

definition of divided difference

By [pagep111.pdf](#): “Newton form”, for every scalar sequence t_0, t_1, \dots , every polynomial p can be written in exactly one way in the form

$$p = \sum_k a_k(p, t) \prod_{0 \leq j < k} (\cdot - t_j).$$

Further, by [pagep112.pdf](#): “Polynomial interpolation: existence and uniqueness”,

$$P_n p = \sum_{k=0}^n a_k(p, t) \prod_{0 \leq j < k} (\cdot - t_j)$$

is the unique polynomial of degree $\leq n$ for which $p - P_n p$ is divisible by $\prod_{j=0}^n (\cdot - t_j)$. This implies, in particular, that the scalar $a_n(p, t)$ depends only on p and t_0, \dots, t_n , and this is reflected in any of the many notations for it:

$$a_n(p, t) =: p(t_0, \dots, t_n) =: p[t_0, \dots, t_n] =: [t_0, \dots, t_n]p =: \delta_{t_0, \dots, t_n} p =: \dots$$

I prefer W. Kahan’s literal symbol ^{*)} (a cap Delta with a vertical bar dividing it), and so set

$$a_n(p, t) =: \Delta(t_0, \dots, t_n)p$$

since $a_n(p, t)$ is, by definition, the divided difference of p at t_0, \dots, t_n .

Thus

$$p =: \sum_{k=0}^{\infty} \Delta(t_0, \dots, t_k) \prod_{0 \leq j < k} (\cdot - t_j).$$

For more general functions f , $\Delta(t_0, \dots, t_n)f$ is defined analogously as the leading coefficient, i.e., the coefficient of $(\cdot)^n$ in the power form, for the polynomial $P_n f$ of degree $\leq n$ that agrees with f at t_0, \dots, t_n in the sense that $f - P_n f = (\cdot - t_0) \cdots (\cdot - t_n)q$ for some well-defined function q .

An early good reference (but missing the Leibniz formula and misattributing the Genocchi-Hermite formula) is [Steffensen27a](#).

05apr04

^{*)} \def\dvd#1{\mathord{\kern.43em\hrule width.6pt height5.95pt depth.28pt\kern-.43em\Delta(#1)}}