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Collapse

 Complete collapse: All embeddings collapse to a trivial constant solution,
e.g., Zero.

* Especially a big problem in non-contrastive SSL.
* Contrastive SSL prevents this by using positive-negative pairs.

 Dimensional collapse: Embeddings span a lower-dimensional subspace
rather than the entire embedding space.

 Shown to happen in hon-contrastive SSL

 This work shows that it happens in contrastive SSL as well
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Figure 1: Illustration of the collapsing problem. For complete collapse, the embedding vectors collapse to
same point. For dimensional collapse, the embedding vectors only span a lower dimensional space.
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Figure 2: Singular value spectrum of the embedding space. The embedding vectors are computed from a
pretrained SImCLR model on the validation set of ImageNet. Each embedding vector has a dimension of 128.
The spectrum contains the singular values of the covariance matrix of these embedding vectors in sorted order
and logarithmic scale. About 30 singular values drop to zero, indicating those dimensions in the embedding
space have collapsed.



Dimensional Collapse

 Caused by strong augmentation



Dimensional Collapse by Strong Augmentation

e | Inear model

 |Input vector is x, model parameteris W — 7z = Wx

 Augmentation is additive noise

N
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Dimensional Collapse by Strong Augmentation

Lemma 1. The weight matrix in a linear contrastive self-supervised learning model evolves by:
W =—@G (3)
where G = Zi(gZix;f + gz/_x,’b-T), and g, is the gradient on the embedding vector z; (similarly g,/ ).

B.1 PROOF OF LEMMA 1

The gradient on matrix W 1s
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Dimensional Collapse by Strong Augmentation
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where {a;;} are the softmax of similarity of between z; and {z;}, defined by a;; = exp(—|z; —
2j|%/2)/Z;, oy = exp(—|z; — Z}|/2),and Z; = Y, exp(—|z; — 2;]°/2) + exp(—|z; — 2{|*/2).
Hence, ) ; aij = 1. Since z; = Wx;, we have

G=-WX ®)
where

— Z Zaz‘j(xg —X;) + Zaji(Xi —x;) | x] — Z(l — ;) (X — XZ)X'T (6)
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Lemma 2. X is a difference of two PSD matrices:

X =2 — 21 (7)
Here 3 = Z O‘zy( —x;)(x; — x,;)T is a weighted data distribution covariance matrix and
3 = > am)(x —x;)(x! — x;)T is a weighted augmentation distribution covariance matrix.

See proof in Appendix B.2. Theretfore, the amplitude of augmentation determines whether X i1s a
positive definite matrix.




Dimensional Collapse by Strong Augmentation

Theorem 1. With fixed matrix X (defined in Eqn 6) and strong augmentation such that X has
negative eigenvalues, the weight matrix W has vanishing singular values.

Proof. According to Lemma 1, we have

d
CW — WX 23

For a fixed X, we solve this equation analyically,
W (t) = W(0) exp(Xt)

Apply eigen-decomposition on X, X = UAU?. Then we have exp(Xt) = U exp(At)U*. There-
fore,

W(t) = W(0)U exp(At)U*

Because X has negative eigenvalues, i.e., A has negative terms, we have for ¢ — oo, exp(At) is rank
deficient. Therefore, we know that W (o0) is also rank deficient, the weight matrix W has vanishing
singular values.




Dimensional Collapse by Strong Augmentation

Corollary 1 (Dimensional Collapse Caused by Strong Augmentation). With strong augmentation,
the embedding space covariance matrix becomes low-rank.

The embedding space 1s 1dentified by the singular value spectrum of the covariance matrix on the
embedding (Eqn. 1), C = Y .(z; — Z)(z; — 2)1 /N = >, W(x; — X)(x; — X)?W?* /N. Since W
has vanishing singular values, C is also low-rank, indicating collapsed dimensions.




Dimensional Collapse

 Caused by implicit regularization



Dimensional Collapse by Implicit Regularization

* Linear model with INfoNCE may not hold for real cases.

 Even when there Is no strong augmentation, dimensional collapse still
happens In deep networks In practice.

e Why?

* Implicit regularization: Over-parametrized linear networks tend to find
low-rank solutions.



Dimensional Collapse by Implicit Regularization

* [wo layer linear MLP without bias.

. Input is x. W;, W, € R are the parameters = 7z = W,W,x € R"

 Augmentation is additive noise.

e INfONCE is used.
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Dimensional Collapse by Implicit Regularization
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Dimensional Collapse by Implicit Regularization

 Check the alignment between W, and W;.

. W, = UV, W, = UX,V, where ¥, = diag([c}]), X, = diag([65])

» WOW, = U,2,V, U2 V)
« The interaction is governed by the alignment matrix A = V2T U,

o Akj = the alignment between the k" right singular vector of W, and thejth left
singular vector of W;.



Dimensional Collapse by Implicit Regularization

Theorem 2 (Weight matrices align). If for all t, Wy (t)W1(t) # 0, X(t) is positive-definite and
W1 (400), Wa(+00) have distinctive singular values, then the alignment matrix A = V;t Uy — 1.

Figure 4: Visualization of the alignment matrix A = V5’ U; after training. The setting is a 2-layer linear toy
model with each weight matrix of the size of 16x16. The alignment matrix converges to an identity matrix.




Dimensional Collapse by Implicit Regularization

Theorem 3. If Wy and W1 are aligned (i.e., Vo = Ui ), then the singular values of the weight
matrices W1 and W under InfoNCE loss evolve by:

ok = k()2 Xvh), ok = ok (k)2 kT Xvk) (11)

See proof in Appendix B.6. According to Eqn. 11, (05)? = (05)? + C. We solve the singular
value dynamics analytically: 0¥ = o*((c%)2 + C)(vk" Xvk). This shows that a pair of singular
values (singular values with same ranking from the other matrix) have gradients proportional to

themselves. Notice that X is a positive definite matrix, the term v¥~ Xv¥ is always non-negative.
This explains why we observe that the smallest group of singular values grow significantly slower.




Dimensional Collapse by Implicit Regularization
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Figure 5: Evolution of the singular values of the weight matrices and the embedding space covariance matrix.
The setting 1s a 2-layer linear toy model with each weight matrix of the size of 16x16. The lowest few singular
values of each weight matrix remain significantly smaller.




Dimensional Collapse by Implicit Regularization

Corollary 2 (Dimensional Collapse Caused by Implicit Regularization). With small augmentation
and over-parametrized linear networks, the embedding space covariance matrix becomes low-rank.

The embedding space 1s i1dentified by the singular value spectrum of the covariance matrix on the
embedding vectors, C = > (z—Z)(z — 2)I /N = Y WoWi(x — X)(x — X)IW{WS /N. As
Wy W7 evolves to be low-rank, C' is low-rank, indicating collapsed dimensions. See Figure Sc for
experimental verification.




Dimensional Collapse by Implicit Regularization
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(a) multiple layers (b) nonlinear

Figure 6: Embedding space singular value spectrum with (a) different layers; (b) nonlinearity. All models
use weight matrices with a size of 16x16. Adding more linear layers in the network leads to more collapsed

dimensions. Adding nonlinearity leads to a similar collapsing effect (here L = 2).
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(b) Representation space spectrum

Figure 7: (a) Definition of representation and the embedding space; (b) Singular value spectrums of the
representation space of pretrained contrastive learning models (pretrained with or without a projector). The
representation vectors are the output from the ResNet50 encoder and directly used for downstream tasks. Each
representation vector has a dimension of 2048. Without a projector, SImCLR suffers from dimensional collapse

in the representation space.




Projector

1. The gradient will drive the projector weight matrix aligned with the last layer of the encoder
backbone. We suspect that such alignment effect V) U; — I only requires one of V, and
U to evolve. Therefore, the projector weight matrix only needs to be diagonal.

2. The projector only applies a gradient to a subspace to the representations. Therefore, the
projector weight matrix only needs to be low-rank.




DirectCLR
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DirectCLR

Loss function Projector Top-1 Accuracy
S1imCLR 2-layer nonlinear projector 66.5
S1imCLR 1-layer linear projector 61.1
S1imCLR no projector 91D
DirectCLR no projector 62.7

Table 1: Linear probe accuracy on ImageNet. Each model is trained on ImageNet for 100 epochs with standard

training recipe. The backbone encoder 1s a ResNet50. DirectCLR outperforms S1mCLR with 1-layer linear
projector.
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DirectCLR

» What kind of useful information can r[d, :], i.e., the

part of the representation that is not selected for
gradient update, contain?

* |In fact, the entire representation vector r is trained.

Residual connection

* The excluded subvector of the representation is . -
copied from the layer before the last residual block. low-rank 4
71— InfoNCE
X h \‘ T loss
* |t is not updated by gradient directly from loss ~ .
function, but by gradient through the last
convolution block. Conv Blocks Conv Block Representations

* A linear probe only on the selected part gives
47.9% accuracy on ImageNet, which is a lot less
than 62.7 with the whole representation, meaning

that the rest of r still contains useful info.



