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Collapse

• Complete collapse: All embeddings collapse to a trivial constant solution, 
e.g., zero.


• Especially a big problem in non-contrastive SSL.


• Contrastive SSL prevents this by using positive-negative pairs.


• Dimensional collapse: Embeddings span a lower-dimensional subspace 
rather than the entire embedding space.


• Shown to happen in non-contrastive SSL


• This work shows that it happens in contrastive SSL as well
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Dimensional Collapse

• Caused by strong augmentation 

• Caused by implicit regularization



Dimensional Collapse by Strong Augmentation

• Linear model


• Input vector is , model parameter is  


• Augmentation is additive noise 


• InfoNCE is used

x W ⟹ z = Wx
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Dimensional Collapse

• Caused by strong augmentation 

• Caused by implicit regularization



Dimensional Collapse by Implicit Regularization

• Linear model with InfoNCE may not hold for real cases.


• Even when there is no strong augmentation, dimensional collapse still 
happens in deep networks in practice.


• Why?


• Implicit regularization: Over-parametrized linear networks tend to find 
low-rank solutions.



Dimensional Collapse by Implicit Regularization

• Two layer linear MLP without bias.


• Input is .  are the parameters 


• Augmentation is additive noise.


• InfoNCE is used.

x W1, W2 ∈ ℝd×d ⟹ z = W2W1x ∈ ℝn



Dimensional Collapse by Implicit Regularization

PD with small augmentation



Dimensional Collapse by Implicit Regularization

• 


• Check the alignment between  and .


•  where 


• 


• The interaction is governed by the alignment matrix 


• the alignment between the  right singular vector of  and the  left 
singular vector of .

G = − W2W1X

W2 W1

W1 = U1Σ1V⊤
1 , W2 = U2Σ2V⊤

2 Σ1 = diag([σk
1]), Σ2 = diag([σk

2])

W2W1 = U2Σ2V⊤
2 U1Σ1V⊤

1

A = V⊤
2 U1

Ak,j = kth W2 jth

W1
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DirectCLR

• Pick a subvector  of the 
representation


• Apply InfoNCE on normalized subvector 

z = r[0 : d0]

̂z = z / |z |
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DirectCLR

• What kind of useful information can , i.e., the 
part of the representation that is not selected for 
gradient update, contain?


• In fact, the entire representation vector  is trained. 


• The excluded subvector of the representation is 
copied from the layer before the last residual block.


• It is not updated by gradient directly from loss 
function, but by gradient through the last 
convolution block. 


• A linear probe only on the selected part gives 
47.9% accuracy on ImageNet, which is a lot less 
than 62.7 with the whole representation, meaning 
that the rest of  still contains useful info.
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