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What about molecules?
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Challenge: Representation WISCONSIN
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Input to traditional machine learning models: vectors
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Challenge: Representation WISCONSIN

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?
m Fingerprints e.g. Morgan fingerprints
m Graph kernels e.g. WL-kernel
m Graph neural networks (GNN): GCN, Weave
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Challenge: Representation WISCONSIN

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?
m Fingerprints e.g. Morgan fingerprints
m Graph kernels e.g. WL-kernel
m Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute.
GNNs are end-to-end supervised, more expensive; but powerful.
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(Simple) N-gram Graph WISCONSIN
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Our previous work ! is inspired by the N-gram approach in NLP.

m Unsupervised
m Fast to compute

m Overall better performance than traditional methods

Liu, Shengchao, Mehmet F. Demirel, and Yingyu Liang. "N-gram graph: Simple
unsupervised representation for graphs, with applications to molecules.” Advances in
Neural Information Processing Systems. 2019.
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N-gram approach in NLP WISCONSIN
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n-gram is a contiguous sequence of n words from a given sentence.
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N-gram approach in NLP WISCONSIN
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n-gram is a contiguous sequence of n words from a given sentence.

“I'love living in Madison”
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N-gram approach in NLP WISCONSIN
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n-gram is a contiguous sequence of n words from a given sentence.
“I love living in Madison”

m 2-grams: “| love”
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N-gram approach in NLP WISCONSIN
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n-gram is a contiguous sequence of n words from a given sentence.
“I love living in Madison”

m 2-grams: “l love”, “love living”
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N-gram approach in NLP WISCONSIN
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n-gram is a contiguous sequence of n words from a given sentence.
“I love living in Madison”

m 2-grams: “l love”, “love living”, “living in”
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n-gram is a contiguous sequence of n words from a given sentence.

“I'love living in_ Madison”

m 2-grams: “| love”, “love living”, “living in”, "in Madison”
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N-gram approach in NLP WISCONSIN
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n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

m 1l-grams: “I”, “love”, “living”, “in ", “Madison”
m 2-grams: “l love”, “love living”, “living in”, "“in Madison”
m 3-grams: "l love living”, “love living in”, “living in Madison”

N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules



N-gram approach in NLP WISCONSIN

n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector ¢(,) is a numeric representation vector:
m its coordinates correspond to all n-grams

m its coordinate values are the number of times the corresponding
n-gram shows up in the sentence
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N-gram approach in NLP WISCONSIN
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n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector ¢(,) is a numeric representation vector:
m its coordinates correspond to all n-grams

m its coordinate values are the number of times the corresponding
n-gram shows up in the sentence

Notice that ¢(1) is just the histogram of the words in the sentence.
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Dimensionality Reduction WISCONSIN
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Problem: N-gram vector c(,) has high dimensions: [V|" for vocabulary V.
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Dimensionality Reduction WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

Problem: N-gram vector c(,) has high dimensions: [V|" for vocabulary V.

Solution: Dimensionality reduction by word embeddings: f1) = W¢(y)
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Dimensionality Reduction WISCONSIN
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Problem: N-gram vector c(,) has high dimensions: [V/|" for vocabulary V.

Solution: Dimensionality reduction by word embeddings: f1) = W¢(y)

N-Gram Graph:



Dimensionality Reduction
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WISCONSIN
Problem: N-gram vector c(,) has high dimensions: [V/|" for vocabulary V.
Solution: Dimensionality reduction by word embeddings: f1) = W¢(y)

EEN
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ith column is the embedding vector for the it word in the vocabulary

[m]

f(1) is just the sum of the word vectors in the sentence!
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Dimensionality Reduction WISCONSIN

Problem: N-gram vector c(,) has high dimensions: |V|" for vocabulary V.

Solution: Dimensionality reduction by word embeddings: f1) = Wc(y)

For general n:
m Embedding of an n-gram is the entry-wise product of its word vectors.

m f(,) is the sum of the embeddings of the n-grams in the sentence.
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N-gram graphs? WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!
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N-gram graphs? WISCONSIN

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

We can view:
m atoms with different attributes as different words

m walks of length n as n-grams.

H=C
i CICTHIRIE=E

H=0—C—0 IR NN
A molecule Its 2-grams
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N-gram Graph algorithm WISCONSIN

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

Given the embeddings for the atoms (vertex vectors):
m Enumerate all n-grams (walks of length n)
m Embedding of an n-gram: entry-wise product of its vertex vectors
m f(;): sum of embeddings of all n-grams

m Final N-gram Graph embedding fg: concatenation of f(y), f(2), ..., f(T)
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N-gram Graph as simple GNN WISCONSIN

Given vectors f; for vertices i and graph adjacency matrix A:

F(]_) :F: [ﬂ,...,fm],f(l) = F(l)]'
for each n € [2, T] do
Finy = (F—1)A) © F

fin) = Fn)1
end for

fe = [fyi - )l

Equivalent to a simple GNN without any parameters!
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Experimental Results WISCONSIN
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60 tasks on 10 datasets from MoleculeNet 2.

Methods:
m WL-Kernel + SVM
m Morgan FP + RF or XGB

m Graph CNN (GCNN), Weave Neural Network, Graph Isomorphism
Network (GIN)

m N-gram Graph + RF or XGB
m Vertex embedding dimension r =100 and 7 =6

2Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine learning.”
Chemical science 9.2 (2018): 513-530
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Experimental Results WISCONSIN
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N-gram Graph + XGB: top-1 in 21 and top-3 in 48 out of 60 tasks
Overall better performance than other methods

Table 2: Performance overview: (# of tasks with top-1 performance, # of tasks with top-3 performance) is listed
for each model and each dataset. For cases with no top-3 performance on that dataset are left blank. Some
models are not well tuned or too slow and are left in “-”.

WL Morgan | Morgan

| Dataset | # Task | Eval Metric | gyt RE o | GONN | Weave | GIN ‘ N'g;f‘m N;(Gcrgm ‘
Delaney i RMSE L1 = 0,1 0,1
Malaria 1 RMSE 1,1 - 0,1 0,1
CEP 1 RMSE L1 - 0,1 0,1
QM7 1 MAE 0,1 - 0,1 1,1
QMs 12 MAE 1,4 0,1 7,12 2,6 - 0,2 2,11
QM9 12 MAE - 0,1 4,7 1,8 - 0,8 7,12
Tox21 12 ROC-AUC | 0,2 0,7 0,2 0,1 3,12 9,12
clintox 2 ROC-AUC | 0,1 1,2 0,1 1,2
MUV 17 PR-AUC | 4,12 | 511 5,11 0,7 2,4 1,6
HIV 1 ROC-AUC 1,1 0,1 0,1
Overall 60 715 | 9,25 5,13 12,23 | 4,18 | 0,7 | 5,31 21,48
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Theoretical Analysis WISCONSIN
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Recall fi1) = Wc)
m WV is the vertex embedding matrix.
B (1) is the count vector.
With sparse c(;) and random W, ¢(1) can be recovered from f(y).

m Well-known in compressed sensing.
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Theoretical Analysis WISCONSIN
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Recall fi1) = Wc)

m WV is the vertex embedding matrix.
B (1) is the count vector.
With sparse c(;) and random W, ¢(1) can be recovered from f(y).

m Well-known in compressed sensing.

In general, f,y = T(,)¢(n) for some linear mapping T(,) depending on V.

With sparse c(,,) and random W, ¢(,,) can be recovered from f,).
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Theoretical Analysis WISCONSIN

Recall fi1) = Wc)
m WV is the vertex embedding matrix.
B (1) is the count vector.
With sparse c(;) and random W, ¢(1) can be recovered from f(y).

m Well-known in compressed sensing.

In general, f,y = T(,)¢(n) for some linear mapping T(,) depending on V.

With sparse c(,,) and random W, ¢(,,) can be recovered from f,).

Therefore, f(,) preserves information in ¢(,).

Furthermore, we can prove that regularized linear classifier on f,) is
competitive to the best linear classifier on c(,.
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Current work: Parametric N-gram Graph'\{[)) WISCONSIN

The (simple) N-gram graph algorithm has no parameter and requires no
training. Therefore, it is efficient in computation. However:

m Huge design space for adding trainable parameters.

m Concatenated with a classifier, it becomes end-to-end.

Why parametrize the algorithm, though?
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Weighted Vertex Features WISCONSIN

Some features are more important, some are dummy features.
m Automatic weighting of vertex features

m Better representation

Given vectors F = [fi, ..., ]
for m vertices and graph
adjacency matrix A:

Fay = F . fa) = Fu)l

for each n € [2, T] do
Finy = (Fn_1)A) © F
fn) = Fim1

end for

fe = [fyi - (1)l
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Weighted Vertex Features WISCONSIN
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Some features are more important, some are dummy features.
m Automatic weighting of vertex features
m Better representation

Given vectors F = [fy,. .., fm]
for m vertices and graph
adjacency matrix A:

Fay = o(WiF) , fy = Fp)l
for each n € [2, T] do
F(n) = (F(n—l)A) ®©F

fin) = Fn)1
end for

fe = [fyi - ]

N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules



Weighted Vertex Features WISCONSIN

Some features are more important, some are dummy features.
m Automatic weighting of vertex features

m Better representation

Given vectors F = [fy,. .., fm]
for m vertices and graph

[y TR A Then for a vertex embedding

f;, Wi f; will stretch its
components along W;'s
Foy = ()| fvy = Fyl larger singular vectors while
for each n € 2, T] do relatively shrink the
Finy = (Fn-)A) © F components along the smaller
fn) = Fm1 ones.
end for

fe = [fyi - ]
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Attentive Messages WISCONSIN

Some nodes have more impact on their neighbors.

m Weighted sum of latent vectors from neighbors (with attention).

Given vectors F = [fi, ..., fy] for m
vertices and graph adjacency matrix A:

Fay = o(WiF), fy = Fpyl
for each n € [2, T] do
F(,,) = (F(,,_l).A) OF
fin) = Fm)1
end for
fe = [fyi - fm)l
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Attentive Messages WISCONSIN

Some nodes have more impact on their neighbors.
m Weighted sum of latent vectors from neighbors (with attention).

Given vectors F = [fi, ..., fy] for m
vertices and graph adjacency matrix A:

F(l):O'(WlF)vf(l):F(l)l i = [F TW F i

for each n € [2, T] do % = ol Welfto-n)
F(n) = (F(n—l)(A @ S)) @ F(l) EJI - keneige;':fssiif)i €XP Ski
fin) = Fim1

end for
fo = [fy;- - fim)
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Attentive Messages: Visualization

mutagenic effect in a molecule.

WISCONSIN
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Mutagenicity dataset: NO, and NH, atom groups are known to have a
Molecule 600
-4

6‘@
©y0
%:::0 ————— ﬁ ﬁ ----- -0
o o
8
g @

o 1 2

Molecule 600 node importance

Sc 6 7w B % 10 1ly 12 13 1y 154 16 17 18, 10, 20, 21y 224 23
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Weighted Summarization of Vertices WISCONSIN

Similar to the previous case in the vertex feature space, the downstream
learning tasks may prefer certain directions in the final embedding space.

Given vectors F = [fi, ..., fy] for m
vertices and graph adjacency matrix A:

Fay = o(WiF), 1y = Fpyl

i = [F(n— Tw. Fin—1)li
for each n € [2, T] do sit = [Fn-1)l; WalF(n-1)]

F( ) = (F( _I)A) @ F ___ — eXp(Sj,')
f(:) — F(n;11 SJI Zkeneighbors of i €XP Ski
end for

fe = [fyi - )l
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Weighted Summarization of Vertices WISCONSIN

Similar to the previous case in the vertex feature space, the downstream
learning tasks may prefer certain directions in the final embedding space.

Given vectors F = [fy,..., ] for m
vertices and graph adjacency matrix A:

F(1) S O'(WlF), fil) = F(l)l - —IF, TW E '
for each n € [2, T] do . si = (n—l)]J | (n—l)]l
Finy = (F-1)(A© 5)) © F) [ exp(sj)
s ZkEnei hbors of i €XP Ski
fliny = a( W3F(,,))l o

end for
fe = [fyi - 1)l
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Parametric N-gram: Experiments WISCONSIN

Preliminary experimental results on some classification tasks (the best
model on each task is underlined and the top-3 are bolded).

Task Metric FP+RF  FP+XGB WL  GONN NGran [gscametc
RF N-gram
NR-AR ROC-AUC 07633 07524 07009 07615 0.7696 0.7819
NR-AR-LBD ROC-AUC 08579 08523 08609 08443 0.8629 0.8676
NR-AR ROC-AUC 08904 08847 08758  0.8863 08772
NR-Aromatasse ~ ROC-AUC 08214 07978 08185 08277 0.8523
NR-ER ROC-AUC 07257 07228 07371 07378
NR-ER-LBD ROC-AUC 08383 08062 08134 0.8308
NRPPAR-gamma  ROC-AUC 08400 08219 08164 0.8054
SR-ARE ROC-AUC 08204 07990 0.8093 0.8385
SR-ATADS ROC-AUC 08495 08091 08273 0.8526
ROC-AUC 07969 07586 07742 0.8012
ROC-AUC 08897 08801 08771 0.8842
ROC-AUC 08445 08255 08179 0.8462
ROC-AUC 07708 08133 0.8600 0.8277
ROC-AUC 07753 07952 0.8664 0.7949
OC-AUC 08558 0.8452 08131 0.8262
ROC-AUC 07653 07377 07359 07155
ROC-AUC 09020 09535 09599 0.8097
ROC-AUC 05063 05360 0.5699 0.6746
ROC-AUC 08927 08642 0.8854 0.6692
ROC-AUC 07217 07247 06942 0.5693
ROC-AUC 06762 05887 06711 0.6188
ROC-AUC 06509  0.6931 0.5809 04979
ROC-AUC 09272 08997 09358 08121
ROC-AUC 05471 05538 07314 0.6734
ROC-AUC 07090 06276 07507 0.6903
ROC-AUC 07367 07910 0.7960 0.8792
ROC-AUC 07816 07943 07140 0.4921
ROC-AUC 0. 0.9802 09264 0.8890
ROC-AUC 08770 08708 09109 07814
ROC-AUC 08921 08898 0.8823 0.8050
ROC-AUC 05291 07011 07051 0.4391
MUV-859 ROC-AUC 04581 05295 0.6128 0.5776

for Graphs, h Applications to Molecules
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Thank you!
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