

Newton form

For any $p \in \Pi_n$ and any scalar sequence c_1, \dots, c_n , there exists exactly one choice of coefficients a_0, \dots, a_n so that

$$p = \sum_{k=0}^n a_k \prod_{j=1}^k (\cdot - c_j).$$

This is the Newton form with centers c_1, \dots, c_n for p , and its existence and uniqueness readily follows from the fact that the sequence

$$(w_k := \prod_{j=1}^k (\cdot - c_j) : k = 0, \dots, n)$$

is linearly independent and in the $n + 1$ -dimensional linear space Π_n , hence a basis for it.

The efficient evaluation of the Newton form is by nested multiplication aka Horner's method. In this method, one takes advantage of the fact that $w_k = (\cdot - c_k)w_{k-1}$, all k , to write p in nested form,

$$p = a_0 + (\cdot - c_1) (a_1 + (\cdot - c_2) (\dots + (\cdot - c_{n-1}) (a_{n-1} + (\cdot - c_n) a_n) \dots)),$$

and then, for any particular scalar z , obtains $p(z)$ by evaluating this nested expression from the inside out. This gives the following algorithm.

$b_n := a_n$; **for** $k = n-1:-1:0$, $b_k := a_k + (z - c_{k+1})b_{k+1}$; **endfor**

with b_0 equal to $p(z)$.

More than that, since, in this way, $a_k = b_k + (c_{k+1} - z)b_{k+1}$ for $k < n$ and $a_n = b_n$, it follows that

$$p = \sum_{k=0}^n a_k w_k = b_0 + (\cdot - z) \sum_{j=1}^n b_j w_{j-1}.$$

In other words, the sequence b_0, \dots, b_n generated in Horner's algorithm provides the coefficients in the Newton form for p with centers z, c_1, \dots, c_{n-1} .

This also makes clear why Horner's method can be (and has been) thought of as an algorithm for dividing p by the linear polynomial $(\cdot - z)$.

26jul03