for any ν 6= µ,
Vν = (A − µ id)Vν/(ν − µ) ⊂ ran(A − µ id). This places all the columns of
the 1-1 map V\µ := [Vν : ν 6= µ] in ran(A − µ id) while, by (10.9)Lemma,
ranVµ ∩ ranV\µ is trivial. Hence, if ranVµ = null(A − µ id) has nontrivial
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intersection with ran(A− µ id), then ranV\µ cannot be all of ran(A− µ id),
and therefore

∑

ν 6=µ

dimnull(A− ν id) = #V\µ

< dim ran(A− µ id) = dimX − dimnull(A− µ id),

hence, by (10.11)Proposition, such A is not diagonable.

This has motivated the following

Definition: The scalar µ is a defective eigenvalue of A if

null(A− µ id) ∩ ran(A− µ id) 6= {0}.

Any such µ certainly is an eigenvalue (since, in particular, null(A −
µ id) 6= {0}), but I don’t care for such negative labeling; if it were up to me,
I would call such µ an interesting eigenvalue, since the existence of such
eigenvalues makes for a richer theory. Note that, by (4.18)Proposition, µ is
a defective eigenvalue for A iff, for some, hence for every, bases V and W for
ran(A− µ id) and null(A− µ id) respectively, [V,W ] is not 1-1.

(10.13) Corollary: If A has a defective eigenvalue, then A is not di-
agonable.

10.7 Prove: if A ∈ L(X) is diagonable and #spec(A) = 1, then A = µ idX for some
µ ∈ IF.

10.8 What is a simplest matrix A with spec(A) = {1, 2, 3}?
10.9 For each of the following matrices A ∈ IF2×2, determine whether or not 0 is a

defective eigenvalue (give a reason for your answer). For a mechanical approach, see H.P.

4.21 . (a) A = 0. (b) A =

[
1 2
2 4

]
. (c) A =

[
−2 −1
4 2

]
. (d) A = id2.

10.10 Prove that, for every linear map A on the finite-dimensional vector space X,
if A is diagonable, then so is p(A) for every polynomial p.

10.11 Prove that any linear projector P on a finite-dimensional vector space X is
diagonable. (Hint: Show that, for any basis U for ran P and any basis W for null P ,
V := [U, W ] is a basis for X, and that all the columns of V are eigenvectors for P . All of
this should follow from the fact that P 2 = P .)

10.12 Prove that any linear involutory map R on a finite-dimensional vector space

X is diagonable. (Hint: H.P. 5.9 .)
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Are all square matrices diagonable?

By (10.13)Corollary, this will be so only if all square matrices have only
nondefective eigenvalues.

(10.14) Example: The simplest example of a matrix with a defective
eigenvalue is provided by the matrix

N :=

[
0 1
0 0

]
= [0, e1].

By (10.7)Proposition, spec(N) = {0}. Yet nullN = ran[e1] = ranN , hence
the only eigenvalue of N is defective, and N fails to be diagonable, by
(10.13)Corollary.

Of course, for this simple matrix, one can see directly that it cannot be
diagonable, since, if it were, then some basis V for R

2 would consist entirely
of eigenvectors for the sole eigenvalue, 0, for N , hence, for this basis, NV = 0,
therefore N = 0, contrary to fact.

We will see shortly that, on a finite-dimensional vector space over the
complex scalars, almost all linear maps are diagonable, and all linear maps
are almost diagonable.

Does every square matrix have an eigenvalue?

Since an eigenvalue for A is any scalar µ for which null(A− µ id) is not
trivial, the answer necessarily depends on what we mean by a scalar.

If we only allow real scalars, i.e., if IF = R, then not every matrix has
eigenvalues. The simplest example is a rotation of the plane, e.g., the matrix

A :=

[
0 −1
1 0

]
= [e2,−e1].

This linear map rotates every x ∈ R
2 90 degrees counter-clockwise, hence the

only vector x mapped by it to a scalar multiple of itself is the zero vector. In
other words, this linear map has no eigenvectors, hence no eigenvalues.

The situation is different when we also allow complex scalars, i.e., when
IF = C, and this is the reason why we considered complex scalars all along in
these notes. Now every (square) matrix has eigenvalues, as follows from the
following simple argument.

(10.15) Theorem: Any linear map A on some nontrivial finite-dimens-
ional vector spaceX over the complex scalar field IF = C has eigenvalues.

Proof: Let n := dimX , pick any x ∈ X\0 and consider the column
map

K := [x,Ax,A2x, . . . , Anx].



Does every square matrix have an eigenvalue? 147

Since #K > dim tarK, K cannot be 1-1. This implies that some column
of K is free. Let Adx be the first free column, i.e., the first column that is
in the range of the columns preceding it. Then nullK contains exactly one
vector of the form

a = (a0, a1, . . . , ad−1, 1, 0, . . . , 0),

and this is the vector we choose. Then, writing the equation Ka = 0 out in
full, we get

(10.16) a0x+ a1Ax+ · · ·+ ad−1A
d−1x+Adx = 0.

Now here comes the trick: Consider the polynomial

(10.17) p : t 7→ a0 + a1t+ · · ·+ ad−1t
d−1 + td.

Then, substituting for t our map A, we get the linear map

p(A) := a0 id + a1A+ · · ·+ ad−1A
d−1 +Ad.

With this, (10.16) can be written, very concisely,

p(A)x = 0.

This is not just notational convenience. Since ad = 1, p isn’t the zero poly-
nomial, and since x 6= 0, d must be greater than 0, i.e., p cannot be just a
constant polynomial. Thus, by the Fundamental Theorem of Algebra, p has
zeros. More precisely,

p(t) = (t− z1)(t− z2) · · · (t− zd)

for certain (possibly complex) scalars z1, . . . , zd. This implies (see (10.19)
Lemma below) that

p(A) = (A− z1 id)(A− z2 id) · · · (A− zd id).

Now, p(A) is not 1-1 since it maps the nonzero vector x to zero. Therefore,
not all the maps (A− zj id), j = 1:d, can be 1-1. In other words, for some j,
(A− zj id) fails to be 1-1, i.e., has a nontrivial nullspace, and that makes zj

an eigenvalue for A.
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(10.18) Example: Let’s try this out on our earlier example, the ro-
tation matrix

A := [e2,−e1].
Choosing x = e1, we have

[x,Ax,A2x] = [e1, e2,−e1],

hence the first free column is A2x = −e1, and, by inspection,

x+A2x = 0.

Thus the polynomial of interest is

p : t 7→ 1 + t2 = (t− i)(t+ i),

with
i :=
√
−1

the imaginary unit (see the Backgrounder on complex numbers). In fact,
we conclude that, with y := (A + i id)x, (A − i id)y = p(A)x = 0, while
y = Ae1 +ie1 = e2 +ie1 6= 0, showing that (i, e2 +ie1) is an eigenpair for this
A.

Polynomials in a linear map

The proof of (10.15)Theorem uses in an essential way the following fact.

(10.19) Lemma: If r is the product of the polynomials p and q, i.e.,
r(t) = p(t)q(t) for all t, then, for any linear map A ∈ L(X),

r(A) = p(A)q(A) = q(A)p(A).

Proof: If you wanted to check that r(t) = p(t)q(t) for the polynomi-
als r, p, q, then you would multiply p and q term by term, collect like terms
and then compare coefficients with those of r. For example, if p(t) = t2+t+1
and q(t) = t− 1, then

p(t)q(t) = (t2 + t+ 1)(t− 1) = t2(t− 1) + t(t− 1) + (t− 1)

= t3 − t2 + t2 − t+ t− 1 = t3 − 1,

i.e., the product of these two polynomials is the polynomial r given by r(t) =
t3−1. The only facts you use are: (i) free reordering of terms (commutativity
of addition), and (ii) things like tt = t2, i.e., the fact that

titj = ti+j .

Both of these facts hold if we replace t by A.
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Here is a further use of this lemma. We now prove that the poly-
nomial p constructed in the proof of (10.15) has the property that every
one of its roots is an eigenvalue for A. This is due to the fact that we
constructed it in the form (10.17) with d the smallest integer for which
Adx ∈ ran[x,Ax, . . . , Ad−1x]. Thus, with µ any zero of p, we can write

(10.20) p(t) = (t− µ)q(t)

for some polynomial q necessarily of the form

q(t) = b0 + b1t+ · · ·+ bd−2t
d−2 + td−1.

The crucial point here is that q is of degree < d. This implies that q(A)x 6= 0
since, otherwise, (b0, b1, . . . , 1) would be a nontrivial vector in
null[x,Ax, . . . , Ad−1x] and this would contradict the choice of d as the index
for which Adx is the first free column in [x,Ax,A2, . . .]. Since

0 = p(A)x = (A− µ id)q(A)x,

it follows that µ is an eigenvalue for A with associated eigenvector q(A)x.

This is exactly how we got an eigenvector for the eigenvalue i in (10.18)
Example.

(10.21) Example: As another example, consider again the matrix

A =

[
2 1
1 2

]
from (10.8)Example. We choose x = e1 and consider

[x,Ax, . . . , Anx] = [e1, Ae1, A(Ae1)] =

[
1 2 5
0 1 4

]
.

Since [e1, Ae1, A
2e1] is in row echelon form, we conclude that the first two

columns are bound. Elimination gives the rref
[

1 0 −3
0 1 4

]
,

hence (3,−4, 1) ∈ null[e1, Ae1, A
2e1]. Correspondingly, p(A)e1 = 0, with

p(t) = 3− 4t+ t2 = (t− 3)(t− 1).

Consequently, µ = 3 is an eigenvalue for A, with corresponding eigenvector

(A− id)e1 = (1, 1);

also, µ = 1 is an eigenvalue for A, with corresponding eigenvector

(A− 3 id)e1 = (−1, 1).

Note that the resulting basis

[
1 −1
1 1

]
for IF2 consisting of eigenvectors for

A differs in some detail from the one we found in (10.8)Example. After all,
if v is an eigenvector, then so is αv for any scalar α.
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Here is some standard language concerning the items in our discussion
so far. One calls x,Ax,A2x, . . . the Krylov sequence for A at x, and
calls x a cyclic vector for A in case ran[x,Ax, . . .] = domA, and calls
A non-derogatory in case it has a cyclic vector. One calls any nontrivial
polynomial r for which r(A)x = 0 an annihilating polynomial for A at
x. We may assume without loss of generality that this polynomial is monic,
i.e., its highest nonzero coefficient is 1, since we can always achieve this by
dividing the polynomial by its highest nonzero coefficient without changing
the fact that it is an annihilating polynomial for A at x. If such a polynomial
is of exact degree k, say, then it has the form

r(t) = b0 + b1t+ · · ·+ bk−1t
k−1 + tk.

Since r(A)x = 0, we conclude that

b0x+ b1Ax+ · · ·+ bk−1A
k−1x+Akx = 0.

In particular, Akx is in ran[x,Ax, . . . , Ak−1x], i.e., the column Akx of
[x,Ax,A2x, . . .] is free. This implies that k ≥ d, with d the degree of the
polynomial p constructed in the proof of (10.15)Theorem. For, there we chose
d as the smallest index for which Adx is a free column of [x,Ax,A2, . . .]. In
particular, all prior columns must be bound. This makes p the unique monic
polynomial of smallest degree for which p(A)x = 0.

Here, for the record, is a formal account of what we have proved.

(10.22) Proposition: For every A ∈ L(X) with dimX <∞ and every
x ∈ X\0, there is a unique monic polynomial p of smallest degree for
which p(A)x = 0. This polynomial is called the minimal polynomial
for A at x and is denoted

pA,x.

It can be constructed in the form

pA,x(t) = a0 + a1t+ · · ·+ ad−1t
d−1 + td,

with Adx the first or leftmost free column of [x,Ax,A2x, . . .]. Moreover,
(a0, . . . , ad−1, 1) is the unique vector in null[x,Ax, . . . , Adx] with its last
entry equal to 1.

Assuming that X is a vector space over IF = C, every zero µ of
pA,x is an eigenvalue of A, with associated eigenvector q(A)x, where
pA,x(t) =: (t − µ)q(t). (See the Backgrounder on Horner’s method for
the standard way to compute q from pA,x and µ.)

For example, consider the permutation matrix P = [e2, e3, e1] and take
x = e1. Then

[x, Px, P 2x, P 3x] = [e1, e2, e3, e1].
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Hence, P 3x is the first free column here. The element in the nullspace corre-
sponding to it is the vector (−1, 0, 0, 1). Hence, the minimal polynomial for
P at x = e1 is of degree 3; it is the polynomial p(t) = t3 − 1. It has the zero
µ = 1, which therefore is an eigenvalue of P . A corresponding eigenvector is
obtainable in the form q(P )e1 with q(t) := p(t)/(t − 1) = t2 + t + 1, hence
the eigenvector is e3 + e2 + e1.

10.13 Use Elimination as in (10.21) to determine all the eigenvalues and, for each

eigenvalue, a corresponding eigenvector, for each of the following matrices: (i)

[
7 −4
5 −2

]
;

(ii) [0, e1, e2] ∈ R
3×3

(try x = e3); (iii)

[−1 1 −3
20 5 10
2 −2 6

]
.

10.14

(a) Prove: If p is any nontrivial polynomial and A is any square matrix for which p(A) =
0, then spec(A) ⊆ {µ ∈ C : p(µ) = 0}. (Hint: prove first that, for any eigenvector x
for A with eigenvalue µ and any polynomial p, p(A)x = p(µ)x.)

(b) What can you conclude about spec(A) in case you know that A is idempotent, i.e., a
linear projector, i.e., A2 = A?

(c) What can you conclude about spec(A) in case you know that A is nilpotent, i.e.,
Aq = 0 for some integer q?

(d) What can you conclude about spec(A) in case you know that A is involutory, i.e.,
A−1 = A?

(e) What is the spectrum of the linear map D : Π≤k → Π≤k of differentiation, as a map
on polynomials of degree ≤ k?

10.15 The companion matrix for the monic polynomial p : t 7→ a1 + a2t + · · · +
antn−1 + tn is, by definition, the matrix Ap := [e2, . . . , en,−a] ∈ IFn×n. (a) Prove that p
is the minimal polynomial for A at e1. (b) Use (a) and MATLAB’s eig command to find all
the zeros of the polynomial p : t 7→ 1 + t + t2 + · · · + t9. Check your answer.

10.16 Use the minimal polynomial at e1 to determine the spectrum of the following
matrices: (i) [e2, 0]; (ii) [e2, e3, e1]; (iii) [e2, e2]; (iv) [e2, e1, 2e3].

10.17 Prove: Let x ∈ X, A ∈ L(X), and d := deg pA,x. Then (i) K := [Ajx :
j = 0:d − 1] is 1-1; (ii) ran K is A-invariant; (iii) K is a basis for the Krylov subspace
ran[x, Ax, A2x, . . .] = {p(A)x : p ∈ Π}.

10.18 Prove that A ∈ L(X) is non-derogatory if and only if, for some x ∈ X,
deg pA,x = dimX, in which case x is a cyclic vector for A.

10.19 Let A ∈ L(X) be non-derogatory, dim X = n. Prove:

(i) C(A) := {B ∈ L(X) : AB = BA} = Π(A) := {p(A) : p ∈ Π}.
(ii) The map f : p 7→ p(A) is linear and carries Π<n 1-1 onto C(A).

10.20 Let A be a matrix of order n, let x ∈ IFn\0, and let P be the orthogonal pro-
jector of IFn onto the space Y := ran[x, Ax, . . . , Ar−1x], the Krylov subspace of order r
for A generated by x. Assume that Y is r-dimensional, and let PArx =:

∑
j<r

ajAjx.

(i) Prove that K := [x, PAx, (PA)2x, . . . , (PA)rx] = [x, Ax, . . . , Ar−1x, PArx]. (ii) Prove
that q(t) := tr −

∑
j<r

ajtj is the minimal polynomial at x for the linear map PA : Y →
Y : y 7→ PAy. (iii) Conclude that q is the unique monic polynomial of degree r for which
‖q(A)x‖2 is as small as possible.

It is enough to understand the eigenstructure of matrices

So far, we know how to find some eigenvalues and corresponding eigen-
vectors for a given A ∈ L(X), making use of minimal polynomials found
by elimination. But can we be sure to find all the eigenvalues that way?
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By (10.10)Corollary, we know that we have found them all if we have found
n := dimX of them. But if we find fewer than that, then we can’t be sure.

The standard approach to finding the entire spectrum of A is by search-
ing for linear maps B that have the same spectrum as A but carry that
spectrum more openly, like triangular matrices (see (10.7)Proposition). This
search makes essential use of the notion of similarity.

Definition: We say that A ∈ L(X) and B ∈ L(Y ) are similar to each
other and write

A ∼ B
in case there is an invertible V ∈ L(Y,X) so that

A = V BV −1.

In particular, a linear map is diagonable if and only if it is similar to a
diagonal matrix.

In trying to decide whether or not a given linear map A is diagonable, it
is sufficient to decide this question for any convenient linear map B similar
to A. For, if such a B is diagonable, i.e., similar to a diagonal matrix, then
A is similar to that very same diagonal matrix. This follows from the fact
that similarity is an equivalence relation:

(10.23) Proposition: Similarity is an equivalence relation. Specif-
ically,

(i) A ∼ A (reflexive);

(ii) A ∼ B implies B ∼ A (symmetric);

(iii) A ∼ B and B ∼ C implies A ∼ C (transitive).

Proof: Certainly, A ∼ A, since A = idA id. Also, if A = V BV −1

for some invertible V , then also W := V −1 is invertible, and B = V −1AV =
WAW−1. Finally, if A = V BV −1 and B = WCW−1, then U := VW is also
invertible, and A = V (WCW−1)V −1 = UCU−1.

Now, any linear map A ∈ L(X) on a finite-dimensional vector space X
is similar (in many ways if X is not trivial) to a matrix. Indeed, for any basis

V for X , Â := V −1AV is a matrix similar to A. The map Â so defined is
indeed a matrix since both its domain and its target is a coordinate space
(the same one, in fact; hence Â is a square matrix). We conclude that, in
looking for ways to decide whether or not a linear map is diagonable, it is
sufficient to know how to do this for square matrices.
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Every complex (square) matrix is similar to
an upper triangular matrix

While having in hand a diagonal matrix similar to a given A ∈ L(X) is
very nice indeed, for most purposes it is sufficient to have in hand an upper

triangular matrix similar to A. There are several reasons for this.

One reason is that, as soon as we have an upper triangular matrix similar
to A, then we can easily manufacture from this a matrix similar to A and
with off-diagonal elements as small as we please (except that, in general, we
can’t make them all zero).

A more fundamental reason is that, once we have an upper triangu-
lar matrix similar to A, then we know the entire spectrum of A since, by
(10.7)Proposition, the spectrum of a triangular matrix is the set of its diag-
onal entries. Here are the various facts.

(10.24) Proposition: If A and Â are similar, then spec(A) = spec(Â).

Proof: If Â = V −1AV for some invertible V , then, for any scalar µ,
Â − µ id = V −1(A − µ id)V . In particular, Â − µ id is not invertible (i.e.,

µ ∈ spec(Â)) if and only if A− µ id is not invertible (i.e., µ ∈ spec(A)).

(10.25) Corollary: If A ∈ L(X) is similar to a triangular matrix Â,

then µ is an eigenvalue for A if and only if µ = Âj,j for some j. In a
formula,

spec(A) = {Âj,j : all j}.

More precisely, if Â = V −1AV is upper triangular and j is the smallest
index for which µ = Âj,j , then there is an eigenvector for A belonging
to µ available in the form w = V a, with a the element in the standard
basis for null(Â − µ id) associated with the (free) jth column, i.e., a ∈
null(Â−µ id), aj = 1, and all other entries corresponding to free columns
are 0; cf. (3.10).

The now-standard algorithm for computing the eigenvalues of a given
matrix A is the QR method. It generates a sequence B1, B2, B3, . . . of
matrices all similar to A that converges to an upper triangular matrix. To the
extent that the lower triangular entries of Bk are small (compared to ‖Bk‖,
say), the diagonal entries of Bk are close to eigenvalues of Bk, hence of A.
The actual version of the QR method used in MATLAB is quite sophisticated,
as much care has gone into making the algorithm reliable in the presence of
round-off as well as fast.
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The MATLAB command eig(A) gives you the list of eigenvalues
ofA. The more elaborate command [V,M]=eig(A) gives you, in V, a
list of corresponding ‘eigenvectors’, in the sense that, approximately,
AV(:, j) = V(:, j)M(j, j), all j.

(10.26) Theorem: Every complex (square) matrix is similar to an
upper triangular matrix.

Proof: The proof is by induction on the order, n, of the given matrix
A.

If n = 1, then A is a 1 × 1-matrix, hence trivially upper triangular.
Assume that we have proved the theorem for all matrices of order n− 1 and
let A be of order n. Since the scalar field is C, we know that A has an
eigenvector, u1, say, with corresponding eigenvalue, µ1 say. Extend u1 to a
basis U = [u1, u2, . . . , un] for C

n. Then

AU = [Au1, . . . , Aun] = [u1µ1, Au2, . . . , Aun].

We want to compute U−1AU . For this, observe that U−1u1 = U−1Ue1 = e1.
Therefore,

U−1AU = [e1µ1, U
−1Au2, . . . , U

−1Aun].

Writing this out in detail, we have

U−1AU = Â :=




µ1 × · · · ×
0 × · · · ×
...

... · · ·
...

0 × · · · ×


 =:

[
µ1 C
0 A1

]
.

Here, C is some 1 × (n − 1) matrix of no further interest, A1 is a matrix of
order n − 1, hence, by induction hypothesis, there is some invertible W so
that Â1 := W−1A1W is upper triangular. We compute

diag(1,W−1)Â diag(1,W ) =

[
1 0
0 W−1

] [
µ1 C
0 A1

] [
1 0
0 W

]

=

[
µ1 CW
0 W−1A1W

]
.

The computation uses the fact that multiplication from the left (right) by a
block-diagonal matrix multiplies the corresponding rows (columns) from the
left (right) by the corresponding diagonal blocks. Since

diag(1,W−1) diag(1,W ) = diag(1, idn−1) = idn,

this shows that Â is similar to an upper triangular matrix. Since A is similar
to Â, this finishes the proof.
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Various refinements in this proof are possible (as we will show later, in
the discussion of the Schur form), to give more precise information about
possible upper triangular matrices similar to a given A. For the present,
though, this is sufficient for our needs since it allows us to prove the following:

(10.27) Corollary: Every complex (square) matrix is similar to an
‘almost diagonal’ matrix. Precisely, for every complex matrix A and
every ε > 0, there exists an upper triangular matrix Bε similar to A
whose off-diagonal entries are all < ε in absolute value.

Proof: By (10.26)Theorem, we know that any such A is similar to
an upper triangular matrix. Since similarity is transitive (see (10.23)Propo-
sition), it is therefore sufficient to prove this Corollary in case A is upper
triangular, of order n, say.

The proof in this case is a simple trick: Consider the matrix

B := W−1AW,

with
W := diag(δ1, δ2, . . . , δn),

and the scalar δ to be set in a moment. W is indeed invertible as long as
δ 6= 0, since then

W−1 = diag(δ−1, δ−2, . . . , δ−n).

Now, multiplying a matrix by a diagonal matrix from the left (right) multi-
plies the rows (columns) of that matrix by the diagonal entries of the diagonal
matrix. Therefore,

Bi,j = (W−1AW )i,j = Ai,jδ
j−i, all i, j.

In particular, B is again upper triangular, and its diagonal entries are those
of A. However, all its possibly nontrivial off-diagonal entries lie above the
diagonal, i.e., are entries Bi,j with j > i, hence are the corresponding entries
of A multiplied with some positive power of the scalar δ. Thus, if

c := max
i<j
|Ai,j |

and we choose δ := min{ε/c, 1}, then, we can be certain that

|Bi,j | ≤ ε, all i 6= j,

regardless of how small we choose that positive ε.
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10.21 T/F

(a) The only diagonable matrix A having just one factorization A = V MV −1 with M
diagonal is the empty matrix.

(b) If A is the linear map of multiplication by a scalar, then any basis for its domain is
an eigenbasis for A.

(c) A triangular matrix of order n is diagonable if and only if it has n different diagonal
entries.

(d) Any (square) triangular matrix is diagonable.

(e) Any matrix of order 1 is diagonable.

(f) A matrix of order n has n eigenvalues.

(g) Similar linear maps have the same spectrum.

(h) The linear map of differentiation on Π≤k is nilpotent.

(i) The identity map is idempotent.

(j) If the matrix A has 3 eigenvalues, then it must have at least 3 columns.

(k) If null(A − µ id) is not trivial, then every one of its elements is an eigenvector for A
belonging to the eigenvalue µ.
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Convergence of sequences in a normed vector space

Our discussion of the power sequence A0, A1, A2, . . . of a linear map
naturally involves the convergence of such a sequence.

Convergence of a vector sequence or a map sequence is most conveniently
described with the aid of a norm, as introduced earlier, starting at page 111.

Suppose z1, z2, z3, . . . is an infinite sequence of n-vectors. In order to
avoid confusion, I refer to the jth entry of the kth term zk in such a vector
sequence by zk(j). We say that this sequence converges to the n-vector
z∞ and write

z∞ = lim
k→∞

zk,

in case
lim

k→∞
‖z∞ − zk‖ = 0.

It is not hard to see that

z∞ = lim
k→∞

zk ⇐⇒ ∀{i} z∞(i) = lim
k→∞

zk(i).

Note that z∞ = limk→∞ zk if and only if, for every ε > 0, there is some k0

so that, for all k > k0, ‖z∞ − zk‖ < ε. This says that, for any given ε > 0
however small, all the terms in the sequence from a certain point on lie in
the “ball”

Bε(z∞) := {y ∈ IFn : ‖y − z∞‖ < ε}
whose center is z∞ and whose radius is ε.

(11.1) Lemma: A convergent sequence is necessarily bounded. More
explicitly, if the sequence (xk) of n-vectors converges, then supk ‖xk‖ <
∞, i.e., there is some c so that, for all k, ‖xk‖ ≤ c.

157
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The proof is a verbatim repeat of the proof of this assertion for scalar
sequences, as given in the Backgrounder on scalar sequences.

Analogously, we say that the sequence A1, A2, A3, . . . of matrices con-
verges to the matrix B and write

lim
k→∞

Ak = B,

in case
lim

k→∞
‖B −Ak‖∞ = 0.

As in the case of vector sequences, a convergent sequence of matrices is
necessarily bounded.

Here, for convenience, we have used the map norm associated with the
max-norm since we have the simple and explicit formula (7.16) for it. Yet we
know from (7.24)Proposition that any two norms on any finite-dimensional
normed vector space are equivalent. In particular, if ‖ ‖′ is any norm on
L(IFn) = IFn×n, then there is a positive constant c so that

‖A‖∞/c ≤ ‖A‖′ ≤ c‖A‖∞, ∀A ∈ IFn×n.

This implies that limk→∞ ‖B −Ak‖∞ = 0 if and only if

lim
k→∞

‖B −Ak‖′ = 0,

showing that our definition of what it means for Ak to converge to B is
independent of the particular matrix norm we use. We might even have
chosen the matrix norm

‖A‖′ := max
i,j
|A(i, j)| = max

x 6=0

‖Ax‖∞
‖x‖1

,

and so explicitly confirmed that convergence of matrices is entry-wise, i.e.,
limk→∞ Ak = B if and only if

lim
k→∞

Ak(i, j) = B(i, j), ∀i, j.

Note that, in this chapter, I am using MATLAB’s way of writing matrix entries,
writing Ak(i, j) instead of (Ak)i,j for the (i, j)-entry of Ak, in order to keep
the number of subscripts down.

11.1 For each of the following matrices A, work out Ak for arbitrary k ∈ N and, from

that, determine directly whether or not the power sequence A0, A1, A2, . . . converges; if it

does, also determine that limit. (i) A := α idX ; (ii) A :=

[
1/2 210

0 1/2

]
; (iii) A := [−e1, e2];

(iv) A =

[
a b
0 c

]
.
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Three interesting properties of the power sequence of a linear map

We have already most of the tools in hand needed to analyze the following
three interesting properties that the power sequence of A, i.e., the sequence

(11.2) A0, A1, A2, . . .

may have.

Let A ∈ L(X) with dimX <∞. Then, for any basis V of X ,

Â := V −1AV

is a matrix similar to A, and, for any k,

Ak = V ÂkV −1.

Thus, if we understand the sequence (11.2) for any square matrix A, then we
understand (11.2) for any A ∈ L(X) with dimX <∞.

For this reason, we state here the three interesting properties only for a
matrix A.

We call the matrix A power-bounded in case its power sequence is
bounded, i.e., supk ‖Ak‖∞ < ∞, i.e., there is a constant c so that, for all k,
‖Ak‖∞ ≤ c.

We call the matrix A convergent in case its power sequence converges,
i.e., in case, for some matrix B, B = limk→∞ Ak.

We call the matrix A convergent to 0 in case

lim
k→∞

Ak = 0.

See the Backgrounder on the convergence of scalar sequences and, in
particular, on the scalar sequence (ζ0, ζ1, ζ2, . . .).

The first property is fundamental in the study of evolutionary (i.e., time-
dependent) processes, such as weather or fluid flow. In the simplest approxi-
mation, the state of the system (be it the weather or waves on the ocean or
whatever) at time t is described by some vector y(t), and the state y(t+ ∆t)
at some slightly later time t+ ∆t is computed as

y(t+ ∆t) = Ay(t),

with A some time-independent matrix. Such a process is called stable if
‖y(t)‖ remains bounded for all time regardless of the initial state, y(0), of
the system. Since y(k∆t) = Aky(0), the requirement of stability is equivalent
to the power boundedness of A.

The third property is fundamental in the study of iterative processes, as
discussed earlier.
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The second property is in between the other two. In other words, we
have listed the three properties here in the order of increasing strength: if
A is convergent to 0, then it is, in particular, convergent. Again, if A is
convergent, then it is, in particular, power-bounded.

Suppose now that x is an eigenvector for A, with corresponding eigen-
value µ. Then Ax = µx, hence Akx = µkx for k = 1, 2, 3, . . .. Sup-
pose A is powerbounded. Then, in particular, for some c, we should have
c‖x‖∞ ≥ ‖Ak‖∞‖x‖∞ ≥ ‖Akx‖∞ = ‖µkx‖∞ = |µ|k‖x‖∞. Since ‖x‖∞ 6= 0,
this implies that the scalar sequence (|µ|k : k = 1, 2, 3, . . .) must be bounded,
hence |µ| ≤ 1. Since we took an arbitrary eigenvector, we conclude that

(11.3) A powerbounded =⇒ ρ(A) ≤ 1.

Actually, more is true. Suppose that µ is a defective eigenvalue for A,
which, to recall, means that

null(A− µ id) ∩ ran(A− µ id) 6= {0}.

In other words, there exists an eigenvector for A belonging to µ of the form
x = (A− µ id)y. This implies that

Ay = x+ µy.

Therefore

A2y = Ax+ µAy = µx+ µ(x+ µy) = 2µx+ µ2y.

Therefore

A3y = 2µAx+ µ2Ay = 2µ2x+ µ2(x+ µy) = 3µ2x+ µ3y.

By now, the pattern is clear:

Aky = kµk−1x+ µky.

This also makes clear the difficulty: If |µ| = 1, then

‖Ak‖∞‖y‖∞ ≥ ‖Aky‖∞ ≥ k‖x‖∞ − ‖y‖∞.

This shows that A cannot be powerbounded.

We conclude:

(11.4) Proposition: If the matrix A is powerbounded, then, for all
µ ∈ spec(A), |µ| ≤ 1, with equality only if µ is a nondefective eigenvalue
for A.
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Now we consider the case that A is convergent (hence, in particular,
powerbounded). If A is convergent, then, for any eigenvector x with associ-
ated eigenvalue µ, the sequence (µkx : k = 0, 1, 2, . . .) must converge. Since
x stays fixed, this implies that the scalar sequence (µk : k = 0, 1, 2, . . .) must
converge. This, to recall, implies that |µ| ≤ 1 with equality only if µ = 1.

Finally, if A is convergent to 0, then, for any eigenvector x with associ-
ated eigenvalue µ, the sequence (µkx) must converge to 0. Since x stays fixed
(and is nonzero), this implies that the scalar sequence (µk) must converge to
0. This, to recall, implies that |µ| < 1.

Remarkably, these simple necessary conditions just derived, for power-
boundedness, convergence, and convergence to 0, are also sufficient; see
(11.10)Theorem.

For the proof, we need one more piece of information, namely a better
understanding of the distinction between defective and nondefective eigen-
values.

11.2 For each of the following four matrices A, determine whether or not it is
(a) powerbounded, (b) convergent, (c) convergent to zero. (i) idn; (ii) [1, 1; 0, 1]; (iii)
[8/9, 1010; 0, 8/9]; (iv) − idn.

Splitting off the nondefective eigenvalues

Recall that the scalar µ is called a defective eigenvalue for A ∈ L(X) in
case

null(A− µ id) ∩ ran(A− µ id) 6= {0}.

(11.5) Proposition: If M is a set of nondefective eigenvalues of A ∈
L(X), for some finite-dimensional vector space X , then X has a basis
U = [V,W ], with V consisting entirely of eigenvectors of A belonging
to these nondefective eigenvalues, and W any basis for the subspace
Z := ran p(A), with p(t) :=

∏
µ∈M (t− µ).

Further, Z is A-invariant, meaning that A(Z) ⊂ Z, hence A Z :
Z → Z : z 7→ Az is a well-defined map on Z, and spec(A Z) =
spec(A)\M .

Proof: Since Ap(A) = p(A)A, we have

AZ = A(ran p(A)) = ranAp(A) = p(A) ranA ⊂ ran p(A) = Z,

showing Z to be A-invariant. This implies that A Z : Z → Z : z 7→ Az is a
well-defined linear map on Z.

We claim that X is the direct sum of null p(A) and ran p(A), i.e.,

(11.6) X = null p(A) +̇ ran p(A).
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Since, by (4.15)Dimension Formula, dimX = dimnull p(A) + dim ran p(A),
it is, by (4.26)Proposition, sufficient to prove that

(11.7) null p(A) ∩ ran p(A) = {0}.

For its proof, let

pµ : t 7→ p(t)/(t− µ), µ ∈M,

and recall from (5.6) that

(pµ/pµ(µ) : µ ∈M)

is a Lagrange basis for the polynomials of degree < #M . In particular,

1 =
∑

µ∈M

pµ/pµ(µ).

Hence, with (10.19)Lemma, id =
∑

µ∈M pµ(A)/pµ(µ) and so, for any x ∈ X ,

x =
∑

µ∈M

xµ,

with
xµ := pµ(A)x/pµ(µ)

in null(A − µ id) in case x ∈ null p(A) (since (A − µ id)xµ = p(A)x/pµ(µ)),
but also in ran(A − µ id) in case also x ∈ ran p(A) ⊂ ran(A − µ id), hence
then xµ = 0 since we assumed that each µ ∈M is not defective. This shows
(11.7), hence (11.6).

More than that, we just saw that x ∈ null p(A) implies that x =
∑

µ xµ

with xµ ∈ null(A− µ id), all µ ∈M , hence, null p(A) ⊂ ranV , with

V := [Vµ : µ ∈M ]

and Vµ a basis for null(A − µ id), all µ. On the other hand, each column of
V is in null p(A), hence also ranV ⊂ null p(A), therefore V is onto null p(A)
and, since it is 1-1 by (10.9)Lemma, it is a basis for null p(A). Therefore, by
(11.6), U := [V,W ] is a basis for X for any basis W for Z = ran p(A).

Finally, let ν ∈ spec(A). If ν were in both M and spec(A Z), then Ax =
νx for some x ∈ Z\0, yet also p(A)x = 0, hence 0 6= x ∈ null p(A)∩ ran p(A),
contradicting (11.7). Thus, if ν ∈ M , then ν 6∈ spec(A Z). If, on the other
hand, ν 6∈M , then, with x any eigenvector for ν, we have p(A)x = αx with

α :=
∏

µ∈M

(ν − µ) 6= 0,

and so, x = α−1p(A)x ∈ ran p(A) = Z, hence ν ∈ spec(A Z). This proves
that spec(A Z) = spec(A)\M .
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It follows that the matrix representation for A with respect to this basis
U = [V,W ] has the simple form

U−1AU =

[
M 0
0 B̂

]
:= diag(µ1, . . . , µr, B̂),

with µ1, . . . , µr a sequence taken from M , and B̂ some square matrix, namely
B̂ = W−1AW .

(11.8) Theorem: Let A ∈ L(X), with X a finite-dimensional vector
space.

(i) If A is diagonable, then all its eigenvalues are nondefective, and
X = +̇µ∈spec(A) null(A− µ id).

(ii) If IF = C and all of A’s eigenvalues are nondefective, then A is
diagonable.

Proof: (i) The first part is a restatement of (10.13)Corollary; the
second part follows from (4.27)Corollary.

(ii) If none of the eigenvalues of A is defective, then we can choose
M = spec(A) in (11.5)Proposition, leaving A Z as a linear map with an
empty spectrum. Hence, if also IF = C, then we know from (10.15)Theorem
that ranW = domA Z must be trivial, hence V is a basis for X .

Here is a simple example. Let A =

[
2 1
1 2

]
. Then A maps x := (1, 1) to

(3, 3) = 3x. Hence, µ := 3 ∈ spec(A). We compute

ran(A− µ id) = ran

[
−1 1
1 −1

]
= ran

[
−1
1

]
,

since the first column of (A−µ id) is bound and the second is free. This also

implies that null(A− µ id) is one-dimensional, with V :=

[
1
1

]
a basis for it.

It follows, by inspection, that null(A− µ id)∩ ran(A− µ id) = {0} since
the only vector of the form (1, 1)α and of the form (−1, 1)β is the zero vec-

tor. Equivalently, the matrix U :=

[
1 −1
1 1

]
is 1-1, hence a basis for R

2.

Consequently, 3 is a nondefective eigenvalue for A.

Now, what about A Z , with Z = ran(A − µ id)? In this case, things
are very simple since Z is one-dimensional. Since A(Z) ⊂ Z, A must map
any z ∈ Z to a scalar multiple of itself! In particular, since z = (−1, 1) ∈
ran(A − µ id), A must map this z into a scalar multiple of itself, and this is
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readily confirmed by the calculation that A maps z to −(2, 1) + (1, 2) = z,
i.e., to itself. This shows that z is an eigenvector for A belonging to the
eigenvalue 1.

Altogether therefore,

AU = [Ax,Az] = [3x, z] = U diag(3, 1),

showing that A is actually diagonable.

This simple example runs rather differently when we change A to A :=[
2 1
0 2

]
. Since A is upper triangular, its sole eigenvalue is µ = 2. But

(A − µ id) =

[
0 1
0 0

]
, and we saw earlier that its range and nullspace have

the nontrivial vector e1 in common. Hence, 2 is a defective eigenvalue for
this matrix A.

(11.9) Example: Let A := [x][y]t with x, y ∈ R
n\0. Then rankA = 1,

hence ranA = ran[x] is one-dimensional, therefore x is an eigenvector for A.
Since Az = x (ytz), we have, in particular,

Ax = x (ytx),

hence x is an eigenvector for A belonging to the eigenvalue µ := ytx.

Since A is of rank 1, dimnullA = n − 1. Let V be a basis for nullA,
i.e., V ∈ L(Rn−1, nullA) invertible. Then U := [V, x] is 1-1 (hence a basis
for R

n) if and only if x 6∈ ranV , i.e., if and only if x 6∈ nullA.

case x 6∈ ranV : Then U = [V, x] is a basis for R
n. Consider the

representation Â = U−1AU for A with respect to this basis: With V =:
[v1, v2, . . . , vn−1], we have Auj = Avj = 0 for j = 1:n−1, therefore

Âej = 0, j = 1:n−1.

Further, we have Ax = x (ytx), therefore

Âen = U−1AUen = U−1Ax = (ytx)en,

(recall that, for any z ∈ R
n, U−1z provides the coordinates of z with respect

to the basis U , i.e., U(U−1z) = z). Hence, altogether,

Â = [0, . . . , 0, (ytx)en].

In particular, A is diagonable, with eigenvalues 0 and ytx.

case x ∈ ranV : Then U = [V, x] is not a basis for R
n. Worse than

that, A is now not diagonable. This is due to the fact that, in this case, the
eigenvalue 0 for A is defective: For, x 6= 0 while Ax = 0, hence

{0} 6= ran(A− 0 id) = ranA = ran[x] ⊂ nullA = null(A− 0 id).

Therefore null(A− 0 id) ∩ ran(A− 0 id) 6= {0}.
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It is hard to tell just by looking at a matrix whether or not it is diago-
nable. There is one exception: If A is hermitian, i.e., equal to its conjugate
transpose, then it is not only diagonable, but has an orthonormal basis of
eigenvectors, as is shown in the next chapter.

11.3 Prove: If A =

[
B C
0 D

]
, with B and D square matrices, then spec(A) =

spec(B)∪ spec(D). (Hint: Prove first that such a matrix A is invertible if and only if both
B and D are invertible.)

11.4 Use H.P. 11.3 to determine the spectrum of the matrix A :=




1 2 3 4
2 4 5 6
0 0 1 2
0 0 2 1


.

11.5 (a) Use H.P. 11.3 to determine the spectrum of the matrix A :=

[
1 2 a
2 1 b
0 0 3

]
.

(b) For which choices of a and b is A not diagonable?

Three interesting properties of the power sequence of a linear map:
The sequel

(11.10) Theorem: Let A ∈ C
n×n. Then:

(i) A is powerbounded iff, for all µ ∈ spec(A), |µ| ≤ 1, with |µ| = 1
only if µ is not defective.

(ii) A is convergent iff, for all µ ∈ spec(A), |µ| ≤ 1, with |µ| = 1 only if
µ is not defective and µ = 1.

(iii) A is convergent to 0 iff ρ(A) < 1.

Proof: We only have to prove the implications ‘⇐=’, since we proved
all the implications ‘=⇒’ in an earlier section (see pages 158ff).

We begin with (iii). Since A is a matrix over the complex scalars, we
know from (10.27)Corollary that, for any ε > 0, we can find an upper tri-
angular matrix Bε similar to A and with all off-diagonal entries less than ε
in absolute value. This means, in particular, that A = V BεV

−1 for some
(invertible) matrix V , hence, for any k, Ak = V (Bε)

kV −1, therefore,

‖Ak‖∞ ≤ ‖V ‖∞‖Bε‖k∞‖V −1‖∞.
We compute

‖Bε‖∞ = max
i

∑

j

|Bε(i, j)| ≤ max
i
|Bε(i, i)|+ (n− 1)ε,

since each of those sums involves n − 1 off-diagonal entries and each such
entry is less than ε in absolute value. Further, Bε is upper triangular and
similar to A, hence

max
i
|Bε(i, i)| = max{|µ| : µ ∈ spec(A)} = ρ(A).
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By assumption, ρ(A) < 1. This makes it possible to choose ε positive yet
so small that ρ(A) + (n − 1)ε < 1. With this choice, ‖Bε‖∞ < 1, hence
limk→∞ ‖Bε‖k∞ = 0. Therefore, since ‖V ‖∞ and ‖V −1‖∞ stay fixed through-
out, also ‖Ak‖∞ → 0 as k →∞. In other words, A is convergent to 0.

With this, we are ready also to handle (i) and (ii). Both assume that
all eigenvalues of A of modulus 1 are nondefective. By (11.5)Proposition,
this implies the existence of a basis U = [V,W ] for C

n so that V consists of
eigenvectors of A belonging to eigenvalues of modulus 1, while Z := ranW
is A-invariant and A Z has only eigenvalues of modulus < 1. In particular,
AV = VM for some diagonal matrix M with all diagonal entries of modulus
1, and AW = WB for some matrix B with spec(B) = spec(A Z), hence
ρ(B) < 1. Consequently, for any k,

AkU = Ak[V,W ] = [AkV,AkW ] = [VMk,WBk] = U diag(Mk, Bk).

In other words,
Ak = U diag(Mk, Bk)U−1.

Therefore, ‖Ak‖∞ ≤ ‖U‖∞ max{‖M‖k∞, ‖Bk‖∞}‖U−1‖∞, and this last ex-
pression converges since ‖M‖∞ = 1 while ‖Bk‖∞ → 0, by (iii). Since any
convergent sequence is bounded, this implies that also the sequence (‖Ak‖∞)
must be bounded, hence we have finished the proof of (i).

Assume now, in addition, as in (ii) that all eigenvalues of A of modu-
lus 1 are actually equal to 1. Then M = id, and so, limk→∞ Ak = C :=
U diag(M, 0)U−1 since Ak − C = U diag(0, Bk)U−1, hence

‖Ak − C‖∞ ≤ ‖U‖∞‖Bk‖∞‖U−1‖∞ ≤ const‖Bk‖∞ → 0

as k →∞.

(11.11) Example: Here is a concrete example, chosen for its simplic-
ity.

Let A =

[
1 1
0 α

]
. Then spec(A) = {1, α}. In particular, A is diagonable

if α 6= 1 (by (10.10)Corollary) since then A has two eigenvalues. On the other
hand, if α = 1, then A is not diagonable since it then looks like id2 + N ,
with N := [0, e1] the simplest example of a non-diagonable matrix. Also, in
the latter case, the sole eigenvalue, 1, is certainly defective since e1 is both
in null(A− id) and in ran(A− id).

Also,

Ak =

[
1 1 + α+ · · ·+ αk−1

0 αk

]
=






[
1 1−αk

1−α

0 αk

]
if α 6= 1;

[
1 k
0 1

]
otherwise.
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We see that A is powerbounded whenever |α| ≤ 1 except when α = 1, i.e.,
except when there is a defective absolutely largest eigenvalue.

Further, A is convergent iff |α| < 1, i.e., if, in addition, the sole eigenvalue
of size 1 is equal to 1 and is nondefective.

The power method

The simple background for the success of the power method is the
following corollary to (11.10)Theorem (ii).

(11.12) Proposition: If A has just one eigenvalue µ of absolute value
ρ(A) and µ is nondefective, then, for almost any x and almost any y,
the sequence

Akx/(ycAkx), k = 1, 2, . . .

converges to an eigenvector of A belonging to that absolutely maximal
eigenvalue µ. In particular, for almost any vector y, the ratio

ycAk+1x/ycAkx

converges to µ.

Proof: By assumption, there is (by (11.5)Proposition) a basis U :=
[V,W ], with V a basis for the space null(A − µ id) of all eigenvectors of
A belonging to that absolutely largest eigenvalue µ of A, and B := A ran W

having all its eigenvalues < |µ| in absolute value. This implies that ρ(B/µ) <
1. Therefore, for any x =: [V,W ](a, b),

Akx = µkV a+BkWb = µk
(
V a+ (B/µ)kWb

)

and (B/µ)kWb→ 0 as k →∞. Consequently, for any y,

ycAk+1x

ycAkx
=
µk+1(ycV a+ yc(B/µ)k+1Wb)

µk(ycV a+ yc(B/µ)kWb)
= µ

ycV a+ yc(B/µ)k+1Wb

ycV a+ yc(B/µ)kWb
→ µ

provided ycV a 6= 0.

Note that the speed with which ycAk+1x/ycAkx converges to µ depends
on the speed with which (B/µ)kWb → 0 as k → ∞, hence, ultimately, on
ρ(B/µ).

In the scaled power method, one would, instead, consider the se-
quence

xk+1 := A(xk/‖xk‖), k = 0, 1, . . . ,
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or, more simply, the sequence

xk+1 := A(xk/y
txk), k = 0, 1, . . . .

The power method is at the heart of good algorithms for the calculation
of eigenvalues. In particular, the standard algorithm, i.e., the QR method,
can be interpreted as a (very sophisticated) variant of the power method.

11.6 Using MATLAB if really necessary, try out the Power method on the following
matrices A, starting at the specified vector x, and discuss success or failure. (Note: You
can always use eig(A) to find out what the absolutely largest eigenvalue of A is (as well
as some eigenvector for it), hence can tell whether or not the power method is working for

you. If it isn’t, identify the source of failure.) (a) A =




0 .2 .2 .3
.2 0 .2 .3
.5 .4 0 .4
.3 .4 .6 0


 , x = (1, 1, 1, 1);

(b) A =

[
0 1
−1 0

]
, x = (1,−1); (c) A =

[
1 0
1 1

]
, x = e1; (d) A =

[
4 1 −1
2 5 −2
1 1 2

]
, x =

(1,−2,−1).

11.7 T/F

(a) If the matrix A of order n has n eigenvalues, then none of its eigenvalues is defective.

(b) If, for some sequence (xn : n ∈ N) of m-vectors, limn→∞ ‖xn‖2 = 0, then
limn→∞ ‖xn‖ = 0 for any norm ‖ · ‖ on IFm.

(c) If all the eigenvalues of A are < 1, then limk→∞ Ak → 0.

(d) If all the eigenvalues of A are ≤ 1 in absolute value, then A is power-bounded.

(e) If p(A)x = 0 for some polynomial p, A ∈ L(X) and x ∈ X\{0}, then every eigenvalue
of A is a zero of p.



12 Canonical forms

Canonical forms exhibit essential aspects of a linear map. Of the three
discussed in this chapter, only the Schur form has practical significance. But
the mathematics leading up to the other two is too beautiful to be left out.

The only result from this chapter used later in these notes is the spectral
theorem for hermitian matrices; see (12.2) Corollary.

The Schur form

The discussion of the powers Ak of A used crucially the fact that any
square matrix is similar to an upper triangular matrix. The argument we
gave there for this fact is due to I. Schur, who used a refinement of it to show
that the basis V for which V −1AV is upper triangular can even be chosen to
be unitary or orthonormal, i.e., so that

V cV = id.

(12.1) Schur’s theorem: Every A ∈ L(Cn) is unitarily similar to
an upper triangular matrix, i.e., there exists a unitary basis U for C

n so
that Â := U−1AU = U cAU is upper triangular.

Proof: Simply repeat the proof of (10.26)Theorem, with the fol-
lowing modifications: Normalize the eigenvector u1, i.e., make it have (Eu-
clidean) length 1, then extend it to an o.n. basis for C

n (as can always be
done by applying Gram-Schmidt to an arbitrary basis [u1, . . .] for C

n). Also,
observe that unitary similarity is also an equivalence relation since the prod-
uct of unitary matrices is again unitary. Finally, if W is unitary, then so is
diag(1,W ).

169
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Here is one of the many consequences of Schur’s theorem. It concerns
hermitian matrices, i.e., matrices A for which Ac = A. By Schur’s theorem,
such a matrix, like any other matrix, is unitarily similar to an upper triangular
matrix, i.e., for some unitary matrix U , Â := U cAU is upper triangular. On
the other hand, for any matrix A and any unitary matrix U ,

(U cAU)c = U c(Ac)U.

In other words: if Â is the matrix representation for A with respect to a
unitary basis, then Âc is the matrix representation for Ac with respect to
the very same basis. For our hermitian matrix A with its upper triangular
matrix representation Â = U cAU with respect to the unitary basis U , this
means that also Âc = Â, i.e., that the upper triangular matrix Â is also lower

triangular and that its diagonal entries are all real. This proves the hard part
of the following remarkable

(12.2) Corollary: A matrix A ∈ C
n is hermitian if and only it is

unitarily similar to a real diagonal matrix.

Proof: We still have to prove that if Â := U cAU is real and diagonal
for some unitary U , then A is necessarily hermitian. But that follows at once
from the fact that then Âc = Â, therefore Ac = (UÂU c)c = UÂcU c =

UÂU c = A.

12.1 Verify that the symmetric matrix

[
2i 1
1 0

]
is not diagonable.

A slightly more involved argument makes it possible to characterize all
those matrices that are unitarily similar to a diagonal matrix (real or not).
Such a matrix has enough eigenvectors to make up an entire orthonormal
basis from them. Here are the details.

Start with the observation that diagonal matrices commute with one
another. Thus, if Â := U cAU is diagonal, then

AcA = (UÂcU c)(UÂU c) = UÂcÂU c = UÂÂcU c = (UÂU c)(UÂcU c) = AAc,

hence having AcA = AAc is a necessary condition for A to be unitarily similar
to a diagonal matrix. Remarkably, this condition is sufficient as well. Note
that this condition can be directly tested by computing the two products and
comparing them. It constitutes the only criterion for the diagona(liza)bility
of a matrix available that can be tested for by finitely many calculations.
Not surprisingly, matrices with this property are very convenient and have,
correspondingly, been given a very positive label. They are called normal.
(Another label might have been boring.)

One way to prove that normal matrices are unitarily similar to a diagonal
matrix is by way of a refinement of Schur’s theorem: It is possible to find
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a unitary basis that simultaneously upper-triangularizes two matrices A and
B provided A and B commute, i.e., provided AB = BA. This is due to the
fact that commuting matrices have some eigenvector in common.

Assuming this refinement of Schur’s theorem (cf. (12.5)Theorem below),
one would obtain, for a given normal matrix A, a unitary basis U so that both
U cAU and U cAcU are upper triangular. Since one of these is the conjugate
transpose of the other, they must both be diagonal. This finishes the proof
of

(12.3) Theorem: A matrix A ∈ C
n is unitarily similar to a diagonal

matrix if and only if AAc = AcA.

Now for the proof of the refined Schur’s theorem. Since the proof of
Schur’s theorem rests on eigenvectors, it is not surprising that a proof of its
refinement rests on the following

(12.4) Lemma: If A,B ∈ C
n commute, then there exists a vector that

is eigenvector for both of them.

Proof: Let x be an eigenvector for A, Ax = xµ say, and let p = pB,x

be the minimal annihilating polynomial for B at x. Since x 6= 0, p has
zeros. Let ν be one such and set p =: (· − ν)q. Since IF = C, we know that
v := q(B)x is an eigenvector for B (for the eigenvalue ν). But then, since
AB = BA, we also have Aq(B) = q(B)A, therefore

Av = Aq(B)x = q(B)Ax = q(B)xµ = vµ,

showing that our eigenvector v for B is also an eigenvector for A.

(12.5) Schur’s refined theorem: For every A,B ∈ L(Cn) that com-
mute, there exists a unitary basis U for C

n so that both U cAU and
U cBU are upper triangular.

Proof: This is a further refinement of the proof of (10.26)Theorem.
The essential step in that proof was to come up with some eigenvector for A
which was then extended to a basis, well, to an o.n. basis U for the proof of
Schur’s Theorem. Therefore, to have U simultaneously upper-triangularize
both A and B, all that’s needed is (i) to observe that, by (12.4)Lemma,



172 12 Canonical forms

we may choose u1 to be a (normalized) eigenvector of A and B since, by
assumption, AB = BA; and (ii) verify that the submatrices A1 and B1

obtained in the first step again commute (making it possible to apply the
induction hypothesis to them). Here is the verification of this latter fact:

Assuming the eigenvalue of B corresponding to the eigenvector u1 to be
ν, we have

U cAU =

[
µ C
0 A1

]
U cBU =

[
ν D
0 B1

]
.

Therefore
[
µν µD + CB1

0 A1B1

]
=

[
µ C
0 A1

] [
ν D
0 B1

]

= U cAUU cBU = U cABU = U cBAU

= U cBU U cAU =

[
νµ νC +DA1

0 B1A1

]
,

hence also A1 and B1 commute.

The primary decomposition

The following analysis goes back to Frobenius and could be viewed as
a first step toward a finest A-invariant direct sum decomposition, aka the
Jordan form, though the Jordan form is deduced in the next section without
any reference to this section. We give the analysis here in the more general
situation when the scalar field IF may not be algebraically closed.

The ‘primary decomposition’ refers to the following facts (taken for
granted here). The ring Π of (univariate) polynomials over the field IF is
a unique factorization domain. This means that each monic polynomial
can be written in exactly one way (up to order of the factors) as a product
of irreducible polynomials, i.e., monic polynomials that have no proper fac-
tors. Here, p is called a proper factor of q if (i) 0 < deg p < deg q, and (ii)
q = hp for some polynomial h.

If IF = C (or any other algebraically closed field), then each such irre-
ducible polynomial is a monic linear polynomial, i.e., of the form (· − µ) for
some scalar µ. Otherwise, irreducible polynomials may well be of higher than
first degree. In particular, if IF = R, then an irreducible polynomial may be
of second degree, like the polynomial ()2 + 1, but no irreducible polynomial
would be of higher degree than that.

The irreducible polynomials are the ‘primes’ in the ‘ring’ Π, hence the
above-mentioned unique factorization is one into powers of ‘primes’, or a
prime factorization.

To obtain the ‘primary decomposition’ of the linear space X with respect
to the linear map A ∈ L(X), it is convenient to start with the set

NA := {p ∈ Π : null p(A) 6= {0}}
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of all polynomials p for which p(A) fails to be invertible. This set is not
trivial, meaning that it contains more than just the zero polynomial, if, as
we continue to assume, dimX <∞, since then

(12.6) pA,x ∈ NA, ∀x ∈ X,
with pA,x the minimal polynomial for A at x, which, to recall, is the monic
polynomial p of smallest degree for which p(A)x = 0.

Call an element of NA minimal if it is monic and none of its proper
factors is in NA, and let

QA

be the collection of all minimal elements of NA.

The set QA is not empty since NA is not empty, and is closed under
multiplication by a scalar, hence contains a monic polynomial of smallest
degree. Any q ∈ QA is necessarily irreducible, since, otherwise, it would be
the product of certain polynomials p with p(A) 1-1, hence also q(A) would
be 1-1.

For every q ∈ QA and every x ∈ null q(A)\0, necessarily pA,x = q, by
the minimality of pA,x. This implies that

(12.7) p, q ∈ QA and null p(A) ∩ null q(A) 6= {0} =⇒ p = q.

(12.8) Lemma: Let p be a product of elements of QA,

p =:
∏

q∈Q′

A

q(A)dq

say, with dq ∈ N and Q′
A a finite subset of QA. Then,

(12.9) Xp := null p(A) = +̇
q∈Q′

A

null q(A)dq ,

i.e., Xp = null p(A) is the direct sum of the spaces Yq := null q(A)dq . In
other words (by (4.26)Proposition), with Vq a basis for Yq,

Vp := [Vq : q ∈ Q′
A]

is a basis for Xp.

Proof: There is nothing to prove if Q′
A has just one element. So,

assume that #Q′
A > 1, and consider the set

I :=
∑

q∈Q′

A

(p/qdq)Π := {
∑

q∈Q′

A

(p/qdq)pq : pq ∈ Π}
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of all polynomials writable as a weighted sum of the polynomials

p/qdq =
∏

g∈Q′

A
\q

gdg

for q ∈ Q′
A, with polynomial (rather than just scalar) weights. This set

is a polynomial ideal, meaning that it is closed under addition, as well as
under multiplication by polynomials. More than that, let q∗ be the monic
polynomial of smallest degree in I. By Euclid’s algorithm, for every q ∈ I,
there exist polynomials g and h with q = hq∗ + g, hence g = q − hq∗ ∈ I,
yet deg g < deg q∗, hence, by the minimality of q∗, g = 0. In other words,
the monic polynomial q∗ is a factor of every q ∈ I, in particular of every
p/qdq with q ∈ Q′

A. But these polynomials have no proper factor in common.
Therefore, q∗ is necessarily the monic polynomial of degree 0, i.e., q∗ = ()0.

It follows that
()0 =

∑

q∈Q′

A

(p/qdq)hq

for certain polynomials hq. This implies that, for the corresponding linear
maps

Pq : Xp → Xp : y 7→ (p/qdq)(A)hq(A)y, q ∈ Q′
A,

we have

(12.10) idXp
=
∑

q

Pq.

Also, for q 6= g, PqPg = s(A)p(A) = 0 for some s ∈ Π. Therefore also

Pq = Pq idXp
= Pq(

∑

g

Pg) =
∑

g

PqPg = PqPq.

This shows that each Pq is a linear projector, and, by (5.11), that Xp is the
direct sum of the ranges of the Pq. It remains to show that

(12.11) ranPq = Yq = null q(A)dq .

It is immediate that ranPq ⊂ Yq ⊂ Xp. With that, Yq ⊂ nullPg for all
g ∈ Q′

A\q, and this implies (12.11), by (12.10).

Now let p = pA be the minimal (annihilating) polynomial for A,
meaning the monic polynomial p of smallest degree for which p(A) = 0.

To be sure, there is such a polynomial since X is finite-dimensional,
hence so is L(X) (by (4.24)Corollary), therefore [Ar : r = 0: dimL(X)] must
fail to be 1-1, i.e., there must be some a for which

p(A) :=
∑

j≤dim L(X)

ajA
j = 0,
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yet aj 6= 0 for some j > 0, hence the set of all annihilating polynomials
of positive degree is not empty, therefore must have an element of minimal
degree, and it will remain annihilating and of that degree if we divide it by
its leading coefficient.

By the minimality of pA, every proper factor of pA is necessarily in NA.
Hence pA is of the form

pA =
∏

q∈Q′

A

qdq

for some Q′
A ⊂ QA. (In fact, it is immediate from (12.8)Lemma that neces-

sarilyQ′
A = QA, but we don’t need that here.) This gives, with (12.8)Lemma,

the primary decomposition for X wrto A:

(12.12) X = +̇
q

null q(A)dq .

Necessarily,
null q(A)dq = ∪r null q(A)r ,

with dq the smallest natural number for which this equality holds. In-
deed, from (12.12), every x ∈ X is uniquely writable as x =

∑
g xg with

xg ∈ null g(A)dg , all g ∈ Q′
A, and, since each null g(A)dg is A-invariant, we

therefore have q(A)rx =
∑

g q(A)rxg = 0 if and only if q(A)rxg = 0 for all
g ∈ Q′

A. However, as we saw before, for each g ∈ QA\q, q(A) is 1-1 on
null g(A)dg , hence q(A)rxg = 0 if and only if xg = 0. Therefore, altogether,
null q(A)dq ⊃ null q(A)r for any r. This proves that

null q(A)dq ⊃ ∪r null q(A)r ,

while the converse inclusion is trivial. If now null q(A)r = null q(A)dq for
some r < dq, then already p := pA/q

dq−r would annihilate X , contradicting
pA’s minimality.

If IF = C, then each q is of the form (· − µq) for some scalar µq and,
correspondingly,

X = +̇
q

null(A− µq id)dq .

In particular, A− µq id is nilpotent on

Yq := null(A− µq id)dq ,

with degree of nilpotency equal to dq. Since

A = µq id + (A− µq id),

it follows that

(12.13)

exp(tA) = exp(tµq id) exp(t(A − µq id))

= exp(tµq)
∑

r<dq

tr(A− µq id)r/r! on Yq,
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thus providing a very helpful detailed description of the solution y : t 7→
exp(tA)c to the first-order ODE y′(t) = Ay(t), y(0) = c, introduced in (10.4).

12.2 A subset F of the vector space X := C(1)(R) of continuously differentiable
functions is called D-invariant if the derivative Df of any f ∈ F is again in F .

Prove: Any finite-dimensional D-invariant linear subspace Y of C(1)(R) is necessarily
the nullspace of a constant-coefficient ordinary differential operator, i.e., an operator of the
form p(D) for some polynomial p.

It follows that Y is spanned by certain exponential polynomials, i.e., functions of
the form t 7→ q(t) exp(ξt) for certain polynomials q and scalars ξ, the latter being the roots
of p.

12.3 Prove: If g is the greatest common divisor of the nontrivial polynomials p1, . . . ,
pr and m is their smallest common multiple, then, for any A ∈ L(X), null g(A) =
∩j null pj(A) and null m(A) ⊃

∑
j
null pj(A). (Hint: H.P. 17.5.)

The Jordan form

The Jordan form is the result of the search for the ‘simplest’ matrix
representation for A ∈ L(X) for some n-dimensional vector space X . It
starts off from the following observation.

Suppose X is the direct sum

(12.14) X = Y1 +̇Y2 +̇ · · · +̇Yr

of r linear subspaces, each of which is A-invariant. Then

spec(A) = ∪jspec(A Yj
).

More than that, with Vj a basis for Yj , we have AVj ⊂ ranVj , all j. This im-
plies that the coordinate vector of any column of AVj with respect to the basis
V := [V1, . . . , Vr] for X has nonzero entries only corresponding to columns
of Vj , and these possibly nonzero entries can be found as the correspond-
ing column in the matrix V −1

j AVj . Consequently, the matrix representation

Â = V −1AV for A with respect to the basis V is block-diagonal, i.e., of the
form

Â = diag(V −1
j AVj : j = 1:r) =



V −1

1 AV1

. . .

V −1
r AVr


 .

The smaller we can make the A-invariant summands Yj , the simpler and

more helpful is our overall description Â of the linear map A. Of course, the
smallest possible A-invariant subspace of X is the trivial subspace, but it
would not contribute any columns to V , hence we will assume from now on
that our A-invariant direct sum decomposition (12.14) is proper, meaning
that none of its summands Yj is trivial.

With that, each Yj has dimension ≥ 1, hence is as small as possible
if it is 1-dimensional, Yj = ran[vj ] say, for some nonzero vj . In this case,
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A-invariance says that Avj must be a scalar multiple of vj , hence vj is an
eigenvector for A, and the sole entry of the matrix [vj ]

−1A[vj ] is the corre-
sponding eigenvalue for A.

Thus, at best, each Yj is 1-dimensional, hence V consists entirely of
eigenvectors for A, i.e., A is diagonable. Since we know that not every matrix
is diagonable, we know that this best situation cannot always be attained.
But we can try to make each Yj as small as possible, in the following way.

(12.15) Jordan Algorithm:
input: X n-dimensional vector space, A ∈ L(X).
Y ← {X}
while ∃Z1 +̇Z2 ∈ Y with both Zj nontrivial and A-invariant, do:

replace Z1 +̇Z2 in Y by Z1 and Z2.
endwhile
output: the proper A-invariant direct sum decomposition X = +̇Y ∈Y Y .

At all times, the elements of Y form a proper direct sum decomposition
for X . Hence

#Y ≤
∑

Y ∈Y

dimY = dimX = n.

Since each pass through the while-loop increases #Y by 1, the algorithm
must terminate after at most n− 1 steps.

Now consider any particular Y in the collection Y output by the algo-
rithm. It is, by construction, not the direct sum of two proper A-invariant
spaces, a fact to be used twice in the arguments to follow. However, Y is a
nontrivial A-invariant subspace. Hence, with the assumption that IF = C,
we know that A Y : Y → Y : y 7→ Ay is a linear map with some eigenvalue,
µ say. This implies that the linear map

N : Y → Y : y 7→ (A− µ id)y

is well-defined and has a nontrivial nullspace.

Claim 1: For some y ∈ Y and some q ∈ N, N q−1y 6= 0 = N qy.

Proof: Indeed, since nullN 6= {0}, this holds, e.g., for q = 1 and
y ∈ nullN\0.

Claim 2: For any y and q as in Claim 1, there is λ ∈ Y ′ with λN q−1y 6=
0 and, for any such λ, Y = null Λt +̇ ranV , with Λ := [λN i−1 : i = 1:q], and
V := [N q−jy : j = 1:q] 1-1.

Proof: The Gramian matrix ΛtV = (λN i−1N q−jy : i, j = 1:q) is
square and upper triangular, with all diagonal entries equal to λN q−1y 6= 0,
hence ΛtV is invertible. This implies that V is 1-1 and, by (5.8), that Y is
the direct sum of null Λt and ranV .
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Claim 3: There is a largest q satisfying Claim 1, and for that q, Y =
nullN q +̇ ranN q.

Proof: The V of Claim 2 is 1-1, hence q = #V ≤ dim Y , therefore
there is a largest q satisfying Claim 1. For that q, nullN q ∩ ranN q is trivial:
indeed, if x ∈ nullN q ∩ ranN q, then x = N qu for some u ∈ Y , and also
N2qu = N qx = 0, but if N qu 6= 0, then, for some r > q, N r−1u 6= 0 = N ru,
which would contradict the maximality of q. Hence x = N qu = 0. But
also, by the (4.15)Dimension Formula, dimY = dimnullN q + dim ranN q,
therefore, by (4.26)Proposition, Y is the direct sum of nullN q and ranN q.

12.4 Prove: For every noninvertible N ∈ L(X) with dimX < ∞, there exists q ∈ N
so that ranNq ∩null Nq = {0}, hence X = ran Nq +̇ null Nq . The smallest such q is called
the index of N . The index of an invertible N is defined to be 0.

12.5 Prove: The index of a real symmetric matrix is ≤ 1.

12.6 Prove: For every N ∈ L(X) with dimX < ∞, (i) the sequence null Nj , j =

0, 1, 2, . . . is strictly increasing, and (ii) the sequence ran Nj , j = 0, 1, 2, . . . is strictly

decreasing, as long as j is less than the index of N ; after that, the sequences become

stationary.

Claim 4: For the largest q, VY := [N q−jy : j = 1:q] = V of Claim 2 is
a basis for Y , hence q = dimY and the matrix representation for A Y with
respect to the basis VY for Y has the simple form

(12.16) V −1
Y (A Y )VY =




µ 1 0 · · · 0 0
0 µ 1 · · · 0 0
0 0 µ · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · µ 1
0 0 0 · · · 0 µ




=: J(µ, q).

Proof: We know from Claim 3 that, for a largest q satisfying Claim
1, Y is the direct sum of nullN q and ranN q, and both subspaces are N -
invariant, hence A-invariant, therefore necessarily one of them must be triv-
ial, and, as by choice, nullN q is not trivial, it follows that ranN q = {0},
hence N q = 0. This implies that, for this q, the space null Λt of Claim
2 is N -invariant, while ranV there is N -invariant for any q since NV =
V [0, e1, . . . , eq−1]. Since, by Claim 2, Y is the direct sum of theseN -invariant,
hence A-invariant, spaces, only one can be nontrivial and, since 0 6= y ∈
ranV , it follows that Y = ranV = ranVY and, since VY is 1-1 by Claim 2,
VY is a basis for Y , and V −1

Y (A − µ id) Y VY = V −1
Y NVY = [0, e1, . . . , eq−1],

hence V −1
Y A Y VY = µ idq + [0, e1, . . . , eq−1], which proves (12.16).

It follows that the matrix representation for A with respect to the basis

[VY : Y ∈ Y]
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for X is block-diagonal, with each diagonal block a Jordan block, J(µ, q),
i.e., of the form (12.16) for some scalar µ and some natural number q. Any
such matrix representation for A is called a Jordan (canonical) form for
A.

There is no reason to believe that such a Jordan form is unique. After
all, it depends on the particular order we choose for the elements of Y when
we make up the basis [VY : Y ∈ Y]. More than that, there is, in general,
nothing unique about Y. For example, if A = 0 or, more generally A = α id,
then any direct sum decomposition for X is A-invariant, hence [VY : Y ∈ Y]
can be any basis for X whatsoever for this particular A.

Nevertheless, the Jordan form is canonical in the following sense.

(12.17) Proposition: Let Â =: diag(J(µY , dimY ) : Y ∈ Y) be a
Jordan canonical form for A ∈ L(X). Then

(i) spec(A) = {Â(j, j) : j = 1:n} = ∪Y ∈Yspec(A Y ).

(ii) For each µ ∈ spec(A) and each q ∈ N,

(12.18) nµ(q) := dimnull(A− µ id)q =
∑

µY =µ

min(q, dim Y ),

hence ∆nµ(q) := nµ(q+ 1)− nµ(q) equals the number of blocks for
µ of order > q, giving the decomposition-independent expression
−∆2nµ(q − 1) = ∆nµ(q − 1) − ∆nµ(q) for the number of Jordan
blocks of order q for µ.

Proof: Since Â is a block-diagonal matrix representation for A,

dimnull(A− µ id)q =
∑

Y ∈Y

dimnullJ(µy − µ, dimY )q

while nullJ(σ, s)q 6= {0} only for σ = 0, and

J(0, s)q = [0, . . . , 0, e1, . . . , es−q] for q ≤ s,
hence dimnull J(0, s)q = min(q, s) for arbitrary q ∈ N.

In particular, the Jordan form is unique up to an ordering of its blocks.

Also, (12.18) tells us that dimnull(A − µ id) equals the number of Jor-
dan blocks associated with µ, while the number of times that µ appears
on the diagonal of a Jordan canonical form for A, i.e.,

∑
µY =µ dimY , equals

maxq dimnull(A−µ id)q = dim∪q∈N null(A−µ id)q, the last equality because

null(A− µ id)q, q = 1, 2, . . ., is an increasing sequence. Correspondingly,

(12.19) #gµ := dimnull(A− µ id), µ ∈ spec(A),
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is called the geometric multiplicity of the eigenvalue µ, as it counts the
maximum number of columns in a 1-1 column map staffed entirely by eigen-
vectors for µ, while
(12.20)
#aµ := max

q
dim null(A−µ id)q = dim∪q∈N null(A−µ id)q, µ ∈ spec(A),

is called the algebraic multiplicity of µ. We will return to these multiplicity
notions later, after bringing determinants into play.

While the Jordan form is mathematically quite striking and useful, it is
of no practical relevance since it does not depend continuously on the entries
of A, hence cannot be determined reliably by floating-point calculations.

these homeworks need sorting out and unifying

12.7 Prove: A ∈ L(X) is diagonable if and only if X is the direct sum of (null(A −
µ id) : µ ∈ spec(A)).

12.8 Prove that A ∈ L(X) with IF = C is diagonable if and only if all its Jordan
blocks are of order 1.

12.9 Prove: If A, B ∈ L(X) and AB = BA, then, for every µ ∈ spec(A), null(A −
µ id) is B-invariant. Conclude that, under this condition, and with ν ∈ spec(B), null(A −
µ id) ∩ null(B − ν id) is both A- and B-invariant.

12.10 Prove: If IF = C and A, B ∈ L(X), and AB = BA, then the diagonability
of B implies that the restriction of B to Y := null(A − µ id) is diagonable for every
µ ∈ spec(A).

12.11 Prove: (a) If IF = C and A, B ∈ L(X) are both diagonable and AB = BA,
then X is the direct sum of null(A − µ id) ∩ null(B − ν id), µ ∈ spec(A), ν ∈ spec(B).
(Hint: H.P. 4.32 ) Conclude that (b) there is some basis consisting of eigenvectors for both
A and B, i.e., A and B are simultaneously diagonable.

12.12 Prove: If A1, . . . , Ar ∈ L(X) are all diagonable and commute with each other,
then they are simultaneously diagonable, i.e., there is some basis for X all of whose columns
are eigenvectors for every Ai.

12.13 Prove: If Y provides a proper A-invariant direct sum decomposition for X
and A ∈ L(X) is diagonable, then every B := A Y , Y ∈ Y , is diagonable. make

sure the assumption X = IFn×n is removed throughout; somewhere, perhaps
as a HW, that, in case IF = C, A ∈ L(X) is diagonalizable iff it has no defective
eigenvalues

12.14 Prove: If A, B ∈ IFn×n are both diagonalizable and AB = BA, then there is
some basis consisting of eigenvectors for both A and B.

12.15 Prove: If A, B ∈ IFn×n and B is diagonalizable and AB = BA, then, for each
µ ∈ spec(A), Y := null(A − µ id) is the direct sum of Y ∩ null(B − ν id), ν ∈ spec(B Y ).

12.16 Prove: If IF = C and A1, . . . , Ar ∈ L(X) are all diagonalizable and commute
with each other, then there is some basis all of whose columns are eigenvectors for every
Ai.
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In this short chapter, we discuss briefly the standard techniques for ‘lo-
calizing’ the spectrum of a given linear map A. Such techniques specify
regions in the complex plane that must contain parts or all of the spectrum
of A. To give a simple example, we proved (in (12.2)Corollary) that all the
eigenvalues of a hermitian matrix must be real, i.e., that spec(A) ⊂ R in case
Ac = A. More precise localization statements for hermitian matrices can be
found in the chapter on optimization and quadratic forms.

Since µ ∈ spec(A) iff (A−µ id) is not invertible, it is not surprising that
many localization theorems derive from a test for invertibility.

Gershgorin’s circles

Let µ be an eigenvalue for A with corresponding eigenvector x. Without
loss of generality, we may assume that ‖x‖ = 1 in whatever vector norm on
X = domA we are interested in at the moment. Then

|µ| = |µ|‖x‖ = ‖µx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖,
with ‖A‖ the corresponding map norm for A. This proves that the spectrum
of A must lie in the closed disk B−

‖A‖ of radius ‖A‖ centered at the origin. In

other words,

(13.1) ρ(A) ≤ ‖A‖
for any map norm ‖ · ‖.

For example, no eigenvalue of A =

[
1 2
−2 −1

]
can be bigger than 3 in

absolute value since ‖A‖∞ = 3.

A more refined containment set is obtained by the following more refined
analysis.

If E ∈ IFn×n has map-norm < 1, then A := idn − E is surely 1-1 since
then

‖Ax‖ = ‖x− Ex‖ ≥ ‖x‖ − ‖Ex‖ ≥ ‖x‖ − ‖E‖‖x‖ = ‖x‖(1− ‖E‖)

181
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with the factor (1− ‖E‖) positive, hence Ax = 0 implies that ‖x‖ = 0.

Now consider a diagonally dominant A, i.e., a matrix A with the
property that

(13.2) ∀i |A(i, i)| >
∑

j 6=i

|A(i, j)|.

For example, of the three matrices

(13.3)

[
2 −1
2 3

]
,

[
−2 −1
3 3

]
,

[
−2 −1
4 3

]
,

only the first is diagonally dominant. Setting

D := diagA = diag(. . . , A(i, i), . . .),

we notice that (i) D is invertible (since all its diagonal entries are nonzero);
and (ii) the matrix E defined by D−1A =: id − E satisfies

E(i, j) =

{
−A(i, j)/A(i, i) if i 6= j;
0 otherwise,

hence has norm

‖E‖∞ = max
i

∑

j 6=i

|A(i, j)/A(i, i)| < 1,

by the assumed diagonal dominance of A. This implies that the matrix
id − E = D−1A is invertible, therefore also A is invertible. This proves

(13.4) Proposition: Any diagonally dominant matrix is invertible.

In particular, the first of the three matrices in (13.3) we now know to be
invertible. As it turns out, the other two are also invertible; thus, diagonal
dominance is only sufficient but not necessary for invertibility. Equivalently,
a noninvertible matrix cannot be diagonally dominant.

In particular, for (A− µ id) to be not invertible, it must fail to be diag-
onally dominant, i.e.,

(13.5) ∃i |A(i, i)− µ| ≤
∑

j 6=i

|A(i, j)|.

This gives the famous
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(13.6) Gershgorin Circle Theorem: The spectrum of A ∈ C
n×n is

contained in the union of the disks

Bri
(A(i, i)) := {z ∈ C : |A(i, i)− z| ≤ ri :=

∑

j 6=i

|A(i, j)|}, i = 1:n.

For the three matrices in (13.3), this says that

spec(

[
2 −1
2 3

]
) ⊂ B1(2) ∪B2(3), spec(

[
−2 −1
3 3

]
) ⊂ B1(−2) ∪B3(3),

spec(

[
−2 −1
4 3

]
) ⊂ B1(−2) ∪B4(3).

More than that, according to a refinement of the Gershgorin Circle Theorem,
the second matrix must have one eigenvalue in the closed disk B−

1 (−2) and
another one in the closed disk B−

3 (3), since these two disks have an empty
intersection. By the same refinement, if the third matrix has only one eigen-
value, then it would necessarily have to be the point −1, i.e., the sole point
common to the two disks B−

1 (−2) and B−
4 (3).

13.1 Does each of the two Gershgorin disks of the matrix A :=

[
5 −1
6 0

]
contain an

eigenvalue of A?

The trace of a linear map

Recall that the trace of a square matrix A is given by

trace(A) =
∑

j

A(j, j).

Further, as already observed in (6.28), if the product of the two matrices B
and C is square, then
(13.7)

trace(BC) =
∑

j

∑

k

B(j, k)C(k, j) =
∑

jk

B(j, k)C(k, j) = trace(CB).

Hence, if A = V ÂV −1, then

trace(A) = trace(V (ÂV −1)) = trace(ÂV −1V ) = trace Â.

This proves
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(13.8) Proposition: Any two similar matrices have the same trace.

This permits the definition of the trace of an arbitrary linear map A on
an arbitrary finite-dimensional vector space X as the trace of the matrices
similar to it. In particular, trace(A) equals the sum of the diagonal entries
of any Schur form for A, i.e., trace(A) is the sum of the eigenvalues of A,
however with some of these eigenvalues possibly repeated.

For example, trace( idn) = n, while spec( idn) = {1}.
Offhand, such eigenvalue multiplicity seems to depend on the particular

Schur form (or any other triangular matrix representation) for A. But, since
all of these matrices have the same trace, you will not be surprised to learn
that all these triangular matrix representations for A have each eigenvalue
appear on its diagonal with exactly the same multiplicity, necessarily its alge-
braic multiplicity (12.20) as any Jordan canonical form for A is a triangular
matrix representation for A. The proof of this claim is most easily given with
the aid of yet another tool for testing invertibility, namely determinants, to
which we turn next.

Determinants

The determinant is, by definition, the unique multilinear alternating
form

det : [a1, . . . , an]→ IF

for which

(13.9) det( idn) = 1.

Here, multilinear means that det is linear in each of its n arguments, i.e.,

(13.10) det[. . . , a+ αb, . . .] = det[. . . , a, . . .] + α det[. . . , b, . . .].

(Here and below, the various ellipses . . . indicate the other arguments, the
ones that are kept fixed.) Further, alternating means that the interchange
of two arguments reverses the sign, i.e.,

det[. . . , a, . . . , b, . . .] = − det[. . . , b, . . . , a, . . .].

In particular, detA = 0 in case two columns of A are the same, i.e.,

det[. . . , b, . . . , b, . . .] = 0.

Combining this last with (13.10), we find that

det[. . . , a+ αb, . . . , b, . . .] = det[. . . , a, . . . , b, . . .],
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i.e., addition of a scalar multiple of one argument to a different argument
does not change the determinant.

In particular, if A = [a1, a2, . . . , an] is not invertible, then detA = 0 since
then there must be some column aj of A writable as a linear combination of
other columns, i.e.,

detA = det[. . . , aj , . . .] = det[. . . , 0, . . .] = 0,

the last equality by the multilinearity of the determinant.

Conversely, if A is invertible, then detA 6= 0, and this follows from the
fundamental determinantal identity

(13.11) det(AB) = det(A) det(B)

since, for an invertible A,

1 = det( idn) = det(AA−1) = det(A) det(A−1),

the first equality by (13.9).

(13.12) Theorem: For all A ∈ C
n×n, spec(A) = {µ ∈ C : det(A −

µ id) = 0}.

Of course, this theorem is quite useless unless we have in hand an explicit
formula for the determinant. Here is the standard formula:

(13.13) det[a1, a2, . . . , an] =
∑

i∈SSn

(−1)i
∏

j

aj(i(j))

in which the sum is over all permutations of order n, i.e., all 1-1 (hence
invertible) maps i : {1, . . . , n} → {1, . . . , n}, and the number (−1)i is 1 or −1
depending on the parity of the number of interchanges it takes to bring the
sequence i back into increasing order.

For n = 1, we get the trivial fact that, for any scalar a, spec([a]) = {a}.
For n = 2, (13.12) implies that

spec(

[
a b
c d

]
) = {µ ∈ C : (a− µ)(d − µ) = bc}.

For n = 3, we get

spec(




a b c
d e f
g h i



) = {µ ∈ C : p(µ) = 0},
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with

p(µ) := (a−µ)(e−µ)(i−µ) + bfg+ chd− c(e−µ)g− (a−µ)fh− bd(i−µ).

For n = 4, (13.13) already involves 24 summands, and, for general n,
we have n! = 1 · 2 · · ·n summands. Thus, even with this formula in hand,
the theorem is mostly only of theoretical interest since already for modest
n, the number of summands involved becomes too large for any practical
computation.

In fact, the determinant detA of a given matrix A is usually computed
with the aid of some factorization of A, relying on the fundamental identity
(13.11) and on the following

(13.14) Lemma: The determinant of any triangular matrix is just the
product of its diagonal entries.

Proof: This observation follows at once from (13.13) since any per-
mutation i other than the identity (1, 2, . . . , n) must have i(k) < k for some
k, hence the corresponding product

∏
j aj(i(j)) in (13.13) will be zero for any

lower triangular matrix. Since any such i must also have i(h) > h for some h,
the corresponding product will also vanish for any upper triangular matrix.
Thus, in either case, only the product

∏
j aj(j) is possibly nonzero.

So, with A = PLU as constructed by Gauss-elimination, with L unit
lower triangular and U upper triangular, and P a permutation matrix, we
have

detA = (−1)P
∏

j

U(j, j),

with the number (−1)P equal to 1 or −1 depending on the parity of the
permutation carried out by P , i.e., whether the number of row interchanges
made during Gauss elimination is even or odd.

Formula (13.13) is often taken as the definition of detA. It is a simple
consequence of the fundamental identity (13.11), and the latter follows readily
from the multilinearity and alternation property of the determinant. For
these and other details, see the chapter ‘More on determinants’.

Annihilating polynomials

The nontrivial polynomial p is called annihilating for A ∈ L(X) if
p(A) = 0.

For example, A is nilpotent exactly when, for some k, the monomial ()k

annihilates A, i.e., Ak = 0. As another example, A is a linear projector (or,
idempotent) exactly when the polynomial p : t 7→ t(t− 1) annihilates A, i.e.,
A2 = A.
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Annihilating polynomials are of interest because of the following version
of the Spectral Mapping Theorem:

(13.15) Theorem: For any polynomial p and any linear map A ∈ L(X)
with IF = C,

spec(p(A)) = p(spec(A)) := {p(µ) : µ ∈ spec(A)}.

Proof: If µ ∈ spec(A), then, for some nonzero x, Ax = µx, therefore
also p(A)x = p(µ)x, hence p(µ) ∈ spec(p(A)). In other words, p(spec(A)) ⊂
spec(p(A)).

Conversely, if ν ∈ spec(p(A)), then p(A)− ν id fails to be 1-1. However,
assuming without loss of generality that p is a monic polynomial of degree r,
we have p(t)− ν = (t− µ1) · · · (t− µr) for some scalars µ1, . . . , µr, therefore

p(A)− ν id = (A− µ1 id) · · · (A− µr id),

and, since the left-hand side is not 1-1, at least one of the factors on the right
must fail to be 1-1. This says that some µj ∈ spec(A), while p(µj) − ν = 0.
In other words, spec(p(A)) ⊂ p(spec(A)).

In particular, if p annihilates A, then p(A) = 0, hence spec(p(A)) = {0},
therefore spec(A) ⊂ {µ ∈ C : p(µ) = 0}.

For example, 0 is the only eigenvalue of a nilpotent linear map. The only
possible eigenvalues of an idempotent map are the scalars 0 and 1.

The best-known annihilating polynomial for a given A ∈ IFn×n is its
characteristic polynomial, i.e., the polynomial

χ
A

: t 7→ det(t idn −A).

To be sure, by (10.26), we can write any such A as the product A = V ÂV −1

with Â upper triangular. Correspondingly,

(13.16)

χ
A
(t) = detV det(t idn − Â)(det V )−1 = det(t idn − Â)

= χ
Â
(t) =

∏

j

(t− Â(j, j)),

the last equation by (13.14)Lemma. Consequently, χ
A
(A) = V χ

A
(Â)V −1,

with

χ
A
(Â) = (Â− µ1 id) · · · (Â− µn id), µj := Â(j, j), j = 1:n,
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and this, we claim, is necessarily the zero map, for the following reason: The
factor (Â − µj id) is upper triangular, with the jth diagonal entry equal to

zero. This implies that, for each i, (Â− µj id) maps

Ti := ran[e1, . . . , ei]

into itself, but maps Tj into Tj−1. Therefore

ranχ
A
(Â) = χ

A
(Â)Tn = (Â− µ1 id) · · · (Â− µn id)Tn

⊂ (Â− µ1 id) · · · (Â− µn−1 id)Tn−1

⊂ (Â− µ1 id) · · · (Â− µn−2 id)Tn−2

. . .

⊂ (Â− µ1 id)T1 ⊂ T0 = {0},
or, χ

A
(Â) = 0, therefore also χ

A
(A) = 0. This is known as the Cayley-

Hamilton Theorem.

Note that the collection IA := {p ∈ Π : p(A) = 0} of all polynomials
that annihilate a given linear map A is an ideal, meaning that it is a linear
subspace that is also closed under multiplication by polynomials: if p ∈ IA
and q ∈ Π, then their product qp : t 7→ q(t)p(t) is also in IA. Since IA is not
empty, it contains a monic polynomial of minimal degree. This polynomial
is called the minimal polynomial for A and is denoted by pA. Using
Euclid’s algorithm (see Backgrounder), one sees that pA must be a factor
of every p ∈ IA: Indeed, by Euclid’s algorithm, any p ∈ Π can be written
p = qpA+r, for some polynomial q and some polynomial r of degree< deg pA,
hence if p ∈ IA, then r = p − qpA ∈ IA, and so, by the minimality of pA,
then r = 0, i.e., p = qpA. In technical terms, IA is a principal ideal, more
precisely the principal ideal generated by pA.

In exactly the same way, the collection IA,x := {p ∈ Π : p(A)x = 0}
is seen to be a principal ideal, with pA,x the unique monic polynomial of
smallest degree in it. Since IA ⊂ IA,x, it follows that pA,x must be a factor
for any p ∈ IA and, in particular, for χ

A
.

13.2 (a) Prove: If the minimal annihilating polynomial p = pA,x of the linear map
A ∈ L(X) at some x ∈ X\0 has degree equal to dimX, then pA,x(A) = 0. (b) Prove that
the spectrum of the companion matrix (see H.P. 10.15) of the monic polynomial p equals
the zero set of p.

13.3 Recall that a matrix A of order n is non-derogatory if it has a cyclic vector ,
i.e., if, for some x, [x, Ax, . . . , An−1x] is 1-1 (hence a basis).

Prove that the non-derogatory matrices of order n are dense, i.e., for every matrix
B of order n and every ε > 0, there exists a non-derogatory matrix A so that ‖B−A‖∞ ≤
ε. (Hint: prove first that there are non-derogatory matrices (e.g., companion matrices
(why?)), then consider the function z 7→ det[x, (B + zA)x, . . . , (B + zA)n−1x] with x a
cyclic vector for A.)

13.4 make one about the coefs of char.pol. being symmetric functions of evs, and one

about the ith coeff. being the sum of the n − ith principal minors. all of these, including

the trace, are invariant under similarity. still to be done!
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The multiplicities of an eigenvalue

Since χ
A

is of exact degree n in case A ∈ C
n, χ

A
has exactly n zeros

counting multiplicities. This means that

(13.17) χ
A
(t) = (t− ν1) · · · (t− νn)

for a certain n-sequence ν. Further,

spec(A) = {νj : j = 1:n},

and this set may well contain only one number, as it does when A = 0 or
A = id.

Since, by (13.16), (13.17) holds with ν the sequence of diagonal entries
of any triangular matrix representation for A, we know that such a sequence
contains each eigenvalue µ of A to its algebraic multiplicity #aµ (12.20), i.e.,
the multiplicity with which µ appears in any Jordan canonical form.

In this way, if IF = C and dimX = n, then any A ∈ L(X) has exactly n
eigenvalues counting (algebraic) multiplicity.

13.18 Proposition: For any eigenvalue, the algebraic multiplicity is no
smaller than the geometric multiplicity, with equality if and only if the
eigenvalue is not defective.

Proof: From (12.19) and (12.20),

#gµ = dimnull(A−µ id) ≤ dim∪q∈N null(A−µ id)q = #aµ, µ ∈ spec(A),

with equality if and only if null(A − µ id) = null(A − µ id)2 if and only if
null(A− µ id) ∩ ran(A− µ id) = {0} if and only if µ is not defective.

An eigenvalue for which algebraic and geometric multiplicity coincide is
called semisimple, as a generalization of a simple eigenvalue which is an
eigenvalue for which #aµ = 1, hence #aµ = #gµ.

For example, the matrix idn has only the eigenvalue 1, but with algebraic
and geometric multiplicity n. In other words, the sole eigenvalue is semi-
simple as it should be since idn is trivially diagonable.

In contrast, the sole eigenvalue, 0, of

[
0 1
0 0

]
has algebraic multiplicity

2 but its geometric multiplicity is only 1. In other words, its sole eigenvalue
is defective as it should be since this matrix is not diagonable.
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13.5 Using, perhaps, (13.16), determine the algebraic and geometric multiplicities
for all the eigenvalues of the following matrix. (Read off the eigenvalues; use elimination
to determine geometric multiplicities.)

A :=




1 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 3 0 1
0 0 0 0 3 1
0 0 0 0 0 3




Perron-Frobenius

We call the matrix A positive (nonnegative) and write A > 0 (A ≥ 0)
in case all its entries are positive (nonnegative). A positive (nonnegative)
matrix A of order n maps the positive orthant

R
n
+ := {y ∈ R

n : y ≥ 0}

into its interior (into itself). Thus the (scaled) power method, started with
a nonnegative vector, would converge to a nonnegative vector if it converges.
This suggests that the absolutely largest eigenvalue for a nonnegative matrix
is nonnegative, with a corresponding nonnegative eigenvector. The Perron-
Frobenius theorem makes this intuition precise.

Since A maps R
n
+ into itself, it makes sense to consider, for given y ∈

R
n
+\0, scalars α for which Ay ≥ αy (in the sense that (Ay)j ≥ αyj , all j), i.e.,

for which Ay − αy ≥ 0. The largest such scalar is the nonnegative number

r(y) := min{(Ay)j/yj : yj > 0}, y ∈ R
n
+\0.

The basic observation is that

(13.19) Ay − αy > 0 =⇒ r(y) > α.

The function r so defined is dilation-invariant, i.e., r(αy) = r(y) for all α > 0,
hence r takes on all its values already on the set S+ := {y ≥ 0 : ‖y‖ = 1}. At
this point, we need, once again, a result that goes beyond the scope of these
notes, namely the fact that S+ is compact, while r is continuous at any y > 0
and upper semicontinuous at any y ≥ 0, hence r takes on its supremum over
R

n
+\0 at some point in S+. I.e., there exists x ∈ S+ for which

µ := r(x) = sup r(S+) = sup r(Rn
+\0).

Assume now, in addition to A ≥ 0, that also p(A) > 0 for some polyno-
mial p.

Claim: Ax = µx.

Proof: Assume that Ax 6= µx. Since µ = r(x), we have Ax− µx ≥
0, therefore A(p(A)x) − µp(A)x = p(A)(Ax − µx) > 0, hence, by (13.19),
r(p(A)x) > µ = sup r(S+), a contradiction.
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Claim: x > 0.

Proof: Since 0 6= x ≥ 0 and p(A) > 0, we have p(µ)x = p(A)x > 0,
hence x > 0.

Consequence: x is the unique maximizer for r.

Proof: If also r(y) = µ for some y ∈ S+, then by the same argument
Ay = µy, therefore Az = µz for all z = x + α(y − x), and each of these z
must be positive if it is nonnegative, and this is possible only if y − x = 0.

Consequence: For any eigenvalue ν of any matrix B with eigenvector
y, if |B| ≤ A, then |ν| ≤ µ, with equality only if | y/‖y‖ | = x and |B| =
A. (More precisely, equality implies that B = exp(iϕ)DAD−1, with D :=
diag(. . . , yj/|yj|, . . .) and exp(iϕ) := ν/|ν|.)

Proof: Observe that

(13.20) |ν||y| = |By| ≤ |B| |y| ≤ A|y|,

hence |ν| ≤ r(|y|) ≤ µ. If now there is equality, then, by the uniqueness of the
minimizer x (and assuming without loss that ‖y‖ = 1), we must have |y| = x
and equality throughout (13.20), and this implies |B| = A. More precisely,
D := diag(. . . , yj/|yj |, . . .) is then well defined and satisfies y = D|y|, hence
C|y| = µ|y| = A|y|, with C := exp(−iϕ)D−1BD ≤ A and ν =: µ exp(iϕ),
therefore C = A.

Consequences. By choosing B = A, we get that µ = ρ(A) := max{|ν| :
ν ∈ σ(A)}, and that µ has geometric multiplicity 1 (as an eigenvalue of A).

We also get that ρ(A) is strictly monotone in the entries of A, i.e., that

ρ(Â) > ρ(A) in case Â ≥ A 6= Â (using the fact that p(A) > 0 and Â ≥ A

implies that also q(Â) > 0 for some polynomial q; see below).

As a consequence, we find computable upper and lower bounds for the
spectral radius of A:

Claim:

∀{y > 0} r(y) ≤ ρ(A) ≤ R(y) := max
j

(Ay)j/yj,

with equality in one or the other if and only if there is equality throughout
if and only if y = αx (for some positive α). In particular, ρ(A) is the only
eigenvalue of A with positive eigenvector.

Proof: Assume without loss that ‖y‖ = 1. We already know that for
any such y > 0, r(y) ≤ ρ(A) with equality if and only if y = x. For the other
inequality, observe that R(y) = ‖D−1ADe‖∞ with D := diag(. . . , yj, . . .) and
e := (1, . . . , 1). Since D−1AD ≥ 0, it takes on its max-norm at e, hence

R(y) = ‖D−1AD‖∞ ≥ ρ(D−1AD) = ρ(A).



192 13 Localization of eigenvalues

Now assume that r(y) = R(y). Then Ay = r(y)y, hence r(y) ≤ r(x) =
ρ(A) ≤ R(y) = r(y), therefore equality must hold throughout and, in partic-
ular, y = x.

If, on the other hand, r(y) < R(y), then we can find Â 6= A ≤ Â so that

Ây = R(y)y (indeed, then z := R(y)y − Ay is nonnegative but not 0, hence
Â := A + y−1

1 [z]e1
t does the job) therefore r

Â
(y) = R(y) = R

Â
(y), hence

R(y) = ρ(Â) > ρ(A).

Claim: µ has simple algebraic multiplicity.

Proof: Since we already know that µ has simple geometric mul-
tiplicity, it suffices to show that µ is not a defective eigenvalue, i.e., that
null(A−µ id)∩ ran(A−µ id) = {0}. So assume to the contrary that Ay−µy
is an eigenvector of A belonging to µ. Then, by the simple geometric multi-
plicity of µ, we may assume without loss that Ay− µy = x, or Ay = µy + x,
therefore, for all k, Aky = µky + kµk−1x, hence, finally,

(A/µ)ky = y + k(x/µ).

Hence, for large enough k, z := (A/µ)ky has all its entries positive, and
Az = Ay + kx = µy + (k + 1)x = µ(z + x/µ) > µz, therefore r(z) > µ, a
contradiction.

The collection of these claims/consequences constitutes the Perron-
Frobenius Theorem. Oskar Perron proved all this under the assumption
that A > 0 (i.e., p(t) = t). Frobenius extended it to all A ≥ 0 that are
irreducible. While this term has some algebraic and geometric meaning
(see below), its most convenient definition for the present purpose is that
p(A) > 0 for some polynomial p. In the contrary case, A is called reducible,
and not(iv) below best motivates such a definition. Here are some equivalent
statements:

Claim: Let A ≥ 0. Then the following are equivalent:

(i) p(A) > 0 for some polynomial p.

(ii) For all (i, j), there exists k = k(i, j) so that Ak(i, j) > 0.

(iii) No proper A-invariant subspace is spanned by unit-vectors.

(iv) For no permutation matrix P is

(13.21) PAP−1 =

[
B C
0 D

]

with B,D square matrices of positive order.

(v) The directed graph for A is strongly connected.

Proof: (ii)=⇒(i) since then p(A) :=
∑

i,j A
k(i,j) > 0.

If (ii) does not hold, then there exists (i, j) so that Ak(i, j) = 0 for all k.
But then also p(A)(i, j) = 0 for all polynomials p; in other words, (i)=⇒(ii).
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Further, it says that the set J := J(j) := {r : ∃{k} Ak(r, j) 6= 0} is a proper
subset of {1, . . . , n} (since it doesn’t contain i), but neither is it empty ( since
it contains j, as A0(j, j) 6= 0). Since Ak+ℓ(r, j) =

∑
mAk(r,m)Aℓ(m, j), it

follows that J(m) ⊂ J(j) for all m ∈ J(j). This implies, in particular, that
A(r,m) = 0 for all r 6∈ J(j),m ∈ J(j), hence that span(em)m∈J(j) is a proper
A-invariant subspace, thus implying not(iii). It also implies not(iv), since it
shows that the columns A(:,m),m ∈ J(j), have zero entries in rows r, r 6∈
J(j), i.e., that (13.21) holds for the permutation P = [(em)m∈J(j), (er)r 6∈J(j)],
with both B and D of order < n.

Conversely, if e.g., (iii) does not hold, and span(em)m∈J(j) is that proper
A-invariant subspace, then it is also invariant under any p(A), hence also
p(A)(r,m) = 0 for every r 6∈ J(j), m ∈ J(j), i.e., (i) does not hold.

The final characterization is explicitly that given by Frobenius, – except
that he did not formulate it in terms of graphs; that was done much later, by
Rosenblatt (1957) and Varga (1962). Frobenius (???) observed that, since

Ak(i, j) =
∑

j1

· · ·
∑

jk−1

A(i, j1) · · ·A(jk−1, j),

therefore, for i 6= j, Ak(i, j) 6= 0 if and only if there exists some sequence
i =: i0, i1, . . . , ik−1, ik := j so that A(ir, ir+1) 6= 0 for all r. Now, the
directed graph of A is the graph with n vertices in which the directed edge
(i, j) is present iff A(i, j) 6= 0. Such a graph is called strongly connected
in case it contains, for each i 6= j, a path connecting vertex i with vertex j,
and this, as we just observed, is equivalent to having Ak(i, j) 6= 0 for some
k > 0. In short, (ii) and (v) are equivalent.

There are various refinements of this last claim available. For example,
in testing whether the directed graph of A is strongly connected, we only need
to check paths involving distinct vertices, and such paths involve at most n
vertices. Hence, in condition (ii), we need to check only for k < n. But, with
that restriction, (ii) is equivalent to having idn + A + · · · + An−1 > 0 and,
given that A ≥ 0, this, in turn, is equivalent to having ( idn + A)n−1 > 0,
i.e., to having (i) hold for quite specific polynomials.

13.6 T/F

(a) If the sum A + B of two matrices is defined, then det(A + B) = det(A) + det(B).
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3-space

In the vector space X = R
3, the standard inner product is also called

the dot product, because of the customary notation

ytx = 〈x, y〉 =: x · y, x, y ∈ R
3.

In this most familiar vector space, another vector ‘product’ is of great
use, the so-called cross product x×y. It is most efficiently defined implicitly,
i.e., by

(14.1) (x× y) · z := det[x, y, z], ∀x, y, z ∈ R
3.

From (13.13) (see also page 231), we work out that

det[x, y, z] = (x2y3 − x3y2)z1 + (x3y1 − x1y3)z2 + (x1y2 − x2y1)z3,

hence
x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

Given what you already know about determinants, the definition (14.1),
though implicit, makes all the basic facts about the cross product immediate:

(i) The cross product x× y is linear in its two arguments, x and y.

(ii) The cross product x× y is alternating, meaning that y×x = −(x× y).
(iii) Perhaps most importantly, x× y is a vector perpendicular to both x and

y.

(iv) x× y = 0 if and only if [x, y] is not 1-1.

Indeed, if [x, y] is 1-1, then we can always extend it to a basis [x, y, z] for
R

3, and then (x× y)tz is not zero, hence then x× y 6= 0. If [x, y] fails to be
1-1, then, for any z, [x, y, z] fails to be 1-1, hence then, necessarily, x×y = 0.

194
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So, assuming that [x, y] is 1-1, we can compute the unit vector

u := (x× y)/‖x× y‖,

and so conclude that

‖x× y‖22 = det[x, y, x× y] = ‖x× y‖ det[x, y, u].

In other words,

(v) the Euclidean length of x × y gives the (unsigned) area of the paral-
lelepiped spanned by x and y.

This also holds when [x, y] fails to be 1-1 since then that area is zero.

When [x, y] is 1-1, then there are exactly two unit vectors (or, directions)
perpendicular to the plane ran[x, y] spanned by x and y, namely u := (x ×
y)/‖x×y‖ and (y×x)/‖y×x‖ = −u, with u the choice that makes det(x, y, u)
positive. If you imagine the thumb of your right hand to be x, and the pointer
of that hand to be y, then the middle finger, bent to be perpendicular to
both thumb and pointer, would be pointing in the direction of x × y. For
that reason, any basis [x, y, z] for R

3 with det[x, y, z] > 0 is said to be right-
handed.

14.1 Relate the standard choice (x2,−x1) for a vector perpendicular to the 2-vector
x to the above construction.

14.2 Give a formula for an n-vector x1 × · · · × xn−1 that is perpendicular to the

n− 1 n-vectors x1, . . . , xn−1 and whose Euclidean length equals the (unsigned) volume of

the parallelepiped spanned by the vectors x1, . . . , xn−1.

Rotation in 3-space

A particularly useful transformation of 3-space is counter-clockwise ro-
tation by some angle θ around some given axis-vector a. Let R = Rθ,a be
this rotation. We are looking for a computationally efficient way to represent
this map.

This rotation leaves its axis, i.e., ran[a], pointwise fixed, and rotates any
vector in the plane H := a⊥ counterclockwise θ radians. In other words, with

p = q + r, q := P[a]p, r := p− q,

we have
Rp = q +Rr,

by the linearity of the rotation. To compute Rr, let s be the vector in H
obtained by rotating r counterclockwise π/2 radians. Then

Rr = cos(θ)r + sin(θ)s,

and that’s it.
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a

r

p

Rp

P[a]p
s

‖r‖θ

(14.2) Figure. Rotation of the point p counterclockwise θ radians around
the axis spanned by the vector a. The orthogonal projection r of p into
the plane H with normal a, together with its rotation s counterclockwise
π/2 radians around that axis, serve as a convenient orthogonal coordinate
system in H .

It remains to construct s, and this is traditionally done with the aid of
the cross product a × r since (see (14.1)) it is a vector perpendicular to a
and r. Hence, assuming without loss that a is normalized, we now know that
a× r is in the plane H and perpendicular to r and of the same length as r.
Of the two vectors in H that have this property, it also happens to be the
one obtained from r by a (π/2)-rotation that appears counterclockwise when
looking down on H from the side that the vector a points into. (Just try it
out.)

The calculations can be further simplified. The map

r 7→ a× r
is linear and, by inspection, a× a = 0. Since a is normalized by assumption,
we compute

r = p− (atp)a,

hence
a× r = a× p.

So, altogether

Rp = (atp)a+ cos(θ)(p − (atp)a) + sin(θ)(a× p)
= cos(θ)p+ (1− cos(θ))(atp)a+ sin(θ)(a× p).
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This is the formula that is most efficient for the calculation of Rp. How-
ever, if the matrix for R = R id3 (with respect to the natural basis) is wanted,
we read it off as

R = cos(θ) id3 + (1− cos(θ))[a][a]t + sin(θ)(a×),

with

a× :=




0 −a3 a2

a3 0 −a1

−a2 a1 0




the matrix for the linear map r 7→ a× r.

Markov Chains

Recall from page 139 our example of a random walk on some graph.
There we were interested in the matrices Mk, k = 1, 2, 3, . . ., with the entries
of the square matrix M all nonnegative and all entries in any particular row
adding up to 1. In other words, M ≥ 0 and Me = e, with

e := (1, 1, . . . , 1).

In particular, 1 ∈ spec(M). Further, since ‖M‖∞ = 1, we conclude from
(13.1) that ρ(M) ≤ 1. Hence, 1 is an absolutely largest eigenvalue for M .
Assume, in addition, that M is irreducible. This is certainly guaranteed if
M > 0. Then, by the Perron-Frobenius theory, 1 is a nondefective eigenvalue
of M , and is the unique absolutely largest eigenvalue. By (11.10)Theorem,
this implies that M is convergent. In fact, since 1 is a nondefective simple
eigenvalue of M with corresponding eigenvector e, there is a basis V = [e,W ],
with W a basis for ran(M − id), hence

MV = [e,MW ] = V diag(1, B)

for some B with ρ(B) < 1. Therefore,

MkV = V diag(1, Bk) k→∞−−−−−→ V diag(1, 0).

In other words,

lim
k→∞

Mk = eut,

with M tu = u, i.e., u is an eigenvector of M t belonging to the eigenvalue 1.
In particular, all rows of Mk converge to this particular nonnegative vector
whose entries sum to 1.
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An example from CAGD

In Computer-Aided Geometric Design, one uses repeated corner-cutting
to refine a given polygon into a smooth curve of approximately the same
shape. The best-known example is the Chaikin algorithm. This algorithm
consists in applying repeatedly, until satisfied, the following step:

input: the vertices x1, x2, . . . , xn, xn+1 := x1 ∈ R
2 of a closed polygon.

for j = 1 : n, do: y2j−1 ← (3xj + xj+1)/4; y2j ← (xj + 3xj+1)/4; enddo

output: the vertices y1, y2, . . . , y2n, y2n+1 := y1 ∈ R
2 of a closed polygon

that is inscribed into the input polygon.

In other words,

[y1, . . . , y2n] = [x1, . . . , xn]Cn,

with Cn the n× (2n)-matrix

Cn :=




3 1 0 0 0 0 · · · 1 3
1 3 3 1 0 0 · · · 0 0
0 0 1 3 3 1 · · · 0 0
0 0 0 0 1 3 · · · 0 0
...

...
...

...
...

... · · ·
...

...
0 0 0 0 0 0 · · · 0 0
0 0 0 0 0 0 · · · 3 1




/4.

It is possible to show that, as k →∞, the polygon with vertex sequence

[x
(k)
1 , . . . , x

(k)

2kn
] := [x1, . . . , xn]CnC2n · · ·C2kn

converges to a smooth curve, namely the curve

t 7→
∑

j

xjB2(t− j),

with B2 a certain smooth piecewise quadratic function, a so-called quadratic
B-spline (whatever that may be).

Here, we consider the following much simpler and more radical corner-
cutting:

[y1, . . . , yn] = [x1, . . . , xn]A,

with

(14.3) A :=




1 0 0 · · · 0 1
1 1 0 · · · 0 0
0 1 1 · · · 0 0
0 0 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 1 0
0 0 0 · · · 1 1




/2.
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In other words, the new polygon is obtained from the old by choosing as the
new vertices the midpoints of the edges of the old.

Simple examples, hand-drawn, quickly indicate that the sequence of
polygons, with vertex sequence

[x
(k)
1 , . . . , x(k)

n ] := [x1, . . . , xn]Ak

seem to shrink eventually into a point. Here is the analysis that this is, in
fact, the case, with that limiting point equal to the average,

∑
j xj/n, of the

original vertices.

(i) The matrix A, defined in (14.3), is a circulant, meaning that each
row is obtainable from its predecessor by shifting everything one to the right,
with the right-most entry in the previous row becoming the left-most entry
of the current row. All such matrices have eigenvectors of the form

uλ := (λ1, λ2, . . . , λn),

with the scalar λ chosen so that λn = 1, hence λn+1 = λ. For our A, we
compute

Auλ = (λn + λ1, λ1 + λ2, . . . , λn−1 + λn)/2.

Hence, if λn = 1, then

Auλ =
1 + λ

2λ
uλ.

(ii) The equation λn = 1 has exactly n distinct solutions, namely the n
roots of unity

λj := exp(2πij/n) = ωj, j = 1:n.

Here,
ω := ωn := exp(2πi/n)

is a primitive nth root of unity. Note that

ω = 1/ω.

Let
V = [v1, . . . , vn] := [uλ1

, . . . , uλn
]

be the column map whose jth column is the eigenvector

vj := (ωj , ω2j, . . . , ωnj)

of A, with corresponding eigenvalue

µj :=
1 + λj

2λj
= (ω−j + 1)/2, j = 1:n.



200 14 Some applications

Since these eigenvalues are distinct, V is 1-1 (by (10.9)Lemma), hence V is
a basis for C

n. In particular,

A = V diag(. . . , µj , . . .)V
−1.

(iii) It follows that

Ak = V diag(. . . , µk
j , . . .)V

−1
k→∞−−−−−→ V diag(0, . . . , 0, 1)V −1

since |µj | < 1 for j < n, while µn = 1. Hence

lim
k→∞

Ak = vnV
−1(n, :).

(iv) In order to compute V −1(n, :), we compute V cV (recalling that
ωr = ω−1):

(V cV )(j, k) = vj
cvk =

n∑

r=1

ω−rj ωrk =

n∑

r=1

ω(k−j)r .

That last sum is a geometric series, of the form
∑n

r=1 ν
r with ν := ωk−j ,

hence equals n in case k = j, and otherwise ν 6= 1 and the sum equals
(νn+1 − ν)/(ν − 1) = 0 since νn = 1, hence νn+1 − ν = 0. It follows that

V cV = n idn,

i.e., V/
√
n is unitary, i.e., an o.n. basis for C

n. In particular, V −1 = V c/n,
therefore

V −1(n, :) = vn
c/n.

(v) It follows that

lim
k→∞

Ak = (1/n)vnvn
c,

with
vn = (1, 1, . . . , 1).

Consequently,

lim
k→∞

[. . . , x
(k)
j , . . .] =

∑

j

xj/n vn
c = [. . . ,

∑

j

xj/n, . . .],

i.e., the rank-one matrix all of whose columns equal the average
∑

j xj/n of
the vertices of the polygon we started out with.
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Tridiagonal Toeplitz matrix

Circulants are a special case of Toeplitz matrices, i.e., of matrices that
are constant along diagonals. Precisely, the matrix A is Toeplitz if

A(i, j) = ai−j , ∀i, j,

for some sequence (. . . , a−2, a−1, a0, a1, a2, . . .) of appropriate domain. Cir-
culants are special in that the determining sequence a for them is periodic,
i.e., ai+n = ai, all i, if A is of order n.

Consider now the case of a tridiagonal Toeplitz matrix A. For such
a matrix, only the (main) diagonal and the two next-to-main diagonals are
(perhaps) nonzero; all other entries are zero. This means that only a−1, a0,
a1 are, perhaps, nonzero, while ai = 0 for |i| > 1. If also a−1 = a1 6= 0,
then the circulant trick, employed in the preceding section, still works, i.e.,
we can fashion some eigenvectors from vectors of the form uλ = (λ1, . . . , λn).
Indeed, now

(Auλ)j =





a0λ+ a1λ

2 for j = 1;
a1λ

j−1 + a0λ
j + a1λ

j+1 for j = 2:n−1;
a1λ

n−1 + a0λ
n for j = n.

Hence,
Auλ = (a1/λ+ a0 + a1λ)uλ − a1(e1 + λn+1en).

At first glance, this doesn’t look too hopeful since we are after eigenvectors.
However, recall that, for a unimodular λ, i.e., for λ = exp iϕ for some real ϕ,
we have 1/λ = λ, hence

Auλ = (a1/λ+ a0 + a1λ)uλ − a1(e1 + λn+1en).

It follows that, by choosing λ as an (n+ 1)st root of unity, i.e.,

λ = λj := exp(2πij/(n+ 1)), j = 1:n,

and setting

vj := (uλ − uλ)/(2i) = (sin(2πkj/(n+ 1)) : k = 1:n),

we obtain
Avj = µjvj

with
µj := a0 + a1(λj + λj) = a0 + 2a1 cos(2πj/(n+ 1)).

actually, it’s 2(n + 1)th roots of unity, and you take only half of
them. Since we assumed that a1 6= 0, these n numbers µj are pairwise
distinct, hence V =: [v1, . . . , vn] is 1-1 by (10.9)Lemma, hence a basis for C

n.
In fact, since V maps R

n to R
n, V is a basis for R

n. Hence if both a0 and a1

are real, then also each µj is real and then, A is diagonable even over IF = R.
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Linear Programming

This application can serve as a reinforcement of the discussion of Elim-
ination in Chapter 3.

In Linear Programming, one seeks a minimizer for a linear cost func-
tion

x 7→ ctx

on the set
F := {x ∈ R

n : Ax ≤ b}
of all n-vectors x that satisfy the m linear constraints

A(i, :)tx ≤ bi, i = 1:m,

with c ∈ R
n, A ∈ R

m×n, b ∈ R
m given. Here and below, for y, z ∈ R

m,

y ≤ z := z − y ∈ R
m
+ := {u ∈ R

m : 0 ≤ uj , j = 1:m},

i.e., the inequality is to hold pointwise (or, entry-wise).

The set F , also called the feasible set, is the intersection of m half-
spaces, i.e., sets of the form

H(a, b) := {x ∈ R
n : atx ≤ b}.

Such a halfspace consists of all the points that lie on that side of the corre-
sponding hyperplane

h(a, b) := {x ∈ R
n : atx = b}

that the normal a of the hyperplane points away from; see (2.4)Figure, or
(14.5)Figure.

Here is a simple example: Minimize

2x1 + x2

over all x ∈ R
2 for which

x2 ≥ −2, 3x1 − x2 ≤ 5, x1 + x2 ≤ 3,

x1 − x2 ≥ −3, 3x1 + x2 ≥ −5.

In matrix notation, and more uniformly written, this is the set of all x ∈ R
2

for which Ax ≤ b with

(14.4) A :=




0 −1
3 −1
1 1
−1 1
−3 −1


 , [b] :=




2
5
3
3
5


 .
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In this simple setting, you can visualize the set F by drawing each of the
hyperplanes h(Ai:, bi) along with a vector ‖Ai: pointing in the same direction
as its normal vector, Ai:; the set F lies on the side that the normal vector
points away from; see (14.5)Figure.

‖A3:

‖A2:

‖A1:

A5:‖

A4:‖

(14.5) Figure. The feasible set for five linear constraints in the plane, as
filled out by some level lines of the cost function. Since the gradient of the
cost function is shown as well, the location of the minimizer is clear.

In order to provide a handier description for F , one introduces the so-
called slack variables

y := b−Ax;
earlier, we called this the residual. With their aid, we can describe F as

F = {x ∈ R
n : ∃y ∈ R

m
+ s.t. (x, y,−1) ∈ null[A, idm, b]},

and use elimination to obtain a concise description of null[A, idm, b].

For this, assume that A is 1-1. Then, each column of A is bound, hence
is also bound in [A, idm, b]. Therefore, after n steps of the (3.2)Elimination
Algorithm applied to [A, idm, b], we will arrive at a matrix B, with the same
nullspace as [A, idm, b], and an n-vector nb (with nb(k) the row used as pivot
row for the kth unknown or column for k = 1:n), for which

B(nb, 1:n)
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is upper triangular with nonzero diagonals while, with b the m− n rows not
yet used as pivot rows,

B(b, 1:n) = 0.

Further, since the columns n+1:m of [A, idm, b] have nonzero entries in
these pivot rows nb only in columns n+ nb, the other columns, i.e., columns
n+ b, will remain entirely unchanged. It follows that

B(b, n+ b) = idm−n.

Therefore, after dividing each of the n pivot rows by their pivot element
and then using each pivot row to eliminate its unknown also from all other
pivot rows, we will arrive at a matrix, still called B and with nullB =
null[A, idm, b], for which now

B([nb, b], [1:n, n+ b]) = idm.

For our particular example, n = 2, hence this matrix B will be reached
after just two steps:

[A, idm, b] =




0 −1 1 0 0 0 0 2
3 −1 0 1 0 0 0 5
1 1 0 0 1 0 0 3
−1 1 0 0 0 1 0 3
−3 −1 0 0 0 0 1 5




→




0 −1 1 0 0 0 0 2
0 −4 0 1 −3 0 0 −4
1 1 0 0 1 0 0 3
0 2 0 0 1 1 0 6
0 2 0 0 3 0 1 14




→




0 0 1 0 1/2 1/2 0 5
0 0 0 1 −1 2 0 8
1 0 0 0 1/2 −1/2 0 0
0 1 0 0 1/2 1/2 0 3
0 0 0 0 2 −1 1 8


 =: B,

with nb = [3, 4], hence b = [1, 2, 5],

The columns n+ nb of B are free in the sense that we can freely choose
ynb, i.e., the slack variables associated with the n pivot rows, and, once they
are chosen, then x as well as the bound slack variables, yb, are uniquely
determined by the requirement that (x, y,−1) ∈ nullB.

This suggests eliminating x altogether, i.e., using the pivot rows B(nb, :)
to give

x = B(nb, end)−B(nb, n+ nb)ynb,
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(with end being MATLAB’s convenient notation for the final row or column
index) and, with that, rewrite the cost function in terms of ynb:

ynb 7→ ctB(nb, end)− ctB(nb, n+ nb)ynb.

Correspondingly, we simplify the working array B in the following two ways:

(i) We append the row B(m+ 1, :) := ctB(nb, :).

(ii) Then, we drop entirely the n rows nb (storing those rows perhaps in
some other place against the possibility that we need to compute x from
ynb at some later date), and also drop the first n columns.

In our example, this leaves us with the following, smaller, array B:

(14.6) B =




1 0 1/2 1/2 0 5
0 1 −1 2 0 8
0 0 2 −1 1 8
0 0 3/2 −1/2 0 3


 , b = [1, 2, 5], nb = [3, 4].

This change of independent variables, from x to the so-called nonbasic
(slack) variables ynb, turns the n hyperplanes h(Ak:, b(k)), k ∈ nb, into co-
ordinate planes; see (14.7)Figure. In particular, the choice ynb = 0 places us
at the (unique) point of intersection of these n hyperplanes. In our example,
that point is x = (0, 3), and it is marked in (14.5)Figure, and functions as
the origin in (14.7)Figure(a).

y4 = 0

y1 = 0

y2 = 0

y3 = 0

y5 = 0

(a)

y4 = 0

y1 = 0

y2 = 0

y3 = 0

y5 = 0

(b)

(14.7) Figure. The feasible set for five linear constraints in the plane, as
filled out by some level lines of the cost function, viewed in terms of the
(nonbasic) variables (a) y3, y4; (b) y5, y4. From the latter, the minimizing
vertex will be reached in one step of the Simplex Method.



206 14 Some applications

In terms of this B as just constructed, and with

m′ := m− n = #b,

our minimization problem now reads: Minimize the cost function

(14.8) ynb 7→ B(end, end)−B(end, nb)tynb

over all ynb ∈ R
n
+ for which

yb = B(b, end)−B(b, nb)ynb ∈ R
m′

+ .

This is the form in which linear programming problems are usually stated,
and from which most textbooks start their discussion of such problems.

Note how easily accessible various relevant information now is.

(i) B(end, end) tells us the value of the cost function at the current point,
ynb = 0.

(ii) For any k ∈ nb, the entry B(end, k) tells us how the cost function would
change if we were to change the value of the nonbasic variable yk in the
only way permitted, i.e., from 0 to something positive. Such a move
would lower the cost function if and only if B(end, k) > 0.

(iii) Our current point, ynb = 0, is feasible if and only if B(1:m′, end) ≥ 0.

(iv) If we were to change the nonbasic variable yk from zero to something
positive, then the basic variable yb(i) would change, from B(i, end) to
B(i, end) − B(i, k)yk. Hence, assuming B(i, end) > 0 and B(i, k) > 0,
we could change yk only to B(i, end)/B(i, k) before the b(i)th constraint
would be violated.

In our example (have a look at (14.7)Figure(a)), we already observed
that our current point, ynb = 0, is, indeed, feasible. But we notice that
B(end, 4) < 0, hence any feasible change of y4 would only increase the cost
function (14.8). On the other hand, B(end, 3) is positive, hence we can
further decrease the cost function (14.8) by increasing y3. Such a change is
limited by concerns for the positivity of y1 and y5. As for y1, we would reach
y1 = 0 when y3 = 5/(1/2) = 10, while, for y5, we would reach y5 = 0 when
y3 = 8/2 = 4. We take the smaller change and thereby end up at a new
vector y, with y4 = 0 = y5, i.e., are now at the intersection of the constraints
4 and 5, with the cost further reduced by (3/2)4 = 6, to −3.

In other words, after this change, y4 and y5 are now the nonbasic vari-
ables. In order to have our B tell us about this new situation, and since
5 = b(3), we merely divide its 3rd row by B(3, 3), then use the row to elimi-
nate y3 from all other rows of B. This leads to

B =




1 0 0 3/4 −1/4 3
0 1 0 3/2 1/2 12
0 0 1 −1/2 1/2 4
0 0 0 1/2 −3/4 −3


 , b = [1, 2, 3], nb = [5, 4].
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In particular, we see that the cost at y4 = 0 = y5 is, indeed, −3. We also
see (see also (14.7)Figure(b)) that it is possible to reduce the cost further by
changing y4 from 0 to something positive. Such a change would only increase
y3, but would reduce y1 = 3 by (3/4)y4 and would reduce y2 = 12 by (3/2)y4.
Hence, this change is limited to the smaller of 3/(3/4) = 4 and 12/(3/2) = 8,
i.e., to the change y4 = 4 that makes y1 = 0.

We carry out this exchange, of y4 into b and y1 into nb, by dividing
B(1, :) by B(1, 4) and then using that row to eliminate y4 from all other
rows, to get the following B:

B =




4/3 0 0 1 −1/3 4
−2 1 0 0 1 6
2/3 0 1 0 1/3 6
−1/3 0 0 0 −2/3 −4


 , b = [4, 2, 3], nb = [5, 1].

In particular, now B(end, nb) ≤ 0, showing that no further improvement
is possible, hence −4 is the minimum of the cost function on the feasible
set. At this point, y3:4 = (6, 4), hence, from the rows used as pivot rows
to eliminate x (and saved earlier), we find that, in terms of x, our optimal

point is x = (0, 3) − (1/2)

[
1 −1
1 1

]
(6, 4) = −(1, 2), and, indeed, ctx =

(2, 1)t(−1,−2) = −4.

The steps just carried out for our example are the standard steps of the
Simplex Method. In this method (as proposed by Dantzig), one examines
the value of the cost function only at a vertex, i.e., at the unique intersection
of n of the constraint hyperplanes, i.e., at a point corresponding to ynb = 0 for
some choice of the n-sequence nb in {1, . . . ,m}. Assuming the corresponding
vertex feasible, i.e., that

yb = B(1:m′, end) ≥ 0

for the array B corresponding to this choice for nb, one checks whether
B(end, nb) ≤ 0. If it is, then one knows that one is at the minimum since
one knows that, at any feasible point, the cost function is B(end, end) −
B(end, nb)ynb for some nonnegative ynb. Otherwise, one moves to a neighbor-
ing vertex at which the cost is less by exchanging a yk for which B(end, k) > 0
(usually the one for which B(end, k) is as large as possible) with some yb(i)
with i chosen as the minimizer forB(i, end)/B(i, k) over all i withB(i, k) > 0.
This exchange is carried out by just one full elimination step applied to B,
by dividing B(i, :) by B(i, k) and then using this row to eliminate yk from
all other rows, and then updating the sequences b and nb.

This update step is one full elimination step. It is sometimes called a
(Gauss-)Jordan step in order to distinguish it from the Gauss step, in
which the unknown is eliminated only from the rows not yet used as pivot
rows.
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Since all the information contained in the columnsB(:, b) is readily deriv-
able from b and nb, one usually doesn’t bother to carry these columns along.
This makes the updating of the matrix B(:, [nb,m+1]) a bit more mysterious.

Finally, there are the following points to consider:

unbounded feasible set If, for some k ∈ nb, B(end, k) is the only
positive entry in its column, then increasing yk will strictly decrease the cost
and increase all basic variables. Hence, if ynb = 0 is a feasible point, then
we can make the cost function on the feasible set as close to −∞ as we
wish. In our example, this would be the case if we dropped constraints 1 and
5. Without these constraints, in our very first Simplex step, we could have
increased y3 without bound and so driven the cost to −∞.

finding a feasible point In our example, we were fortunate in that
the very first vertex we focused on was feasible. However, if it is not, then
one can use the very Simplex Method to obtain a feasible point, simply by
introducing an additional variable, z, which is added to each infeasible row,
and then using the Simplex Method to minimize the cost function

y 7→ z.

In this, the variable z starts off nonbasic, i.e., z = 0, and, then, as an extraor-
dinary first step, we would exchange z for the most negative basic variable,
and then proceed until the minimum of this auxiliary cost function is reached.
If it is positive, then we now know that the feasible set is empty. Otherwise,
the current point is feasible.

Note that, in this way, the Simplex Method can be used to solve any finite
set of linear inequalities in the sense of either providing a point satisfying
them all or else proving that none exists.

convergence in finitely many steps If we can guarantee that, at
each step, we strictly decrease the cost, then we must reach the vertex with
minimal cost in finitely many steps since, after all, there are only finitely
many vertices. A complete argument has to deal with the fact that the cost
may not always strictly decrease because the current point may lie on more
than just n of the constraint hyperplanes.

14.3 Find the maximum of the cost function x 7→ 2x1 + x2 over F := {x ∈ R
2

:
Ax ≤ b} with A and b given by (14.4).

14.4 How would you modify the algorithm outlined above if the constraint set was
{x ∈ R

n
: Ax ≥ b} (rather than {x ∈ R

n
: Ax ≤ b})?

14.5 Explain how linear programming might be used to find a nonnegative solution
to a linear system A? = b of m equations in n > m unknowns.

14.6 Show that the constraints x1 − x2 ≤ −1, x1 + x2 ≥ 1, x1 − 2x2 ≥ −1 are
infeasible.

Approximation by broken lines
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Flats: points, vectors, barycentric coordinates, differentiation

In CAGD and Computer Graphics, Linear Algebra is mainly used to
change one’s point of view, that is, to change coordinate systems. In this,
even the familiar 3-space, R

3, is often treated as an ‘affine space’ or ‘flat’
rather than a vector space, in order to deal simply with useful maps other
than linear maps, namely the affine maps.

For example, the translation

τv : R
3 → R

3 : p 7→ p+ v

of R
3 by the vector v is not a linear map. Nevertheless, it can be represented

by a matrix, using the following trick. Embed R
3 into R

4 by the 1-1 map

R
3 → R

4 : x 7→ (x, 1).

The image of R
3 under this map is the ‘flat’

F := R
3 × 1 = {(x, 1) : x ∈ R

3} ⊂ R
4.

Consider the linear map on R
4 given by

Tv :=

[
id3 v
0 1

]
.

Then, for any x ∈ R
3,

Tv(x, 1) = ( id3x + v, 0tx+ 1) = (x+ v, 1).

In other words, the linear map Tv carries F into itself in such a way that the
point p = (x, 1) is carried to its ‘translate’ (p+ v, 1) = p+ (v, 0).

Let, now, A ∈ R
4×4 be an arbitrary linear map on R

4 subject only to
the condition that it map F into itself. Breaking up A in the same way as
we did Tv, i.e.,

A =:

[
A0 w
[u]t t

]
,

we get
A (x, 1) = (A0x + w, utx+ t),

hence want utx+ t = 1 for all x ∈ R
3, and this holds if and only if u = 0 and

t = 1, i.e.,

A =

[
A0 w
0 1

]

is the most general such map. Its action on R
3 is an arbitrary linear trans-

formation, A0, followed by translation by an arbitrary w.
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what’s the point of the following remark? Three-dimensional
plots in MATLAB show, in fact, the orthogonal projection onto the
(x,y)-plane after an affine transformation of R

3 that makes the cen-
ter of the plotting volume the origin and a rotation that moves a
line, specified by azimuth and elevation, to the z-axis. This affine
map is recorded in a matrix of order 4, obtainable by the command
view, and also changeable by that command, but, fortunately, in
down-to-earth terms like azimuth and elevation, or viewing angle.

is this really true?

why should one be able to talk about weighted sums at all?
Better explain more carefully. The “flat” F is not a vector subspace
of R

4, i.e., it is not closed under vector addition or scalar multiplication.
However, for p0, . . . , pr ∈ F and α0, . . . , αr ∈ R,

r∑

j=0

pjαj

is in F if and only if
r∑

j=0

αj = 1.

Such a weighted sum is called an affine combination. Thus, as far as the
set F is concerned, these are the only linear combinations allowed. Note that
such an affine sum can always be rewritten as

p0 +

r∑

j=1

(pj − p0)αj ,

where now the weights αj , j = 1:r, are arbitrary. In other words, an affine
sum in F is obtained by adding to some point in F an arbitrary weighted
sum of elements in the vector space F−F .

An affine map on F is any map A from F to F that preserves affine
combinations, i.e., for which

A(p0 +
∑

j

(pj − p0)αj) = Ap0 +
∑

j

(Apj −Ap0)αj

for all pj ∈ F , αj ∈ R. It follows that the map on F−F defined by

A0 : F−F → F−F : p− q 7→ Ap−Aq

must be well-defined and linear, hence A is necessarily the restriction to F of
some linear map Â on R

4 that carries F into itself and therefore also carries
the linear subspace F−F into itself.
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The main pay-off, in CAGD and in Computer Graphics, of these consid-
erations is the fact that one can represent the composition of affine maps by
the product of the corresponding matrices.

This concrete example has led to the following abstract definition of a
flat, whose notational conventions strongly reflect the concrete example. You
should verify that the standard example is, indeed, a flat in the sense of this
abstract definition.

(14.9) Definition: A flat or affine space or linear manifold is a
nonempty set F of points, a vector space T of translations, and a
map

(14.10) ϕ : F × T→ F : (p, τ) 7→ τ(p) =: p+ τ

satisfying the following:

(a) ∀{(p, τ) ∈ F × T} p+ τ = p ⇐⇒ τ = 0.

(b) ∀{τ, σ ∈ T} (·+ τ) + σ = ·+ (τ + σ).

(c) ∃{p0 ∈ F} ϕ(p0, ·) is onto.

Translations are also called vectors since (like ‘vehicles’ or ‘conveyors’,
words that have the same Latin root as ‘vector’) they carry points to points.

Condition (a) ensures the uniqueness of the solution of the equation
p+? = q whose existence (see the proof of (3) below) is guaranteed by (c).

Condition (b) by itself is already satisfied, for arbitrary F and T, by,
e.g., ϕ : (p, τ) 7→ p.

Condition (c) is needed to be certain that T is rich enough. (a)&(b) is
already satisfied, e.g., by T = {0}, ϕ(·, 0) = id. As we will see in a moment,
(a)&(b)&(c) implies that ϕ(p, ·) is onto for every p ∈ F . In other words,
there is nothing special about the p0 that appears in (c). In fact, the notion
of a flat was developed explicitly as a set that, in contrast to a vector space
which has an origin, does not have a distinguished point.

Consequences

(1) ϕ(·, 0) = id (by (a)).

(2) For any τ ∈ T, ϕ(·, τ) is invertible; its inverse is ϕ(·,−τ) (by (1) and
(b)). The corresponding abbreviation

p− τ := p+ (−τ)

is helpful and standard.
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(3) ∀{p, q ∈ F} ∃!{τ ∈ T} p + τ = q. This unique τ is correspondingly
denoted

q − p.

Proof: If p+ τ = q = p + σ, then, by (2) and (b), p = q + (−σ) =
(p + τ) + (−σ) = p + (τ − σ), therefore, by (1), τ − σ = 0, showing the
uniqueness of the solution to p+? = q, regardless of p and q. The existence

of a solution is, offhand, only guaranteed, by (c), for p = p0. However, with
the invertibility of ϕ(p0, ·) : T → F thus established, hence with p− p0 and
q − p0 well-defined, we have q = p0 + (q − p0) and p = p0 + (p − p0), hence
p0 = p− (p− p0), therefore

q = p− (p− p0) + (q − p0),

showing that the equation p+? = q has a solution (namely the vector (q −
p0)− (p− p0)).

(4) Note that (3) provides a 1-1 correspondence (in many different ways)
between F and T. Specifically, for any particular o ∈ F ,

F → T : p 7→ p− o

is an invertible map, as is its inverse,

T→ F : τ 7→ o+ τ.

However, the wish to avoid such an arbitrary choice of an ‘origin’ o in F
provided the impetus to define the concept of flat in the first place. The
dimension of a flat is, by definition, the dimension of the associated vector
space of translations. Also, since the primary focus is usually the flat, F , it
is very convenient to write its vector space of translations as

F−F.

(5) The discussion so far has only made use of the additive structure of T.
Multiplication by scalars provides additional structure. Thus, for arbitrary
Q ⊂ F , the affine hull of Q is, by definition,

♭(Q) := q + span(Q− q),

with the right side certainly independent of the choice of q ∈ Q, by (4). The
affine hull of Q is, itself, a flat, with span(Q − q) the vector space of its
translations.

(6) In particular, the affine hull of a finite subset Q of F is

♭(Q) = q0 + ran[q − q0 : q ∈ Q\q0], q0 ∈ Q.
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Let
q0 +

∑

q 6=q0

(q − q0)αq

be one of its elements. In order to avoid singling out q0 ∈ Q, it is customary
to write instead ∑

q

qαq, with αq0
:= 1−

∑

q 6=q0

αq.

This makes ♭(Q) the set of all affine combinations

∑

q∈Q

qαq,
∑

q

αq = 1,

of the elements of Q. The affine hull ♭(q0, . . . , qr) of a sequence q0, . . . , qr in
F is defined analogously. But I prefer to work here with the set Q in order
to stress the point of view that, in a flat, all points are of equal importance.

A special case is the straight line through p 6= q, i.e.,

♭(p, q) = p+ R(q − p) = q + R(p− q) = {(1− α)p+ αq : α ∈ R}.

(7) The finite set Q ⊂ F is called affinely independent in case, for
some (hence for every) o ∈ Q, [q − o : q ∈ Q\o] is 1-1. In that case, each
p ∈ ♭(Q) can be written in exactly one way as an affine combination

p =:
∑

q

qℓq(p),
∑

q

ℓq(p) = 1,

of the q ∈ Q. Indeed, in that case, for any particular o ∈ Q, Vo := [q − o :
q ∈ Q\o] is a basis for the vector space of translations on ♭(Q), hence, for all
p ∈ ♭(Q),

p = o+ (p− o) = o+ VoV
−1
o (p− o) =

∑

q∈Q

qℓq(p),

with
(ℓq(p) : q ∈ Q\o) := V −1

o (p− o), ℓo(p) := 1−
∑

q 6=o

ℓq(p).

The ‘affine’ vector ℓ(p) = (ℓq(p) : q ∈ Q) ∈ R
Q constitutes the barycentric

coordinates of p with respect to Q.

It follows that, for arbitrary pi ∈ ♭(Q) and arbitrary αi ∈ R with
∑

i αi =
1, we have

∑

i

αipi =
∑

i

αi

∑

q

λq(pi)q =
∑

q

(
∑

i

αiλq(pi))q,
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with ∑

i

αi(
∑

q

λq(pi)) =
∑

i

αi = 1.

Hence, by the uniqueness of the barycentric coordinates, the map

λ : ♭(Q)→ R
Q : p 7→ (λq(p) : q ∈ Q)

is affine, meaning that

λ(
∑

i

αipi) =
∑

i

αiλ(pi).

It is also 1-1, of course, and so is, for our flat ♭(Q), what a coordinate map
is for a vector space, namely a convenient structure-preserving numerical
representation of the flat.

It follows that, with f0 : Q → G an arbitrary map on Q into some flat
G, the map

f : ♭(Q)→ G :
∑

q∈Q

λq(p)q 7→
∑

q∈Q

λq(p)f0(q)

is affine. Hence, if A : f → G is an affine map that agrees with f0 on Q, then
it must equal f .

(8) Let the r + 1-subset Q of the r-dimensional flat F be affinely inde-
pendent. Then, for any o ∈ Q, [q − o : q ∈ Q\o] is a basis for F−F , and the
scalar-valued map

ℓo : F → R : p 7→ ℓo(p)

is a linear polynomial on F . Some people prefer to call it an affine poly-
nomial since, after all, it is not a linear map. However, the adjective ‘linear’
is used here in the sense of ‘degree ≤ 1’, in distinction to quadratic, cubic,
and higher-degree polynomials. A description for the latter can be obtained
directly from the ℓq, q ∈ Q, as follows. The column map

[ℓα :=
∏

q∈Q

(ℓq)
α(q) : α ∈ Z

Q
+, |α| = k]

into R
F is a basis for the (scalar-valued) polynomials of degree ≤ k on F .

(9) An affine combination with nonnegative weights is called a convex
combination. The weights being affine, hence summing to 1, they must also
be no bigger than 1. The set

[p . . q] := {(1− α)p+ αq : α ∈ [0 . . 1]}

of all convex combinations of the two points p, q is called the interval with
endpoints p, q. The set

σQ := {
∑

q∈Q

qαq : α ∈ [0 . . 1]Q,
∑

q

αq = 1}
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of all convex combinations of points in the finite set Q is called the simplex
with vertex set Q in case Q is affinely independent.

(10) Flats are the proper setting for differentiation. Assume that the
flat F is finite-dimensional. Then there are many ways to introduce a vec-
tor norm on the corresponding vector space F−F of translations, hence a
notion of convergence, but which vector sequences converge and which don’t
is independent of the choice of that norm. This leads in a natural way to
convergence on F : The point sequence (pn : n ∈ N) in F converges to
p ∈ F exactly when limn→∞ ‖pn − p‖ = 0. Again, this characterization of
convergence does not depend on the particular vector norm on F−F chosen.

With this, the function f : F → G, on the finite-dimensional flat F to
the finite-dimensional flat G, is differentiable at p ∈ F in case the limit

Dτf(p) := lim
hց0

(f(p+ hτ)− f(p))/h

exists for every τ ∈ (F−F )\0. In that case, Dτf(p) is called the derivative
of f at p in the direction τ .

Notice that Dτf(p) is a vector , in G−G. It tells us the direction into
which f(p) gets translated as we translate p to p+ τ . Further, its magnitude
gives an indication of the size of the change as a function of the size of the
change in p. Exactly,

f(p+ hτ) = f(p) + hDτf(p) + o(‖τ‖h), h ≥ 0.

In particular, if f is differentiable at p, then

Df(p) : F−F → G−G : τ 7→ Dτf(p)

is a well-defined map, from F−F to G−G. This map is positively homoge-
neous, i.e.,

Dhτf(p) = hDτf(p), h ≥ 0.

If this map Df(p) is linear, it is called the derivative of f at p. Note that
then

(14.11) f(p+ τ) = f(p) +Df(p)τ + o(‖τ‖), τ ∈ F−F.
If V is any particular basis for F−F and W is any particular basis for G−G,
then the matrix

Jf(p) := W−1Df(p)V

is the Jacobian of f at p. Its (i, j) entry tells us how much f(p+ τ) moves
in the direction of wi because of a unit change in τ in the direction of vj .
More precisely, if τ = V α, then Df(p)τ = W Jf(p)α.

A practical high-point of these considerations is the chain rule, i.e., the
observation that if g : G→ H is a ‘uniformly’ differentiable map, then their
composition, gf , is differentiable, and

D(gf)(p) = Dg(f(p))Df(p).
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grad, div, and curl

In most applications, both F and G are coordinate spaces and, corre-
spondingly, the bases V and W are the standard ones.

If, in particular, F = R
n and G = R, i.e., if f is a scalar-valued function

of n real variables, then the Jacobian Df is a 1-row matrix or vector, called
the gradient of f , and denoted

gradf = ∇f = (D1f, . . . , Dnf),

with Dif the directional derivative of f in the direction of ei. Then, directly
from (14.11), the gradient ∇f(p) gives the direction of steepest ascent at p.
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Minimization

We are interested in minimizing a given function

f : dom f ⊂ R
n → R,

i.e., we are looking for x ∈ dom f so that

∀y ∈ dom f f(x) ≤ f(y).

Any such x is called a minimizer for f ; in symbols:

x ∈ argmin f.

The discussion applies, of course, also to finding some x ∈ argmaxf , i.e.,
finding a maximizer for f , since x ∈ argmaxf iff x ∈ argmin(−f).

Finding minimizers is, in general, an impossible problem since one cannot
tell whether or not x ∈ argminf except by checking every y ∈ dom f to make
certain that, indeed, f(x) ≤ f(y). However, if f is a ‘smooth’ function, then
one can in principle check whether, at least, x is a local minimizer, i.e.,
whether f(x) ≤ f(y) for all ‘nearby’ y, by checking whether the gradient

Df(x) = (Dif(x) : i = 1:n)

of f at x is zero. Here, Dif = ∂f/∂xi is the derivative of f with respect to
its ith argument.

To be sure, the vanishing of the gradient of f at x is only a necessary

condition for x to be a minimizer for f , since the gradient of a (smooth)
function must also vanish at any local maximum, and may vanish at points
that are neither local minima nor local maxima but are, perhaps, only saddle
points. By definition, any point x for which Df(x) = 0 is a critical point
for f .

217
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At a critical point, f is locally flat. This means that, in the Taylor
expansion

f(x+ h) = f(x) + (Df(x))th+ ht(D2f(x)/2)h+ h.o.t.(h)

for f at x, the linear term, (Df(x))th, is zero. Thus, if the matrix

H := D2f(x) = (DiDjf(x) : i, j = 1:n)

of second derivatives of f is 1-1, then x is a local minimizer (maximizer) for
f if and only if 0 is a minimizer (maximizer) for the quadratic form

R
n → R : h 7→ htHh

associated with the Hessian H = D2f(x) for f at x.

If all second derivatives of f are continuous, then also DiDjf = DjDif ,
hence the Hessian is real symmetric, therefore

Ht = H.

However, in the contrary case, one simply defines H to be

H := (D2f(x) + (D2f(x))t)/2,

thus making it real symmetric while, still,

htHh = htD2f(x)h, ∀h ∈ R
n.

In any case, it follows that quadratic forms model the behavior of a smooth

function ‘near’ a critical point. The importance of minimization of real-
valued functions is the prime motivation for the study of quadratic forms, to
which we now turn.

Quadratic forms

Each A ∈ R
n×n gives rise to a quadratic form, via

qA : R
n → R : x 7→ xtAx.

However, as we already observed, the quadratic form ‘sees’ only the sym-
metric part

(A+At)/2

of A, i.e.,
∀x ∈ R

n xtAx = xt(A+At)/2 x.

For this reason, in discussions of the quadratic form qA, we will always assume
that A is real symmetric.
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The Taylor expansion for qA is very simple. One computes

qA(x+ h) = (x+ h)tA(x + h) = xtAx + xtAh+ htAx+ htAh

= qA(x) + 2(Ax)th+ htAh,

using the fact that At = A, thus htAx = xtAh = (Ax)th, hence

DqA(x) = 2Ax, D2qA(x) = 2A.

It follows that, for any 1-1 A, 0 is the only critical point of qA. The
sought-for classification of critical points of smooth functions has led to the
following classification of quadratic forms:

positive ∀x 6= 0 xtAx > 0 the unique minimizer
positive semi- ∀x xtAx ≥ 0 a minimizer

A is definite := ⇐⇒ 0 is for qA.
negative semi- ∀x xtAx ≤ 0 a maximizer

negative ∀x 6= 0 xtAx < 0 the unique maximizer

If none of these conditions obtains, i.e., if there exist x and y so that xtAx <
0 < ytAy, then qA is called indefinite and, in this case, 0 is a saddle point
for qA.

(15.1) Figure. Local behavior near a critical point.
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make up problems about this becoming more subtle when the
Hessian fails to be 1-1; Olga has nice pictures.

(15.1)Figure shows three quadratic forms near their unique critical point.
One is a minimizer, another is a saddle point, and the last one is a maxi-
mizer. Also shown is a quadratic form with a whole straight line of critical
points. The figure (generated by the MATLAB command meshc) also shows
some contour lines or level lines, i.e., lines in the domain R

2 along which
the function is constant. The contour plots are characteristic: Near an ex-
treme point, be it a maximum or a minimum, the level lines are ellipses,
with the extreme point their center, while near a saddle point, the level lines
are hyperbolas, with the extreme point their center and with two level lines
actually crossing at the saddle point.

There is an intermediate case between these two, also shown in (15.1)Fig-
ure, in which the level lines are parabolas and, correspondingly, there is a
whole line of critical points. In this case, the quadratic form is semidefinite.
Note, however, that the definition of semidefiniteness does not exclude the
possibility that the quadratic form is actually definite.

Since, near any critical point x, a smooth f behaves like its quadratic
term h 7→ ht(D2f(x)/2)h, we can be sure that a contour plot for f near
an extremum would approximately look like concentric ellipses while, near a
saddle point, it would look approximately like concentric hyperbolas.

These two patterns turn out to be the only two possible ones for definite
quadratic forms on R

2. On R
n, there are only ⌈(n + 1)/2⌉ possible distinct

patterns, as follows from the fact that, for every quadratic form qA, there are

o.n. coordinate systems U for which

qA(x) =

n∑

i=1

di (U cx)2i .

15.1 For each of the following three functions on R
2
, compute the Hessian D2f(0)

at 0 and use it to determine whether 0 is a (local) maximum, minimum, or neither. (In an
effort to make the derivation of the Hessians simple, I have made the problems so simple

that you could tell by inspection what kind of critical point 0 = (0, 0) ∈ R
2

is; nevertheless,
give your answer based on the spectrum of the Hessian.)

(a) f(x, y) = (x − y) sin(x + y)

(b) f(x, y) = (x + y) sin(x + y)

(b) f(x, y) = (x + y) cos(x + y).

Reduction of a quadratic form to a sum of squares

Consider the effects of a change of basis. Let V ∈ R
n be a basis for R

n

and consider the map
f := qA ◦ V.

We have f(x) = (V x)tAV x = xt(V tAV )x, hence

qA ◦ V = qV tAV .
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This makes it interesting to look for bases V for which V tAV is as
simple as possible. Matrices A and B for which B = V tAV are said to be
congruent to each other. Note that congruent matrices are not necessarily
similar; in particular, their spectra can be different. However, by Sylvester’s
Law of Inertia (see (15.9) below), congruent hermitian matrices have the
same number of positive, of zero, and of negative, eigenvalues. This is not
too surprising in view of the following reduction to a sum of squares which is
possible for any quadratic form.

(15.2) Proposition: Every quadratic form qA on R
n can be written in

the form

qA(x) =

n∑

j=1

dj (uj
tx)2,

for some suitable o.n. basis U = [u1, . . . , un] for which

U tAU = diag(d1, . . . , dn) ∈ R
n×n.

Proof: Since A is hermitian, there exists, by (12.2)Corollary, some
o.n. basis U = [u1, u2, . . . , un] for IFn for which U tAU = diag(d1, d2, . . . , dn)
∈ R

n×n. Now use the fact that U tU = idn and therefore qA(x) = qUtAU (U tx)
to obtain for qA(x) the displayed expression.

What about the classification introduced earlier, into positive or negative
(semidefinite)? The proposition permits us to visualize qA(x) as a weighted
sum of squares (with real weights d1, . . . , dn) and U tx an arbitrary n-vector
(since U is a basis), hence permits us to conclude that qA is definite if and
only if all the dj are strictly of one sign, semidefinite if and only if all the
dj are of one sign (with zero possible), and indefinite if and only if there are
both positive and negative dj .

MATLAB readily provides these numbers dj by the command eig(A).

Consider specifically the case n = 2 for which we earlier provided some
pictures. Assume without loss that d1 ≤ d2. If 0 < d1, then A is positive
definite and, correspondingly, the contour line

cr := {x ∈ R
2 : qA(x) = r} = {x ∈ R

2 : d1(u1
tx)2 + d2(u2

tx)2 = r}

for r > 0 is an ellipse, with axes parallel to u1 and u2. If 0 = d1 < d2, then
these ellipses turn into parabolas and, in an extreme case, into straight lines.
Similarly, if d2 < 0, then the contour line

cr := {x ∈ R
2 : qA(x) = r} = {x ∈ R

2 : d1(u1
tx)2 + d2(u2

tx)2 = r}
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for r < 0 is an ellipse, with axes parallel to u1 and u2. Finally, if d1 < 0 < d2,
then, for any r, the contour line

cr := {x ∈ R
2 : qA(x) = r} = {x ∈ R

2 : d1(u1
tx)2 + d2(u2

tx)2 = r}

is a hyperbola, with axes parallel to u1 and u2.

Note that such an o.n. basis U is Cartesian, i.e., its columns are orthogo-
nal to each other (and are normalized). This means that we can visualize the
change of basis, from the natural basis to the o.n. basis U , as a rigid motion,
involving nothing more than rotations and reflections.

Rayleigh quotient

This section is devoted to the proof and exploitation of the following
remarkable

Fact: The eigenvectors of a hermitian matrix A are the critical points
of the corresponding Rayleigh quotient

RA(x) := 〈Ax, x〉/〈x, x〉,

and RA(x) = µ in case Ax = µx.

This fact has many important consequences concerning how the eigen-
values of a hermitian matrix depend on that matrix, i.e., how the eigenvalues
change when the entries of the matrix are changed, by round-off or for other
reasons.

This perhaps surprising connection has the following intuitive explana-
tion: Suppose that Ax 6∈ ran[x]. Then the error h := Ax − RA(x)x in the
least-squares approximation to Ax from ran[x] is not zero, and is perpendic-
ular to ran[x]. Consequently, 〈Ax, h〉 = 〈h, h〉 > 0, and therefore the value

〈A(x + th), x+ th〉 = 〈Ax, x〉 + 2t〈Ax, h〉+ t2〈Ah, h〉

of the numerator of RA(x+ th) grows linearly for positive t, while its denom-
inator

〈x+ th, x+ th〉 = 〈x, x〉+ t2〈h, h〉

grows only quadratically, i.e., much less fast for t near zero. It follows that, in
this situation, RA(x+th) > RA(x) for all ‘small’ positive t, hence x cannot be
a critical point for RA. – To put it differently, for any critical point x for RA,
we necessarily have Ax ∈ ran[x], therefore Ax = RA(x)x. Of course, that
makes any such x an eigenvector with corresponding eigenvalue RA(x).
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Next, recall from (12.2) that a hermitian matrix is unitarily similar to a
real diagonal matrix. This means that we may assume, after some reordering
if necessary, that

A = UDU c

with U unitary and with M = diag(µ1, . . . , µn) where

µ1 ≤ µ2 ≤ · · · ≤ µn.

At times, we will write, more explicitly,

µj(A)

to denote the jth eigenvalue of the hermitian matrix A in this ordering. Note
that there may be coincidences here, i.e., µj(A) is the jth smallest eigenvalue
of A counting multiplicities. Note also that, in contrast to the singular val-
ues (and in contrast to most books), we have put here the eigenvalues in
increasing order.

Now recall that a unitary basis has the advantage that it preserves angles
and lengths since 〈Ux,Uy〉 = 〈x, y〉 for any orthonormal U . Thus

〈Ax, x〉 = 〈UMU cx, x〉 = 〈M(U cx), U cx〉,

and 〈x, x〉 = 〈U cx, U cx〉. Therefore

RA(x) = 〈Ax, x〉/〈x, x〉 = 〈M(U cx), U cx〉/〈U cx, U cx〉 = RM(U cx).

This implies that

maxx

minx
RA(x) =

maxy

miny
RM(y).

On the other hand, since M is diagonal, 〈My, y〉 =∑j µj |yj |2, therefore

RM(y) =
∑

j

µj |yj |2/
∑

j

|yj |2,

and this shows that

min
x
RA(x) = min

y
RM(y) = µ1, max

x
RA(x) = max

y
RM(y) = µn.

This is Rayleigh’s Principle. It characterizes the extreme eigenvalues of
a hermitian matrix. The intermediate eigenvalues are the solution of more
subtle extremum problems. This is the content of the Courant-Fischer



224 15 Optimization and quadratic forms

minimax Theorem and the ?.?. maximin Theorem. It seems most
efficient to combine both in the following

(15.3) MMM (or, maximinimaxi) Theorem: Let A be a hermitian
matrix of order n, hence A = UMU c for some unitary U and some real
diagonal matrix M = diag(· · · , µj, . . .) with µ1 ≤ · · · ≤ µn. Then, for
j = 1:n,

max
dim G<j

min
x⊥G

RA(x) = µj = min
j≤dim H

max
x∈H

RA(x),

with G and H otherwise arbitrary linear subspaces.

Proof: If dimG < j ≤ dimH , then one can find y ∈ H\0 with
y ⊥ G (since, with V a basis for G and W a basis for H , this amounts to
finding a nontrivial solution to the equation V cW? = 0, and this system is
homogeneous with more unknowns than equations). Therefore

min
x⊥G

RA(x) ≤ RA(y) ≤ max
x∈H

RA(x).

Hence,
max

dim G<j
min
x⊥G

RA(x) ≤ min
j≤dim H

max
x∈H

RA(x).

On the other hand, for G = ran[u1, . . . , uj−1] and H = ran[u1, . . . , uj ],

min
x⊥G

RA(x) = µj(A) = max
x∈H

RA(x).

The MMM theorem has various useful (and immediate) corollaries.

(15.4) Interlacing Theorem: If the matrix B is obtained from the
hermitian matrix A by crossing out the kth row and column (i.e., B =
A(I, I) with I := (1:k − 1, k + 1:n) ), then

µj(A) ≤ µj(B) ≤ µj+1(A), j < n.

Proof: It is sufficient to consider the case k = n, since we can always
achieve this situation by interchanging rows k and n, and columns k and n, of
A, and this will not change spec(A). Let J : IFn−1 → IFn : x 7→ (x, 0). Then
RB(x) = RA(Jx) and ranJ = ran[en]⊥, therefore also J(G⊥) = (JG +

ran[en])⊥ and {JG + ran[en] : dimG < j,G ⊂ IFn−1} ⊂ {G̃ : dim G̃ <

j + 1, G̃ ⊂ IFn}. Hence

µj(B) = max
dim G<j

min
x⊥G

RA(Jx) = max
dim G<j

min
y⊥JG+ran[en]

RA(y)

≤ max
dim G̃<j+1

min
y⊥G̃

RA(y) = µj+1(A).
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Also, since {JH : j ≤ dimH,H ⊂ IFn−1} ⊂ {H̃ : j ≤ dim H̃, H̃ ⊂ IFn},
µj(B) = min

j≤dim H
max
x∈H

RA(Jx) = min
j≤dim H

max
y∈JH

RA(y)

≥ min
j≤dim H̃

max
y∈H̃

RA(y) = µj(A).

(15.5) Corollary: If A =

[
B C
D E

]
∈ IFn×n is hermitian, and B ∈

IFr×r, then at least r eigenvalues of A must be ≤ max spec(B) and at
least r eigenvalues of A must be ≥ min spec(B).

In particular, if the spectrum of B is negative and the spectrum of E
is positive, then A has exactly r negative, and n−r positive, eigenvalues.

A different, simpler, application of the MMM theorem is based on the
following observation: If

f(t) ≤ g(t) ∀t,
then this inequality persists if we take on both sides the maximum or mini-
mum over the same set T , i.e., then

max
t∈T

f(t) ≤ max
t∈T

g(t), min
t∈T

f(t) ≤ min
t∈T

g(t).

It even persists if we further take the minimum or maximum over the same
family T of subsets T , e.g., then also

max
T∈T

min
t∈T

f(t) ≤ max
T∈T

min
t∈T

g(t).

Consequently,

(15.6) Corollary: If A, B are hermitian, and RA(x) ≤ RB(x) + c for
some constant c and all x, then

µj(A) ≤ µj(B) + c, ∀j.

This gives

(15.7) Weyl’s inequalities: If A = B + C, with A,B,C hermitian,
then

µj(B) + µ1(C) ≤ µj(A) ≤ µj(B) + µn(C), ∀j.

Proof: Since µ1(C) ≤ RC(x) ≤ µn(C) (by Rayleigh’s principle),
while RB(x)+RC (x) = RA(x), the preceding corollary provides the proof.
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A typical application of Weyl’s Inequalities is the observation that, for
A = BBc + C ∈ IFn×n with B ∈ IFn×k and A hermitian (hence also C
hermitian), µ1(C) ≤ µj(A) ≤ µn(C) for all j < (n − k), since rankBBc ≤
rankB ≤ k, hence µj(BB

c) must be zero for j < (n− k).

Since C = A−B, Weyl’s inequalities imply that

|µj(A) − µj(B)| ≤ max{|µ1(A−B)|, |µn(A−B)|} = ρ(A−B).

Therefore, with the substitutions A← A+ E, B ← A, we obtain

(15.8) max-norm Wielandt-Hoffman: If A and E are both hermi-
tian, then

max
j
|µj(A+ E)− µj(A)| ≤ max

j
|µj(E)|.

A corresponding statement involving 2-norms is valid but much harder
to prove.

Finally, a totally different application of the MMM Theorem is

(15.9) Sylvester’s Law of Inertia: Any two congruent hermitian ma-
trices have the same number of positive, zero, and negative eigenvalues.

Proof: It is sufficient to prove that if B = V cAV for some hermitian
A and some invertible V , then µj(A) > 0 implies µj(B) > 0. For this, we
observe that, by the MMM Theorem, µj(A) > 0 implies that RA is posi-
tive somewhere on every j-dimensional subspace, while (also by the MMM
Theorem), for some j-dimensional subspace H ,

µj(B) = max
x∈H

RB(x) = max
x∈H

RA(V x)RV cV (x),

and this is necessarily positive, since dim VH = j and

RV cV (x) = ‖V x‖2/‖x‖2

is positive for any x 6= 0.

It follows that we don’t have to diagonalize the real symmetric matrix
A (as we did in the proof of (15.2)Proposition) in order to find out whether
or not A or the corresponding quadratic form qA is definite. Assuming that
A is invertible, hence has no zero eigenvalue, it is sufficient to use Gauss
elimination without pivoting to obtain the factorization A = LDLc, with L
unit lower triangular. By Sylvester’s Law of Inertia, the number of positive
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(negative) eigenvalues of A equals the number of positive (negative) diagonal
entries of D.

This fact can be used to locate the eigenvalues of a real symmetric matrix
by bisection. For, the number of positive (negative) diagonal entries in the
diagonal matrix Dµ obtained in the factorization LµDµLµ

c for (A − µ id)
tells us the number of eigenvalues of A to the right (left) of µ, hence makes
it easy to locate and refine intervals that contain just one eigenvalue of A.
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In this chapter only, n-vectors will be denoted by lower-case boldface
roman letters; for example,

a = (a1, . . . , an) ∈ IFn.

Determinants are often brought into courses such as this quite unnec-
essarily. But when they are useful, they are remarkably so. The use of
determinants is a bit bewildering to the beginner, particularly if confronted
with the classical definition as a sum of signed products of matrix entries.

I find it more intuitive to follow Weierstrass and begin with a few im-
portant properties of the determinant, from which all else follows, including
that classical definition (which is practically useless anyway).

As to the many determinant identities available, in the end I have al-
most always managed with just one nontrivial one, viz. Sylvester’s deter-

minant identity, and this is nothing but Gauss elimination; see the end of
this chapter. The only other one I have used at times is the Cauchy-Binet

formula.

Definition and basic properties

The determinant is a map,

det : IFn×n → IF : A 7→ detA,

with various properties. The first one in the following list is perhaps the most
important one.

(i) det(AB) = det(A) det(B).

(ii) det( id) = 1.

Consequently, for any invertible A,

1 = det( id) = det(AA−1) = det(A) det(A−1).

228
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Hence,

(iii) If A is invertible, then detA 6= 0 and, det(A−1) = 1/ det(A).

While the determinant is defined as a map on matrices, it is very useful
to think of det(A) = det[a1, . . . ,an] as a function of the columns a1, . . . ,an

of A. The next two properties are in those terms:

(iv) the determinant is a multilinear form, i.e., for every j, the map x 7→
det[. . . ,aj−1,x,aj+1, . . .] is linear, meaning that, for any n-vectors x and
y and any scalar α (and arbitrary n-vectors ai),

det[. . . ,aj−1,x + αy,aj+1 , . . .]

= det[. . . ,aj−1,x,aj+1, . . .] + α det[. . . ,aj−1,y,aj+1, . . .].

(v) The determinant is an alternating form, i.e.,

det[. . . ,ai, . . . ,aj , . . .] = − det[. . . ,aj , . . . ,ai, . . .].

In words: Interchanging two columns changes the sign of the determinant
(and nothing else).

It can be shown (see below) that (ii) + (iv) + (v) implies (i) (and any-
thing else you may wish to prove about determinants). Here are some basic
consequences first.

(vi) Since 0 is the only scalar α with the property that α = −α, it follows
from (v) that det(A) = 0 if two columns of A are the same.

(vii) Adding a multiple of one column of A to another column of A doesn’t
change the determinant.

Indeed, using first (iv) and then the consequence (vi) of (v), we compute

det[. . . ,ai, . . . ,aj + αai, . . .]

= det[. . . ,ai, . . . ,aj , . . .] + α det[. . . ,ai, . . . ,ai, . . .]

= det[. . . ,ai, . . . ,aj , . . .].

Here comes a very important use of (vii): Assume that b = Ax and
consider

det[. . . ,aj−1,b,aj+1, . . .].

Since b = x1a1 + · · ·+ xnan, subtraction of xi times column i from column
j, i.e., subtraction of xiai from b here, for each i 6= j is, by (vii), guaranteed
not to change the determinant, yet changes the jth column to xjaj ; then,
pulling out that scalar factor xj (permitted by (iv)), leaves us finally with
xj detA. This proves

(viii) If b = Ax, then det[. . . ,aj−1,b,aj+1, . . .] = xj detA.

Hence, if detA 6= 0, then b = Ax implies

xj = det[. . . ,aj−1,b,aj+1, . . .]/ det(A), j = 1, . . . , n.
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This is Cramer’s rule.

In particular, if det(A) 6= 0, then Ax = 0 implies that xj = 0 for all
j, i.e., then A is 1-1, hence invertible (since A is square). This gives the
converse to (iii), i.e.,

(ix) If det(A) 6= 0, then A is invertible.

In old-fashioned mathematics, a matrix was called singular if its deter-
minant is 0. So, (iii) and (ix) combined say that a matrix is nonsingular iff
it is invertible.

The suggestion that one actually construct the solution to A? = y by
Cramer’s rule is ridiculous under ordinary circumstances since, even for a lin-
ear system with just two unknowns, it is more efficient to use Gauss elimina-
tion. On the other hand, if the solution is to be constructed symbolically (in a
symbol-manipulating system such as Maple or Mathematica), then Cramer’s
rule is preferred to Gauss elimination since it treats all unknowns equally. In
particular, the number of operations needed to obtain a particular unknown
is the same for all unknowns.

We have proved all these facts (except (i)) about determinants from cer-
tain postulates (namely (ii), (iv), (v)) without ever saying how to compute

det(A). Now, it is the actual formulas for det(A) that have given determi-
nants such a bad name. Here is the standard one, which (see below) can be
derived from (ii), (iv), (v), in the process of proving (i):

(x) If A = (aij : i, j = 1, . . . , n), then

det(A) =
∑

σ∈SSn

(−1)σ
n∏

j=1

aσ(j),j .

Here, σ ∈ SSn is shorthand for: σ is a permutation of the first n
integers, i.e.,

σ = (σ(1), σ(2), . . . , σ(n)),

where σ(j) ∈ {1, 2, . . . , n} for all j, and σ(i) 6= σ(j) if i 6= j. In other words,
σ is a 1-1 and onto map from {1, . . . , n} to {1, . . . , n}. Also,

(16.1) (−1)σ := signum∆(σ), with ∆(σ) :=
∏

i<j

(σ(j) − σ(i)),

is the sign of the permutation σ. It equals 1 or −1 depending on whether
the number of out-of-order pairs, i.e., (σ(i), σ(j)) with i < j yet σ(i) > σ(j),
is even or odd, and the parity of this number is therefore called the parity
of σ. This parity can also be determined as the parity of the number of
interchanges needed, starting with σ = (σ(1), . . . , σ(n)), to end up with the
sequence (1, 2, . . . , n). To be sure, if you and I both try to bring the entries of
σ into increasing order by interchanges, the number of steps taken may differ,
but their parity never will; if it takes me an even number of steps, it will take
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you an even number of steps, due to the fact that any one interchange will
change ∆(σ) to its negative (see H.P. 16.1) while ∆((1, 2, . . . , n)) is positive.

16.1 Let #σ denote the number of out-of-order pairs in the permutation σ (hence

∆(σ) = (−1)#σ), and let τ be the permutation obtained from σ by interchange of the ith

and jth entry. (a) Prove: If σ(i) and σ(j) are out of order, then #σ − #τ is positive and

odd. (b) Conclude that #σ−#τ is negative and odd in case σ(i) and σ(j) are in order. (c)

Conclude that any permutation σ can be brought into order by at most #σ interchanges,

and give an example of a permutation for which fewer than #σ interchanges suffice.

Here is a simple example: σ = (3, 1, 4, 2) has the pairs (3, 1), (3, 2), and
(4, 2) out of order, hence (−1)σ = −1. Equivalently, the following sequence
of 3 interchanges gets me from σ to (1, 2, 3, 4):

(3, 1, 4, 2)

(3, 1, 2, 4)

(1, 3, 2, 4)

(1, 2, 3, 4)

Therefore, again, (−1)σ = −1.

Now, fortunately, we don’t really ever have to use this stunning formula
(x) in calculations, nor is it physically possible to use it for nmuch larger than
8 or 10. For n = 1, 2, 3, one can derive from it explicit rules for computing
det(A):

det [ a ] = a, det

[
a b
c d

]
= ad− bc,

det



a b c
d e f
g h i


 = aei+ bfg + cdh− (ceg + afh+ bdi);

the last one can be remembered easily by the following mnemonic:

a ab bc

d de ef

g gh hi

For n > 3, this mnemonic does not work , and one would not usually make
use of (x), but use instead (i) and the following immediate consequence of
(x):

(xi) The determinant of a triangular matrix equals the product of its diagonal
entries.

Indeed, when A is upper triangular, then aij = 0 whenever i > j. Now,
if σ(j) > j for some j, then the factor aσ(j),j in the corresponding sum-
mand (−1)σ

∏n
j=1 aσ(j),j is zero. This means that the only possibly nonzero
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summands correspond to σ with σ(j) ≤ j for all j, and there is only one per-
mutation that manages that, the identity permutation (1, 2, . . . , n), and
its parity is even (since it takes no interchanges). Therefore, the formula in
(x) gives detA = a11 · · · ann in this case. – The proof for a lower triangular
matrix is analogous; else, use (xiii) below.

Consequently, if A = LU with L unit triangular and U upper triangular,
then

detA = detU = u11 · · ·unn.

If, more generally, A = PLU , with P some permutation matrix, then

detA = det(P )u11 · · ·unn,

i.e.,

(xii) detA is the product of the pivots used in elimination, times (−1)i, with
i the number of row interchanges made.

Since, by elimination, any A ∈ IFn can be factored as A = PLU , with P
a permutation matrix, L unit lower triangular, and U upper triangular, (xii)
provides the standard way to compute determinants.

Note that, then, At = U tLtP t, with U t lower triangular, Lt unit upper
triangular, and P t the inverse of P , hence

(xiii) detAt = detA.

This can also be proved directly from (x). Note that this converts all our
statements about the determinant in terms of columns to the corresponding
statements in terms of rows.

(xiv) “expansion by minors”:

Since, by (iv), the determinant is slotwise linear, and x = x1e1 + x2e2 +
· · ·+ xnen, we obtain

(16.2) det[. . . ,aj−1,x,aj+1, . . .] = x1C1j + x2C2j + · · ·+ xnCnj ,

with
Cij := det[. . . ,aj−1, ei,aj+1, . . .]

the socalled cofactor of aij . With the choice x = ak, this implies

a1kC1k + a2kC2k + · · ·+ ankCnk = det[. . . ,aj−1,ak,aj+1, . . .]

=
{

detA if k = j;
0 otherwise.

The case k = j gives the expansion by minors for detA (and justifies the
name ‘cofactor’ for Cij). The case k 6= j is justified by (vi). In other words,
with

adjA :=




C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

... · · ·
...

C1n C2n · · · Cnn
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the socalled adjugate of A (note that the subscripts appear reversed), we
have

adj(A)A = (detA) id.

This provides another proof of (ix), since it shows that, for a nonsingular A,

A−1 = (adjA)/ detA.

The expansion by minors is useful since, as follows from (x), the cofactor
Cij equals (−1)i+j times the determinant of the matrix A(n\i|n\j) obtained
from A by removing row i and column j, i.e.,

Cij = (−1)i+j det




. . . . . . . . . . . .

. . . ai−1,j−1 ai−1,j+1 . . .

. . . ai+1,j−1 ai+1,j+1 . . .

. . . . . . . . . . . .


 ,

and this is a determinant of order n − 1, and so, if n − 1 > 1, can itself be
expanded along some column (or row).

As a practical matter, for [a,b, c] := A ∈ R
3, the formula adj(A)A =

(detA) id implies that

(a × b)tc = det[a,b, c],

with

a× b := (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

the cross product of a with b. In particular, a×b is perpendicular to both a
and b. Also, if [a,b] is o.n., then so is [a,b,a×b] but, in addition, det[a,b,a×
b] = 1, i.e., [a,b,a×b] provides a right-handed cartesian coordinate system
for R

3.

(xv) detA is the n-dimensional (signed) volume of the parallelepiped

{Ax : 0 ≤ xi ≤ 1, all i}

spanned by the columns of A.

For n > 3, this is a definition, while, for n ≤ 3, one works it out (see
below). This is a very useful geometric way of thinking about determinants.
Also, it has made determinants indispensable in the definition of multivariate
integration and the handling therein of changes of variable.

Since det(AB) = det(A) det(B), it follows that the linear transformation
T : IFn → IFn : x 7→ Ax changes volumes by a factor of det(A), meaning
that, for any set M in the domain of T ,

vol n(T (M)) = det(A) vol n(M).
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As an example, consider det[a,b], with a, b vectors in the plane linearly

independent, and assume, wlog, that a1 6= 0. By (iv), det[a,b] = det[a, b̃],

with b̃ := b − (b1/a1)a having its first component equal to zero, and so,

again by (iv), det[a,b] = det[ã, b̃], with ã := a− (a2/b̃2)b̃ having its second

component equal to zero. Therefore, det[a,b] = ã1b̃2 = ±‖ã‖‖b̃‖ equals

± the area of the rectangle spanned by ã and b̃. However, following the
derivation of ã and b̃ graphically, we see, by matching congruent triangles,
that the rectangle spanned by ã and b̃ has the same area as the parallelepiped
spanned by a and b̃, and, therefore, as the parallelepiped spanned by a and
b. Thus, up to sign, det[a,b] is the area of the parallelepiped spanned by a
and b.

b

a

b
b̃

a

b̃

a

ã

Here, finally, for the record, is a proof that (ii) + (iv) + (v) implies (i),
hence everything else we have been deriving so far. Let A and B be arbitrary
matrices (of order n). Then the multilinearity (iv) implies that

det(BA) = det[Ba1, . . . , Ban]

= det[. . . ,
∑

i

biaij , . . .]

=
∑

σ∈{1,...,n}n

det[bσ(1), . . . ,bσ(n)]
∏

j

aσ(j),j .

By the consequence (vi) of the alternation property (v), most of these sum-
mands are zero. Only those determinants det[bσ(1), . . . ,bσ(n)] for which all
the entries of σ are different are not automatically zero. But that are exactly
all the σ ∈ SSn, i.e., the permutations of the first n integers. Further, for such
σ,

det[bσ(1), . . . ,bσ(n)] = (−1)σ det(B)

by the alternation property (v), with (−1)σ = 1 or −1 depending on whether
it takes an even or an odd number of interchanges to change σ into a strictly
increasing sequence. Thus

det(BA) = det(B)
∑

σ∈SSn

(−1)σ
∏

j

aσ(j),j .

Choosing, in particular, B = id, we obtain formula (x) since idA = A
while, by the defining property (ii), det( id) = 1, and, with that, det(BA) =
det(B) det(A) for arbitrary B and A.
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On the other hand, starting with the formula in (x) as a definition, one
may verify (see H.P. 16.2) that det so defined satisfies the three properties
(ii) (det( id) = 1), (iv) (multilinear), and (v) (alternating) claimed for it. In
other words, there actually is such a function (necessarily given by (x)).

Sylvester

Here, for the record, is a proof and statement of Sylvester’s Determinant
Identity. For it, the following notation will be useful: If i = (i1, . . . , ir) and
j = (j1, . . . , js) are suitable integer sequences, then A(i, j) = A(i|j) is the
r× s-matrix whose (p, q) entry is A(ip, jq), p = 1, . . . , r, q = 1, . . . , s. This is
just as in MATLAB except for the vertical bar used here at times, for emphasis
and in order to list, on either side of it, a sequence without having to encase
it in parentheses. Also, it will be handy to denote by : the entire sequence
1:n, and by \i the sequence obtained from 1:n by removing from it the entries
of i. Thus, as in MATLAB, A(: |j) = A(:, j) is the jth column of A. Finally,
A(i) := A(i|i).

With k := 1:k, consider the matrix B with entries

B(i, j) := detA(k, i|k, j).

On expanding (see property (xiv)) detA(k, i|k, j) by entries of the last row,

B(i, j) = A(i, j) detA(k) −
∑

r≤k

A(i, r)(−1)k−r detA(k|(k\r), j).

This shows that

B(:, j) ∈ A(:, j) detA(k) + spanA(: |k),

while, directly, B(i, j) = 0 for i ∈ k since then detA(k, i|k, j) has two rows
the same.

In the same way,

B(i, :) ∈ A(i, :) detA(k) + spanA(k| :),

while, directly, B(i, j) = 0 for j ∈ k. Thus, if detA(k) 6= 0, then, for i > k,

B(i, :)/ detA(k)

provides the ith row of the matrix obtained from A after k steps of Gauss
elimination (without pivoting). This provides the following useful
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(16.3) Determinantal expressions for LU factors and Schur
complement: The matrix S := B/ detA(k) contains the Schur com-
plement S(\k) in A of the pivot block A(k). Further,

B(k + 1, k + 1) = detA(k + 1)/ detA(k)

is the pivot for the k + 1st elimination step, hence, for i > k,

L(i, k+1) = B(i, k+1)/B(k+1, k+1) = detA(k, i|k + 1)/ detA(k + 1)

is the (i, k + 1) entry of the resulting unit lower triangular left factor of
A and, correspondingly,

U(k+1, i) = B(k+1, i)/B(k+1, k+1) = detA(k + 1|k, i)/ detA(k + 1)

is the (k + 1, i) entry of the resulting unit upper triangular right factor
of A.

Since such row elimination is done by elementary matrices with deter-
minant equal to 1, it follows that

detA = detA(k) detS(\k).

Since, for any #i = #j, B(i, j) depends only on the square matrix
A(k, i|k, j), this implies

Sylvester’s determinant identity. If

S(i, j) := detA(k, i|k, j)/ detA(k), ∀i, j,

then
detS(i|j) = detA(k, i|k, j)/ detA(k).

Cauchy-Binet

Cauchy-Binet formula. det(BA)(i|j) =
∑

#h=#i
detB(i|h) detA(h|j).

Even the special case #i = #A of this, i.e., the most important deter-
minant property (i),

det(BA) = detB detA,

Binet and Cauchy were the first to prove. Not surprisingly, the proof of the
formula follows our earlier proof of that identity.
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Proof: Since (BA)(i|j) = B(i|:)A(:|j), it is sufficient to consider the
case B,At ∈ IFm×n for some m and n. If m > n, then B cannot be onto,
hence BA must fail to be invertible, while the sum is empty, hence has value
0. It is therefore sufficient to consider the case m ≤ n.

For this, using the linearity of the determinant in each slot,

det(BA) = det[BA(:, 1), . . . , BA(:,m)]

=
∑

h1

· · ·
∑

hm

det[B(:, h1)A(h1, 1), . . . , B(:, hm)A(hm,m)]

=
∑

h1

· · ·
∑

hm

det[B(:, h1), . . . , B(:, hm)]A(h1, 1) · · ·A(hm,m)

=
∑

h1<···<hm

detB(:|h)
∑

σ∈SSm

(−1)σA(hσ(1), 1) · · ·A(hσ(m),m)

=
∑

h1<···<hm

detB(:|h) detA(h|:).

16.2 Prove that the function det : IFn×n → IF given by the formula in (x) necessarily
satisfies (ii), (iv), and (v).

16.3 Prove: For any A ∈ IFn×n+1, the vector ((−1)k det A(:, \k) : k = 1:n + 1) is in
null A.

16.4 Let A ∈ Z
n×n

, i.e., a matrix of order n with integer entries, and assume that

A is invertible. Prove: A−1 ∈ Z
n×n

if and only if |det A| = 1. (Hint: Use Cramer’s Rule
to prove that such A maps Z

n
onto itself in case det A = ±1.)

16.5 Prove: | det(A)| =
√

det(AcA)).

16.6 Prove Hadamard’s inequality: |det(a1, . . . , an)| ≤ ‖a1‖ · · · ‖an‖.
16.7 Let R be a ring (see Backgrounder). Prove the following claim, of use in ideal

theory: If Ax = 0 for A ∈ Rn×n and x ∈ Rn, then xi det(A) = 0 for all i.

16.8 Use the previous homework to prove the following (see the Backgrounder on
rings for background): If R is a commutative ring with identity, s1, . . . , sn ∈ R, F :=
[s1, . . . , sn](Rn) and H is an ideal in R for which F ⊂ HF := {hf : h ∈ H, f ∈ F}, then,
for some h ∈ H, (1 − h)F = 0.

16.9 Prove that the elementary matrix A := idn − qrt has a factorization A = LDU
with L unit lower triangular, D diagonal, and U unit upper triangular provided the numbers

pi := 1 −
∑

j≤i

qjrj

are nonzero for i < n, and verify that then D = diag(pi/pi−1 : i = 1:n) and

L(i, j) = −qirj/pj = U(j, i), i > j.

16.10 T/F

(a) If A and B are matrices for which both AB and BA are defined, then det(AB) =
det(BA).

(b) If A ∈ Z
n×n

then det(A) ∈ Z.

(c) det(Ac) = det(A)−1 if A is invertible.
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A nonempty finite subset of R contains a maximal element

Let m be an arbitrary element of the set M in question; there is at least
one, by assumption. Then the algorithm

for r ∈M do: if r > m, m← r, od

produces the maximal element, m, after finitely many steps.

Since a bounded subset of Z necessarily has only finitely many elements,
it follows that a nonempty bounded subset of Z contains a maximal element.
This latter claim is used several times in these notes.

Also, note the corollary that a bounded function into the integers takes
on its maximal value: its range then contains a maximal element and any
preimage of that maximal element will do.

A nonempty bounded subset of R has a least upper bound

Let M be a subset of R. Then, as the example of the open interval (0. .1)
shows, such M need not have a maximal (or, rightmost) element. However,
if the set

{r ∈ R : m ≤ r, ∀m ∈M}
of upper bounds for M is not empty, then this set has a smallest (or,
leftmost) element. This smallest element is called the least upper bound,
or the supremum, for M and is correspondingly denoted

supM.

The existence of a least upper bound for any real set M that has an upper
bound is part of our understanding or definition of the set R. What if M
has no upper bound? Then some would say that supM = ∞. What if
M is empty? Then, offhand, supM is not defined. On the other hand,
since M ⊂ N =⇒ supM ≤ supN , some would, consistent with this, define
sup{} := −∞.

238
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One also considers the set

{r ∈ R : r ≤ m, ∀m ∈M}

of all lower bounds of the set M and understands that this set, if nonempty,
has a largest (or, right-most) element. This element is called the greatest
lower bound, or infimum, of M , and is denoted

inf M.

What if M has no lower bound? Then some would say that infM = −∞.
In particular, inf R = −∞. Also, some would set inf{} :=∞ = sup R.

Note that
− supM = inf(−M).

Complex numbers

A complex number is of the form

z = a+ ib,

with a and b real numbers, called, respectively, the real part of z and the
imaginary part of z, and i the imaginary unit, i.e.,

i :=
√
−1.

Actually, there are two complex numbers whose square is −1. We denote the
other one by −i. Be aware that, in parts of Engineering, the symbol j is used
instead of i.

MATLAB works internally with (double precision) complex num-
bers. Both variables i and j in MATLAB are initialized to the value
i.

One adds complex numbers by adding separately their real and imag-
inary parts. One multiplies two complex numbers by multiplying out and
rearranging, mindful of the fact that i2 = −1. Thus,

(a+ ib)(c+ id) = ac+ aid+ bic− bd = (ac− bd) + i(ad+ bc).

Note that both addition and multiplication of complex numbers is commu-
tative. Further, the product of z = a+ ib with its complex conjugate

z := a− ib

is the nonnegative number
zz = a2 + b2,
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and its (nonnegative) squareroot is called the absolute value or modulus
of z and denoted by

|z| :=
√
zz.

For z 6= 0, we have |z| 6= 0, hence z/|z|2 = a/|z|2 − ib/|z|2 is a well-defined
complex number. It is the reciprocal of z since zz/|z|2 = 1, of use for
division by z. Note that, for any two complex numbers z and ζ,

|zζ| = |z||ζ|.

It is very useful to visualize complex numbers as points in the so called
complex plane, i.e., to identify the complex number a + ib with the point
(a, b) in R

2. With this identification, its absolute value corresponds to the
(Euclidean) distance of the corresponding point from the origin. The sum of
two complex numbers corresponds to the vector sum of their corresponding
points. The product of two complex numbers is most easily visualized in
terms of the polar form

z = a+ ib = r exp(iϕ),

with r ≥ 0, hence r = |z| its modulus, and ϕ ∈ R is called its argument.
Indeed, for any real ϕ, exp(iϕ) = cos(ϕ) + i sin(ϕ) has absolute value 1, and
ϕ is the angle (in radians) that the vector (a, b) makes with the positive
real axis. Note that, for z 6= 0, the argument, ϕ, is only defined up to a
multiple of 2π, while, for z = 0, the argument is arbitrary. If now also
ζ = α+ iβ = |ζ| exp(iψ), then, by the law of exponents,

zζ = |z| exp(iϕ)|ζ| exp(iψ) = |z||ζ| exp(i(ϕ + ψ)).

Thus, as already noted, the absolute value of the product is the product of
the absolute values of the factors, while the argument of a product is the sum
of the arguments of the factors.

For example, in as much as the argument of z is the negative of the
argument of z, the argument of the product zz is necessarily 0. As another
example, if z = a + ib is of modulus 1, then z lies on the unit circle in the
complex plane, and so does any power zk of z. In fact, then z = exp(iϕ)
for some real number ϕ, and therefore zk = exp(i(kϕ)). Hence, the sequence
z0, z1, z2, . . . appears as a sequence of points on the unit circle, equally spaced
around that circle, never accumulating anywhere unless ϕ = 0, i.e., unless
z = 1.

(17.1) Lemma: Let z be a complex number of modulus 1. Then the
sequence z0, z1, z2, . . . of powers of z lies on the unit circle, but fails to
converge except when z = 1.
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Groups, rings, and fields

A semigroup (F, op) is a set F and an operation op on F , i.e., a map
op : F × F → F : (f, g) 7→ fg that is associative, meaning that

∀{f, g, h ∈ F} (fg)h = f(gh).

The semigroup is commutative if

∀{f, g ∈ F} fg = gf.

The prime example of a semigroup is the set (M → M) = MM of all maps
on some set M , with map composition as the operation, or any of its subsets
H that are closed under the operation, i.e., satisfy HH := {gh : g, h ∈
H} ⊂ H . MM is commutative only if #M = 1.

A group (G, op) is a semigroup (necessarily nonempty) whose operation
is a group operation, meaning that, in addition to associativity, it has
the following properties:

(g.1) there exists a left neutral element and a right neutral element,
i.e., an el, er ∈ G (necessarily el = er, hence unique, denoted by e
and called the neutral element) such that

∀{g ∈ G} elg = g = ger;

(g.2) every g ∈ G has a left inverse and a right inverse, i.e., f, h ∈ G so
that fg = e = gh (and, necessarily, these are unique and coincide,
leading to the notation f = g−1 = h).

G is said to be ‘a group under the operation op’.

A group G is called Abelian if it is commutative.

If also H is a group, then a homomorphism from G to H is any
map ϕ : G→ H that ‘respects the group structure’, i.e., for which

∀{f, g ∈ G} ϕ(fg) = ϕ(f)ϕ(g).

The prime example of a group is the collection of all invertible maps on
some set, with map composition the group operation. The most important
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special case of these is SSn, called the symmetric group of order n and
consisting of all permutations of order n, i.e., of all invertible maps on n =
{1, 2, . . . , n}. Any finite group G can be represented by a subgroup of SSn

for some n in the sense that there is a group monomorphism ϕ : G→ SSn,
i.e., a 1-1 homomorphism from G to SSn.

Here are some specific examples:

(i) (Z,+), i.e., the integers under addition; note that, for each n ∈ Z, the
map n : Z → Z : m 7→ m + n is, indeed, invertible, with −n : Z → Z :
m 7→ m− n its inverse.

(ii) (QQ\0, ∗), i.e., the nonzero rationals under multiplication; note that, for
each q ∈ QQ\0, the map q : QQ\0 → QQ\0 : p 7→ pq is, indeed, invertible,
with q−1 : QQ\0→ QQ\0 : p 7→ p/q its inverse.

(iii) The collection of all rigid motions that carry an equilateral triangle to
itself. It can be thought of as SS3 since each such motion, being rigid,
must permute the vertices and is completely determined once we know
what it does to the vertices.

17.1 Prove that, for M = {1, 2}, the semigroup MM is not commutative.

17.2 Verify all the parenthetical claims made in the above definition of a group.

17.3 Give an example of a nonabelian group.

A ring R = (R,+, ∗) is a set R (necessarily nonempty) with two op-
erations, (f, g) 7→ f + g and (f, g) 7→ f ∗ g =: fg, called addition and
multiplication respectively, such that

(r.1) (R,+) is an Abelian group, with neutral element usually denoted
0;

(r.2) (R, ∗) is a semigroup;

(r.3) (distributive laws): for every f ∈ R, the maps R → R : g 7→ fg
and R→ R : g 7→ gf are homomorphisms of the group (R,+), i.e.,
f(g + h) = fg + fh and (g + h)f = gf + hf .

A field is a ring (R,+, ∗) for which (R\0, ∗) is a group.

If multiplication in the ring R is commutative, i.e., fg = gf for all
f, g ∈ R, then R is called commutative.

If the ring R has a neutral element for multiplication, i.e., an element
e so that eg = g = ge for all g 6= 0, then it has exactly one such, and it is
usually denoted by 1. In that case, R is called a ring with identity. Any
field is a ring with identity.

Both R and C are commutative fields. The prime example of a ring is
the set Π(IFd) of all polynomials in d (real or complex) variables with (real
or complex) coefficients, with pointwise addition and multiplication the ring
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operations. It is a commutative ring with identity. It has given the major
impetus to the study of (two-sided) ideals, i.e., of nonempty subsets S of a
ring R closed under addition, and containing both SR and RS, i.e., closed
also under left or right multiplication by any element of the ring. This makes
S a subring of R, i.e., a ring in its own right, but not all subrings are ideals.

Let R be a commutative ring. Then the set

[s1, . . . , sr](R
r) = {s1g1 + · · ·+ srgr : (g1, . . . , gr) ∈ Rr)}

is an ideal, the ideal generated by (s1, . . . , sr). Such an ideal is called
finitely generated. A ring R is called Noetherian if all its ideals are
finitely generated. Hilbert’s Basis Theorem famously states that Π(IFd)
is Noetherian.

17.4 Verify that, for any s1, . . . , sn in the commutative ring R, [s1, . . . , sn](Rn) is

an ideal.

The ring of univariate polynomials

Π = Π(IF) is, by definition, the set of univariate polynomials, i.e., the
collection of all maps

p : IF→ IF : z 7→ p̂0 + p̂1z + p̂2z
2 + · · ·+ p̂dz

d,

with p̂0, . . . , p̂d ∈ IF and some d ∈ Z+. If p̂d 6= 0, then d is the degree of p,
i.e.,

d = deg p := max{j : p̂j 6= 0}.

This leaves the degree of the zero polynomial, 0 : IF→ IF : z 7→ 0, undefined.
It is customary to set

deg 0 := −1.

As already mentioned, Π is a ring under pointwise addition and multi-
plication. More than that, Π is a principal ideal domain, meaning that
any of its ideals other than Π itself is generated by just one element. Indeed,
if I is an ideal, then it contains an element p of smallest possible nonnegative
degree and, since I 6= Π, this degree is positive. If f is any element of Π,
then, by the Euclidean algorithm (see below), we can find q, r ∈ Π so that
f = qp + r and deg r < deg p. If now f ∈ I, then also r = f − qp ∈ I and
deg r < deg p hence, by the minimality of deg p, r must be 0. In other words,

I = Πp := {qp : q ∈ Π}.

17.5 Prove that the ideal generated by the univariate polynomials p1, . . . , pr is gen-
erated by their greatest common divisor.

To be sure, already Π(IF2) fails to be a principal ideal domain.
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It is simple algebra (see, e.g., the discussion of Horner’s method below)
that the set

Z(p) := {z ∈ IF : p(z) = 0}
of zeros of p ∈ Π contains at most deg p elements. It is the Fundamental
Theorem of Algebra that #Z(p) = deg p, counting multiplicities, in case
IF = C. More explicitly, this theorem says that, with d := deg p,

p = c(· − z1) · · · (· − zd)

for some nonzero constant c and some z ∈ C
d.

It is in this sense that C is said to be algebraically closed while R

is not. E.g., the real polynomial ()2 + 1 has no real zeros. It is remarkable
that, by adjoining one, hence the other, of the ‘imaginary’ zeros of ()2 + 1,
i.e., i =

√
−1, appropriately to R, i.e., by forming C = R + iR, we obtain

enough additional scalars so that now, even if we consider polynomials with
complex coefficients, all nonconstant polynomials have a full complement of
zeros (counting multiplicities).

Convergence of a scalar sequence

A subset Z of C is said to be bounded if it lies in some ball

Br := {z ∈ C : |z| < r}

of (finite) radius r. Equivalently, Z is bounded if, for some r, |ζ| < r for all
ζ ∈ Z. In either case, the number r is called a bound for Z.

In particular, we say that the scalar sequence (ζ1, ζ2, . . .) is bounded if
the set {ζm : m ∈ N} is bounded. For example, the sequence (1, 2, 3, . . .) is
not bounded.

(17.2) Lemma: The sequence (ζ1, ζ2, ζ3, . . .) is bounded if and only if
|ζ| ≤ 1. Here, ζk denotes the kth power of the scalar ζ.

Proof: Assume that |ζ| > 1. I claim that, for all m,

(17.3) |ζm| − 1 > (|ζ| − 1)m.

This is certainly true for m = 1. Assume it correct for m = k. Then

|ζk+1| − 1 = (|ζk+1| − |ζk|) + (|ζk| − 1).

The first term on the right-hand side gives

|ζk+1| − |ζk| = (|ζ| − 1)|ζ|k−1 > |ζ| − 1,



Convergence of a scalar sequence 245

since |ζ| > 1, while, for the second term, |ζk| − 1 > (|ζ| − 1)k by induction
hypothesis. Consequently,

|ζk+1| − 1 > (|ζ| − 1) + (|ζ| − 1)k = (|ζ| − 1)(k + 1),

showing that (17.3) also holds for m = k + 1.

In particular, for any given c, choosing m to be any natural number
bigger than c/(|ζ| − 1), we have |ζm| > c. We conclude that the sequence
(ζ1, ζ2, ζ3, . . .) is unbounded when |ζ| > 1.

Assume that |ζ| ≤ 1. Then, for any m, |ζm| = |ζ|m ≤ 1m = 1, hence the
sequence (ζ1, ζ2, ζ3, . . .) is not only bounded, it lies entirely in the unit disk

B−
1 := {z ∈ C : |z| ≤ 1}.

A sequence (ζ1, ζ2, ζ3, . . .) of (real or complex) scalars is said to converge
to the scalar ζ, in symbols:

lim
m→∞

ζm = ζ,

if, for all ε > 0, there is some mε so that, for all m > mε, |ζ − ζm| < ε.

Assuming without loss the scalars to be complex, we can profitably vi-
sualize this definition as saying the following: Whatever small circle {z ∈ C :
|z − ζ| = ε} of radius ε we draw around the point ζ, all the terms of the
sequence except the first few are inside that circle.

(17.4) Lemma: A convergent sequence is bounded.

Proof: If limm→∞ ζm = ζ, then there is some m0 so that, for all
m > m0, |ζ − ζm| < 1. Therefore, for all m,

|ζm| ≤ r := |ζ|+ 1 + max{|ζk| : k = 1:m0}.

Note that r is indeed a well-defined nonnegative number, since a finite set of
real numbers always has a largest element.

(17.5) Lemma: The sequence (ζ1, ζ2, ζ3, . . .) is convergent if and only
if either |ζ| < 1 or else ζ = 1. In the former case, limm→∞ ζm = 0, while
in the latter case limm→∞ ζm = 1.

Proof: Since the sequence is not even bounded when |ζ| > 1, it
cannot be convergent in that case. We already noted that it cannot be
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convergent when |ζ| = 1 unless ζ = 1, and in that case ζm = 1 for all m,
hence also limm→∞ ζm = 1.

This leaves the case |ζ| < 1. Then either |ζ| = 0, in which case ζm = 0 for
all m, hence also limm→∞ ζm = 0. Else, 0 < |ζ| < 1, therefore 1/ζ is a well-
defined complex number of modulus greater than one, hence, as we showed
earlier, 1/|ζm| = |(1/ζ)m| grows monotonely to infinity as m→∞. But this
says that |ζm| decreases monotonely to 0. In other words, limm→∞ ζm = 0.

Horner, or: How to divide a polynomial by a linear factor

Recall that, given the polynomial p and one of its roots, µ, the polyno-
mial q := p/(· − µ) can be constructed by synthetic division. This process
is also known as nested multiplication or Horner’s scheme as it is used,
more generally, to evaluate a polynomial efficiently. Here are the details, for
a polynomial of degree ≤ 3.

If p(t) = a0 + a1t+ a2t
2 + a3t

3, and z is any scalar, then

p(z) = a0 + z (a1 + z (a2 + z a3︸︷︷︸
=:b3

)

︸ ︷︷ ︸
=:b2

)

︸ ︷︷ ︸
=a1+zb2=:b1︸ ︷︷ ︸

a0+zb1=:b0

.

In other words, we write such a polynomial in nested form and then evaluate
from the inside out. Each step is of the form

(17.6) bj := aj + zbj+1;

it involves one multiplication and one addition. The last number calculated
is b0; it is the value of p at z. There are 3 such steps for our cubic polynomial
(the definition b3 := a3 requires no calculation!). So, for a polynomial of
degree n, we would use n multiplications and n additions.

Now, not only is b0 of interest, since it equals p(z); the other bj are also
useful since

p(t) = b0 + (t− z)(b1 + b2t+ b3t
2).

We verify this by multiplying out and rearranging terms according to powers
of t. This gives

b0 + (t− z)(b1 + b2t+ b3t
2) = b0 + b1t + b2t

2 + b3t
3

−zb1 − zb2t − zb3t
2

= b0 − zb1 + (b1 − zb2)t + (b2 − zb3)t2 + b3t
3

= a0 + a1t + a2t
2 + a3t

3
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The last equality holds since, by (17.6),

bj − zbj+1 = aj

for j < 3 while b3 = a3 by definition.

(17.7) Nested Multiplication (aka Horner): To evaluate the poly-
nomial p(t) = a0 + a1t+ · · ·+ akt

k at the point z, compute the sequence
(b0, b1, . . . , bk) by the prescription

bj :=

{
aj if j = k;
aj + zbj+1 if j < k.

Then p(t) = b0 + (t− z)q(t), with

q(t) := b1 + b2t+ · · ·+ bkt
k−1.

In particular, if z is a root of p (hence b0 = 0), then

q(t) = p(t)/(t− z).

Since p(t) = (t − z)q(t), it follows that deg q < deg p. This provides
another proof (see (3.23)) for the easy part of the Fundamental Theorem of

Algebra, namely that a polynomial of degree k has at most k roots.

Euclid’s Algorithm

Horner’s method is a special case of Euclid’s Algorithm which con-
structs, for given polynomials f and p with deg p > 0, (unique) polynomials
q and r with deg r < deg p so that

f = pq + r.

For variety, here is a nonstandard discussion of this algorithm, in terms of
elimination.

Assume that

p(t) = p̂0 + p̂1t+ · · ·+ p̂dt
d, p̂d 6= 0, d > 0,

and
f(t) = f̂0 + f̂1t+ · · ·+ f̂nt

n

for some n ≥ d, there being nothing to prove otherwise. Then we seek a
polynomial

q(t) = q̂0 + q̂1t+ · · ·+ q̂n−dt
n−d
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for which
r := f − pq

has degree < d. With r(t) =: r̂0 + r̂1t + · · · + r̂nt
n, this requires r̂j = 0 for

j ≥ d. Since r = f − pq, we compute r̂j = f̂j −
∑n−d

i=j−d p̂j−iq̂i. Therefore, we

require that
∑n−d

i=j−d p̂j−iq̂i = f̂j for j = d, . . . , n, and so obtain the square
upper triangular linear system

p̂dq̂0 + p̂d−1q̂1 + · · · + p̂0q̂n−d = f̂d

p̂dq̂1 + p̂d−1q̂2 + · · · + p̂1q̂n−d = f̂d+1

. . .
...

p̂dq̂n−d−1 + p̂d−1q̂n−d = f̂n−1

p̂dq̂n−d = f̂n

for the unknown coefficients q̂0, . . . , q̂n−d which can be uniquely solved by
back substitution since its diagonal entries all equal p̂d 6= 0.

A real continuous function on a compact set in R
n has a maximum

This basic result of Analysis is referred to in these notes several times.
Its proof goes beyond the scope of these notes.

Here is the phrasing of this result that is most suited for these notes.

(17.8) Theorem: An upper semicontinuous real-valued function f on
a closed and bounded set M in X := R

n has a maximum, i.e.,

sup f(M) = f(m)

for some m ∈M .

In particular, sup f(M) <∞.

A subset M of X is closed if m = limn xn and xn ∈ M , all n, implies
that m ∈M .

A subset M of X is bounded if sup ‖M‖ <∞.

A subset M of X is compact if it is closed and bounded.

A function f : M ⊂ X → R is continuous at m if limn xn = m implies
that limn f(xn) = f(m). The function is continuous if it is continuous at
every point of its domain.

A function f : M ⊂ X → R is upper semicontinuous at m if
limn xn = m implies that limn f(xµ(n)) ≥ f(m) for every strictly increas-
ing µ : N → N for which the corresponding subsequence n 7→ f(xµ(n)) of
n 7→ f(xn) is convergent.
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Let b := sup f(M). Then, for each r < b, the set

Mr := {m ∈M : f(m) ≥ r}

is not empty. Also, Mr is closed, by the upper semicontinuity of f , and
bounded. Also, Mr is decreasing as r increases. This implies (by the Heine-
Borel Theorem) that ∩rMr is not empty. But, for any m ∈ ∩rMr, f(m) ≥ r
for all r < b, hence f(m) ≥ b = sup f(M), therefore f(m) = sup f(M).

The theorem is also valid if X is any finite-dimensional normed vector
space. For, with V any basis for X , we can write f = gV −1 with g := fV
upper semicontinuous on V −1M and sup f(M) = sup g(V −1M) = g(h) for
some h ∈ V −1M , and so m := V h does the job for f .
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Rough index for these notes

1-1: -5, 2, 8, 40
1-norm: 79
2-norm: 79
A-invariance: 125
A-invariant: 113
absolute value: 167
absolutely homogeneous: 70, 79
additive: 20
adjugate: 164
affine: 151
affine combination: 148, 150
affine hull: 150
affine map: 149
affine polynomial: 152
affine space: 149
affinely independent: 151
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algebraic dual: 95
algebraic multiplicity: 130, 133
alternating: 130, 137, 161
angle: 72
angle-preserving: 72
annihilating for A ∈ L(X): 132
annihilating polynomial: -8
annihilating polynomial for A at x: 107
argument: 167
array: 24
assignment: 1
assignment on I: 1
associative: 13, 18
augmented: 38
Axiom of Choice: 14
axis: 137
azimuth: 148
Background: -9
barycentric coordinates of p with respect to Q: 151
basic: 32
basis: -6, 43
basis for X : 43
Basis Selection Algorithm: 45
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best least-squares solution: 88
bi-orthonormal: 94
bidual: 97
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boldface: -5
boring: 120
bound: -6, 32, 40, 45, 54
bound for Z: 168
bounded: 168, 168
broken lines: 19
canonical: 127
car: 94
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cartesian product: 2
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Inequality: 69
Cauchy-Binet formula: -9, 166
Cayley-Hamilton Theorem: 133
CBS Inequality: 69
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chain rule: 153
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characteristic function: 7
characteristic polynomial: -8, 130, 132, 134
circulant: 140
codimension: 50, 53
coefficient vector: 21
cofactor: 163
column map: -6, 23
column space: 29
column vector: 2
commutative: 18
commutative group with respect to addition: 18
commute: 121
companion matrix: 119
compatible: 74
complement: 53, 93
complementary to: 36
complex: 2, 3
complex conjugate: 167
complex numbers: 1
complex plane: 167
component: 53
composition: 13
condition: 75
condition number: 75, 86, 89
congruent: 156
conjugate transpose: 3, 65
construction of a basis: 45
continuous function: 19
contour lines: 155
converge to the scalar ζ: 169
convergence: -7
convergence to 0: -7
convergent: 112
convergent to 0: 112
converges: 111, 152
converges to the n-vector z∞: 111
convex combination: 152
coordinate: 2
coordinate axis: 53
coordinate map: 56, 82
coordinate space: -6
coordinate vector for x with respect to the

basis v1, v2, . . . , vn: 43
coordinates: -6
coordinates with respect to the basis: 56
correction: -5
cost function: 142
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Courant-Fischer minimax Theorem: 158
Cramer’s rule: 162
critical point: -8, 154
cross product: 137, 138, 164
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cycle length: 16
D-invariant: 108
d-variate polynomials of degree ≤ k: 47
data map: 56
defect: 50
defective: -8, 113
defective eigenvalue: 102
definite: 155
DeMorgan’s Law: 93
derivative of f at p: 152
derivative of f at p in the direction τ : 152
determinant: -9, 130
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diagonal matrix: 3
diagonalizable: -8
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differentiable at p ∈ F : 152
dimension: -6
Dimension Formula: -6, 48
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discretize: 55, 57
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dot product: 64, 137
dual: 93, 94, 97
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eigenbasis: 101
eigenpair: 99
eigenstructure: -8
eigenvalue: -8, 99
eigenvector: -8, 99
elegance: -8
elementary: 26
elementary matrix: -7, 83
elementary row operation: 26
elevation: 148
elimination: -6, 32
elimination step: 32
empty assignment: 2
empty set: 1
end: 13
entry: 1
epimorph(ic): 8
equivalence: 27
equivalence relation: -8, 103
equivalent: 32, 91

equivalent equation: -7
error: 75, 98
Euclid’s Algorithm: 170
Euclidean norm: -6, 67
existence: -5, 8, 12
expansion by minors: 163
exponential: -7
extending a 1-1 column map: 45
factor: -6, 54
factor space: 50
family: 2
feasible set: 143
field-addition distributive: 18
finest A-invariant direct sum

decomposition: 122
finite-dimensional: 48, 77
finitely generated: 43
flat: 149
form: 94
Fourier series: 59
free: -6, 32, 45
Frobenius norm: 74
function: 7, 18
functional: 94
Fundamental Theorem of Algebra: 105, 170
Gauss: 147
Gauss-Jordan: 147
geometric multiplicity: 133
Gershgorin Circle Theorem: 129
Gershgorin’s circles: -8
gradient: -5, 154
Gram-Schmidt: -6
Gram-Schmidt orthogonalization: 72
Gramian matrix: 57
graph: 10
half-spaces: 21
halfspace: 143
Hermite interpolation: 59
Hermitian: 65
hermitian: -8, 64, 86, 87, 120
Hessian: -8, 154
homogeneous: -6, 20, 21, 28, 32
Horner’s scheme: 169
Householder matrices: 86
Householder reflection: -7, 73
hyperplane: 143
I-assignment: 1
ith row of A: 3
(i, j)-entry: 3
ideal: 123, 133
idempotent: -6, 15, 59
identity map: 12
identity matrix: 29
identity permutation: 163
image: 7
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image of Z under f : 6
imaginary part of z: 167
imaginary unit: 167
indefinite: 155
index set: 1
initial guess: 98
injective: 8
inner product: -6, 64
inner product space: -6, 64
inner-product preserving: 72
integers: 1
interesting eigenvalue: 103
interpolation: -6, 41, 59, 62
intersection: 1
interval with endpoints p, q: 152
inverse: -5, 18, 29
inverse of f : 12
inverse of its graph: 12
invertibility, of triangular matrix: 41
invertible: -5, 12, 40, 48
involutory: 86
irreducible: 122, 135
isometry: -6, 72, 80, 91
item: 1
iteration: -7, 98
iteration map: 98
jth column: 23
jth column of A: 3
jth unit vector: 24
Jacobian: -5, 153
Jordan (canonical) form: 126
Jordan block: 126
Jordan form: -8
kernel: 28
Krylov sequence: -8
Krylov subspace: 109
Lagrange basis: 58
Lagrange fundamental polynomials: 58
least-squares: -6
least-squares solution: 69, 88
left inverse: -5, 14
left shift: 9
level lines: 155
linear: -6, 20, 130
linear combination of the vj : 43
linear combination of the vectors v1, v2, . . . , vn with
weights a1, a2, . . . , an: 23
linear functional: -6, 56, 94
linear constraint: 143
linear in its first argument: 64
linear inequalities, system of: 147
linear manifold: 149
linear map: -6
linear operator: 20
linear polynomial: 152
linear programming: 142
linear projector: -6

linear space: -6, 18
linear spaces of functions: -6
linear subspace: -6, 19
linear subspace, specification of: 28
linear transformation: 20
linearity: -6
linearly dependent on v1, v2, . . . , vn: 43
linearly independent: 43
linearly independent of v1, v2, . . . , vn: 43
list: 2
local minimizer: 154
lower triangular: 3
m× n-matrix: 3
main diagonal of A: 3
map: -5, 6, 7
map composition: -5, 13
map into Y given by the assignment f : 7
map norm: -7, 76, 77
mapping: 7
matrix: 3
matrix exponential: 99
matrix polynomial: -7
matrix representation for A: 91
max-norm: 78
maximally 1-1: 46
maximin Theorem: 158
maximizer: 154
minimal: 82, 122
minimal (annihilating) polynomial for A: 123
minimal polynomial: -8
minimal polynomial for A: 133
minimal polynomial for A at x: 107
minimally onto: 46
minimization: -8
minimizer for f : 154
modulus: 91, 167
monic: -8, 107
monomial of degree j: 28
monomorph(ic): 8
Moore-Penrose pseudo-inverse: 89
morphism: 7
multilinear: 130
multiplication by a scalar: -6
multiplicity: 129
n-dimensional coordinate space IFn: 19
n-list: 2
n-vector: -5, 2
natural basis: 51
natural basis for IFn: 43
natural numbers: 1
negative (semi)definite: 155
negative labeling: 103
nested form: 170
nested multiplication: 169
neutral: 18
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Newton polynomial: 42
Newton’s method: -5
nilpotent: -7, 124, 125, 132
non-defective: -8
nonbasic: 32
nonnegative: 91, 134
norm: -6
norm of a map: 77
norm, of a vector: 79
normal: -8, 120, 143
normal equation!69
normalize: 70
normed vector space: 79
nullspace: -6, 28
o.n.: -6, 71
octahedron: 5
onto: -5, 8, 40
operator: 7
optimization: 142
order: 3
orthogonal: 66, 67, 71, 73
orthogonal complement: 71
orthogonal direct sum: 68
orthonormal: -6, 71, 120
parity: 131, 162
permutation: 85
permutation matrix: -7, 81, 85, 107
permutation of order n: 9
permutation of the first n integers: 162
perpendicular: 66
Perron-Frobenius Theorem: 135
perturbations: -8
pigeonhole principle for square matrices: 40
pivot block: 166
pivot element: 35
pivot equation: 32
pivot row: 32
PLU factorization: -7
point: 149
pointwise: -6, 18, 54
polar decomposition: 91
polar form: 91, 167
polyhedron: 5
polynomials of degree ≤ k: 19
positive: 134
positive (semi)definite: 155
positive definite: 64, 79
positive orthant: 134
positive semidefinite: 87, 91
power method: 118
power sequence: -7, 16
power sequence of A: 112
power-bounded: 112
power-boundedness: -7
pre-dual: 97

pre-image of U under f : 6
primary decomposition for X wrto A: 124
prime factorization: 122
primitive nth root of unity: 141
principal: 133
product: 18
product of matrices: 25
product space: 54
projected problem: 88
projector: 15, 59
proper: 125
proper chain: 50
proper factor of q: 122
proper subset: 1
pseudo-inverse: 89
QR factorization: -7, 72
QR method: 109
quadratic form: -8, 154
range: -5, -6, 1
range of f : 6
rank: -7, 82
rank-one perturbation of the identity: 83
rational numbers: 1
Rayleigh quotient: -8, 157
Rayleigh’s Principle: 158
real: 2, 3
real numbers: 1
real part of z: 167
really reduced: 36
really reduced row echelon form: -6
really reduced row echelon form for
A ∈ IFm×n: 36

reciprocal: 167
reduced: 87
reduced row echelon form for A: 35
reducible: 135
reduction to a sum of squares: 156
refinement of the Gershgorin Circle

Theorem: 129
reflexive: 103
relation: 3
relative error: 75
relative residual: 75
represent: 96
representation: 95
representing: 43
residual: 75, 88, 144
right inverse: -5, 14
right shift: 9
right side: 21
right triangular: -7
right-handed: 137
root of unity: 141, 142
row: 56
row echelon form: -6, 34
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row echelon form for A: 36
row map: -6, 56
row space: 29
row vector: 2
rrref: -6
saddle point: 155
scalar: -5, 18
scalar field: 18
scalar multiplication: 18
scalar product: -5, 64
scaled power method: 118
Schur complement: -9, 166
Schur form: -7, 120
second-order: -8
self-inverse: 86
semidefinite: 155
Sherman-Morrison Formula: 31
similar: -7
similar to each other: 103
similarities: -7
similarity: -8
simple: 133
Simplex Method: 146
simplex with vertex set Q: 152
singular: 162
singular value: 87, 88
Singular Value Decomposition: -7, 87, 88
skew-homogeneous: 96
skew-symmetric: 64
slack variables: 144
slotwise: 54
smooth: -5
span of the sequence v1, v2, . . . , vn: 43
spanning for X : 43
Spectral Mapping Theorem: 132
spectral radius of A: 99
spectrum: -8, 99
square matrix: 3
stable: 112
stochastic: 98
strictly lower triangular: 86
strongly connected: 136
subadditive: 79
subset: 1
sum: 18, 52
surjective: 8
svd: 87
SVD: -7, 88
Sylvester’s determinant identity: -9, 166
Sylvester’s Law of Inertia: -8

symmetric: 103
symmetric part: 154
symmetry: 93
synthetic division: 169
target: -5, 6
Taylor series: 59
term: 1
test for invertibility: 128
thinning an onto column map: 45
Toeplitz: 142
topological dual: 95
trace: 74, 129
transformation: 7
transition matrix: 58
transitive: 103
translation: 147, 149
transpose: 3
triangle inequality: 79
triangular matrix: 41
tridiagonal: 142
trigonometric polynomial: 59
trivial map: 21
trivial space: 19, 43
truncated Fourier series: 59
two-point: 59
unimodular: 91, 142
union: 1
unique factorization domain: 122
uniqueness: -5, 8, 12
unit disk: 168
unit lower triangular: -7, 86
unit sphere: 75, 77
unitarily similar: 120
unitary: -7, 18, 73, 86, 120
upper: -7
upper triangular: -7, 3
value: 1
value of f at x: 6
Vandermonde: 73
vector: 18, 149
vector addition: -6, 18
vector norm: -7, 79
vector operations: -6
vector space: 18
vector-addition distributive: 18
vertex: 146
viewing angle: 148
Woodbury: 31
working-array: 32
Wronski matrix at x: 58


