

N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules

Mehmet F. Demirel, Shengchao Liu, Siddhant Garg, Yingyu Liang

IFDS Ideas Forum

December 21, 2020

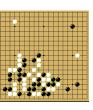
Machine Learning Everywhere

Department of Computer Sciences, University of Wisconsin-Madison

Computer Vision

Medical Imaging

NLP



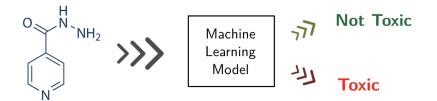
Game Playing

And more!

What about molecules?

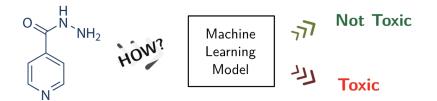
Molecular Property Prediction

Department of Computer Sciences, University of Wisconsin-Madison



Molecular Property Prediction

Department of Computer Sciences, University of Wisconsin-Madison



Challenge: Representation

Department of Computer Sciences, University of Wisconsin-Madison

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?

- Fingerprints *e.g.* Morgan fingerprints
- Graph kernels *e.g.* WL-kernel
- Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute.

GNNs are end-to-end supervised, more expensive; but powerful.

Challenge: Representation

Department of Computer Sciences, University of Wisconsin-Madison

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?

- Fingerprints *e.g.* Morgan fingerprints
- Graph kernels *e.g.* WL-kernel
- Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute.

GNNs are end-to-end supervised, more expensive; but powerful.

Challenge: Representation

Department of Computer Sciences, University of Wisconsin-Madison

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?

- Fingerprints *e.g.* Morgan fingerprints
- Graph kernels *e.g.* WL-kernel
- Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute. GNNs are end-to-end supervised, more expensive; but powerful.

(Simple) N-gram Graph

Department of Computer Sciences, University of Wisconsin-Madison

Our previous work 1 is inspired by the **N-gram approach in NLP**.

- Unsupervised
- Fast to compute
- Overall better performance than traditional methods

¹Liu, Shengchao, Mehmet F. Demirel, and Yingyu Liang. "N-gram graph: Simple unsupervised representation for graphs, with applications to molecules." Advances in Neural Information Processing Systems. 2019.

Department of Computer Sciences, University of Wisconsin-Madison

n-gram is a contiguous sequence of n words from a given sentence.

"I love living in Madison"

Department of Computer Sciences, University of Wisconsin-Madison

n-gram is a contiguous sequence of n words from a given sentence.

"I love living in Madison"

Department of Computer Sciences, University of Wisconsin-Madison

n-gram is a contiguous sequence of n words from a given sentence.

"<u>I love</u> living in Madison"

■ 2-grams: "I love"

 $\label{eq:decomputer_sciences} \textbf{Department of Computer Sciences, University of } \underline{\textbf{Wisconsin-Madison}}$

n-gram is a contiguous sequence of n words from a given sentence.

"I **love living** in Madison"

■ 2-grams: "I love", "love living"

Department of Computer Sciences, University of Wisconsin-Madison

n-gram is a contiguous sequence of n words from a given sentence.

"I love **living in** Madison"

■ 2-grams: "I love", "love living", "living in"

Department of Computer Sciences, University of Wisconsin-Madison

n-gram is a contiguous sequence of n words from a given sentence.

"I love living in Madison"

■ 2-grams: "I love", "love living", "living in", "in Madison"

Department of Computer Sciences, University of Wisconsin-Madison

n-gram is a contiguous sequence of n words from a given sentence.

"I love living in Madison"

- 1-grams: "I", "love", "living", "in ", "Madison"
- 2-grams: "I love", "love living", "living in", "in Madison"
- **3-grams:** "I love living", "love living in", "living in Madison"

Department of Computer Sciences, University of Wisconsin-Madison

n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector $c_{(n)}$ is a numeric representation vector:

- its coordinates correspond to all n-grams
- its coordinate values are the number of times the corresponding n-gram shows up in the sentence

Notice that $c_{(1)}$ is just the histogram of the words in the sentence.

Department of Computer Sciences, University of Wisconsin-Madison

n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector $c_{(n)}$ is a numeric representation vector:

- its coordinates correspond to all n-grams
- its coordinate values are the number of times the corresponding n-gram shows up in the sentence

Notice that $c_{(1)}$ is just the histogram of the words in the sentence.

Department of Computer Sciences, University of Wisconsin-Madison

Problem: N-gram vector $c_{(n)}$ has high dimensions: $|V|^n$ for vocabulary V.

Solution: Dimensionality reduction by word embeddings: $f_{(1)} = Wc_{(1)}$

Department of Computer Sciences, University of Wisconsin-Madison

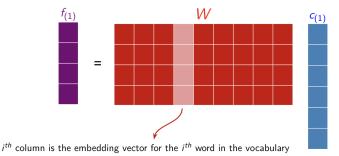
Problem: N-gram vector $c_{(n)}$ has high dimensions: $|V|^n$ for vocabulary V.

Solution: Dimensionality reduction by word embeddings: $f_{(1)} = Wc_{(1)}$

Department of Computer Sciences, University of Wisconsin-Madison

Problem: N-gram vector $c_{(n)}$ has high dimensions: $|V|^n$ for vocabulary V.

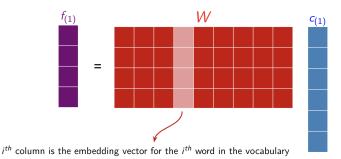
Solution: Dimensionality reduction by word embeddings: $f_{(1)} = Wc_{(1)}$



Department of Computer Sciences, University of Wisconsin-Madison

Problem: N-gram vector $c_{(n)}$ has high dimensions: $|V|^n$ for vocabulary V.

Solution: Dimensionality reduction by word embeddings: $f_{(1)} = Wc_{(1)}$



 $f_{(1)}$ is just the sum of the word vectors in the sentence!

Department of Computer Sciences, University of Wisconsin-Madison

Problem: N-gram vector $c_{(n)}$ has high dimensions: $|V|^n$ for vocabulary V.

Solution: Dimensionality reduction by word embeddings: $f_{(1)} = Wc_{(1)}$

For general n:

- Embedding of an *n*-gram is the entry-wise product of its word vectors.
- $f_{(n)}$ is the sum of the embeddings of the *n*-grams in the sentence.

N-gram graphs?

Department of Computer Sciences, University of Wisconsin-Madison

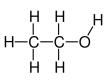
Sentences are linear graphs on words. **Molecules** are graphs on atoms with attributes!

Sentences are linear graphs on words.

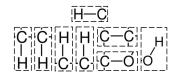
Molecules are graphs on atoms with attributes!

We can view:

- atoms with different attributes as different words
- \blacksquare walks of length n as n-grams.



A molecule



Its 2-grams

N-gram Graph algorithm

Department of Computer Sciences, University of Wisconsin-Madison

Sentences are linear graphs on words. **Molecules** are graphs on atoms with attributes!

Given the embeddings for the atoms (vertex vectors):

- Enumerate all n-grams (walks of length n)
- \blacksquare Embedding of an n-gram: entry-wise product of its vertex vectors
- $f_{(n)}$: sum of embeddings of all *n*-grams
- Final N-gram Graph embedding f_G : concatenation of $f_{(1)}, f_{(2)}, \dots, f_{(T)}$

N-gram Graph as simple GNN

Department of Computer Sciences, University of Wisconsin-Madison

Given vectors f_i for vertices i and graph adjacency matrix A:

$$F_{(1)} = F = [f_1, \dots, f_m], f_{(1)} = F_{(1)} \mathbf{1}$$

for each $n \in [2, T]$ do
 $F_{(n)} = (F_{(n-1)} A) \odot F$
 $f_{(n)} = F_{(n)} \mathbf{1}$
end for
 $f_G = [f_{(1)}, \dots, f_{(T)}]$

Equivalent to a simple GNN without any parameters!

Experimental Results

Department of Computer Sciences, University of Wisconsin-Madison

60 tasks on 10 datasets from MoleculeNet ².

Methods:

- WL-Kernel + SVM
- Morgan FP + RF or XGB
- Graph CNN (GCNN), Weave Neural Network, Graph Isomorphism Network (GIN)
- \blacksquare N-gram Graph + RF or XGB
- Vertex embedding dimension r=100 and T=6

Experimental Results

Department of Computer Sciences, University of Wisconsin-Madison

N-gram Graph + XGB: top-1 in 21 and top-3 in 48 out of 60 tasks Overall better performance than other methods

Table 2: Performance overview: (# of tasks with top-1 performance, # of tasks with top-3 performance) is listed for each model and each dataset. For cases with no top-3 performance on that dataset are left blank. Some models are not well tuned or too slow and are left in "-".

Dataset	# Task	Eval Metric	WL SVM	Morgan RF	Morgan XGB	GCNN	Weave	GIN	N-Gram RF	N-Gram XGB
Delaney	1	RMSE					1, 1	-	0, 1	0, 1
Malaria	1	RMSE		1, 1				-	0, 1	0, 1
CEP	1	RMSE		1, 1				-	0, 1	0, 1
QM7	1	MAE					0, 1	-	0, 1	1, 1
QM8	12	MAE		1, 4	0, 1	7, 12	2, 6	-	0, 2	2, 11
QM9	12	MAE	-		0, 1	4, 7	1, 8	-	0, 8	7, 12
Tox21	12	ROC-AUC	0, 2	0, 7		0, 2	0, 1		3, 12	9, 12
clintox	2	ROC-AUC	0, 1			1, 2	0, 1			1, 2
MUV	17	PR-AUC	4, 12	5, 11	5, 11			0, 7	2, 4	1, 6
HIV	1	ROC-AUC		1, 1					0, 1	0, 1
Overall	60		4, 15	9, 25	5, 13	12, 23	4, 18	0, 7	5, 31	21, 48

Theoretical Analysis

Department of Computer Sciences, University of Wisconsin-Madison

Recall $f_{(1)} = Wc_{(1)}$

- W is the vertex embedding matrix.
- $c_{(1)}$ is the count vector.

With sparse $c_{(1)}$ and random W, $c_{(1)}$ can be recovered from $f_{(1)}$.

Well-known in compressed sensing.

Theoretical Analysis

Department of Computer Sciences, University of Wisconsin-Madison

Recall $f_{(1)} = Wc_{(1)}$

- *W* is the vertex embedding matrix.
- $c_{(1)}$ is the count vector.

With sparse $c_{(1)}$ and random W, $c_{(1)}$ can be recovered from $f_{(1)}$.

■ Well-known in compressed sensing.

In general, $f_{(n)} = T_{(n)}c_{(n)}$ for some linear mapping $T_{(n)}$ depending on W.

With sparse $c_{(n)}$ and random W, $c_{(n)}$ can be recovered from $f_{(n)}$.

Theoretical Analysis

Department of Computer Sciences, University of Wisconsin-Madison

Recall $f_{(1)} = Wc_{(1)}$

- *W* is the vertex embedding matrix.
- $c_{(1)}$ is the count vector.

With sparse $c_{(1)}$ and random W, $c_{(1)}$ can be recovered from $f_{(1)}$.

■ Well-known in compressed sensing.

In general, $f_{(n)} = T_{(n)}c_{(n)}$ for some linear mapping $T_{(n)}$ depending on W.

With sparse $c_{(n)}$ and random W, $c_{(n)}$ can be recovered from $f_{(n)}$.

Therefore, $f_{(n)}$ preserves information in $c_{(n)}$.

Furthermore, we can prove that regularized linear classifier on $f_{(n)}$ is competitive to the best linear classifier on $c_{(n)}$.

Current work: Parametric N-gram Graph WISCONSIN WINGSONSIN OF WISCONSIN OF WISCONSI

Department of Computer Sciences, University of Wisconsin-Madison

The (simple) N-gram graph algorithm has no parameter and requires no training. Therefore, it is efficient in computation. However:

- Huge design space for adding trainable parameters.
- Concatenated with a classifier, it becomes end-to-end.

Why parametrize the algorithm, though?

Weighted Vertex Features

Department of Computer Sciences, University of Wisconsin-Madison

Some features are more important, some are dummy features.

- Automatic weighting of vertex features
- Better representation

Given vectors $F = [f_1, ..., f_m]$ for m vertices and graph adjacency matrix A:

$$F_{(1)} = F$$
, $f_{(1)} = F_{(1)} \mathbf{1}$
for each $n \in [2, T]$ do
 $F_{(n)} = (F_{(n-1)} \mathcal{A}) \odot F$
 $f_{(n)} = F_{(n)} \mathbf{1}$
end for
 $f_G = [f_{(1)}; \dots; f_{(T)}]$

Weighted Vertex Features

Department of Computer Sciences, University of Wisconsin-Madison

Some features are more important, some are dummy features.

- Automatic weighting of vertex features
- Better representation

Given vectors $F = [f_1, \dots, f_m]$ for m vertices and graph adjacency matrix A:

$$F_{(1)} = \sigma(W_1 F), f_{(1)} = F_{(1)} \mathbf{1}$$
for each $n \in [2, T]$ do
$$F_{(n)} = (F_{(n-1)} A) \odot F$$

$$f_{(n)} = F_{(n)} \mathbf{1}$$
end for
$$f_G = [f_{(1)}; \dots; f_{(T)}]$$

Weighted Vertex Features

Department of Computer Sciences, University of Wisconsin-Madison

Some features are more important, some are dummy features.

- Automatic weighting of vertex features
- Better representation

Given vectors $F = [f_1, \dots, f_m]$ for m vertices and graph adjacency matrix A:

$$F_{(1)} = \sigma(W_1F)$$
, $f_{(1)} = F_{(1)}\mathbf{1}$
for each $n \in [2, T]$ do
 $F_{(n)} = (F_{(n-1)}A) \odot F$
 $f_{(n)} = F_{(n)}\mathbf{1}$
end for
 $f_G = [f_{(1)}; \dots; f_{(T)}]$

Then for a vertex embedding f_i , W_1f_i will stretch its components along W_1 's larger singular vectors while relatively shrink the components along the smaller ones.

Some nodes have more impact on their neighbors.

■ Weighted sum of latent vectors from neighbors (with attention).

Given vectors $F = [f_1, \dots, f_m]$ for m vertices and graph adjacency matrix \mathcal{A} : $F_{(1)} = \sigma(W_1F), f_{(1)} = F_{(1)}\mathbf{1}$ for each $n \in [2, T]$ do $F_{(n)} = (F_{(n-1)}\mathcal{A}) \odot F$ $f_{(n)} = F_{(n)}\mathbf{1}$ end for $f_G = [f_{(1)}; \dots; f_{(T)}]$

Some nodes have more impact on their neighbors.

■ Weighted sum of latent vectors from neighbors (with attention).

Given vectors $F = [f_1, \ldots, f_m]$ for m vertices and graph adjacency matrix A:

$$F_{(1)} = \sigma(W_1F), f_{(1)} = F_{(1)}\mathbf{1}$$

for each $n \in [2, T]$ do
$$F_{(n)} = (F_{(n-1)}(A \odot \bar{S})) \odot F_{(1)}$$

$$f_{(n)} = F_{(n)}\mathbf{1}$$
end for
$$f_G = [f_{(1)}; \dots; f_{(T)}]$$

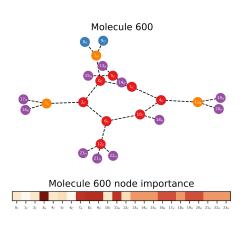
$$s_{ji} = [F_{(n-1)}]_j^{ op} W_2[F_{(n-1)}]_i$$

$$\bar{S}_{ji} = \frac{\exp(s_{ji})}{\sum_{k \in \text{neighbors of } i} \exp s_{ki}}$$

Attentive Messages: Visualization

Department of Computer Sciences, University of Wisconsin-Madison

Mutagenicity dataset: NO_2 and NH_2 atom groups are known to have a mutagenic effect in a molecule.



Weighted Summarization of Vertices

Department of Computer Sciences, University of Wisconsin-Madison

Similar to the previous case in the vertex feature space, the downstream learning tasks may prefer certain directions in the final embedding space.

Given vectors $F = [f_1, \dots, f_m]$ for m vertices and graph adjacency matrix A:

$$F_{(1)} = \sigma(W_1F), f_{(1)} = F_{(1)}\mathbf{1}$$
 for each $n \in [2, T]$ do $F_{(n)} = (F_{(n-1)}\mathcal{A}) \odot F$ $f_{(n)} = F_{(n)}\mathbf{1}$ end for

 $f_G = [f_{(1)}; \dots; f_{(T)}]$

$$s_{ji} = [F_{(n-1)}]_j^{ op} W_2[F_{(n-1)}]_i$$

$$\bar{S}_{ji} = \frac{\exp(s_{ji})}{\sum_{k \in \text{neighbors of } i} \exp s_{ki}}$$

Weighted Summarization of Vertices

 ${\bf Department\ of\ Computer\ \underline{Sciences,\ University\ of\ Wisconsin-\underline{Madison}}}$

Similar to the previous case in the vertex feature space, the downstream learning tasks may prefer certain directions in the final embedding space.

Given vectors $F = [f_1, ..., f_m]$ for m vertices and graph adjacency matrix A:

$$F_{(1)} = \sigma(W_1F), f_{(1)} = F_{(1)}\mathbf{1}$$

for each $n \in [2, T]$ do
 $F_{(n)} = (F_{(n-1)}(A \odot \bar{S})) \odot F_{(1)}$
 $f_{(n)} = \sigma(W_3F_{(n)})\mathbf{1}$
end for
 $f_G = [f_{(1)}; \dots; f_{(T)}]$

$$s_{ji} = [F_{(n-1)}]_j^{\top} W_2[F_{(n-1)}]_i$$

$$\bar{S}_{ji} = \frac{\exp(s_{ji})}{\sum_{k \in \text{neighbors of } i} \exp s_{ki}}$$

Parametric N-gram: Experiments

Department of Computer Sciences, University of Wisconsin-Madison

Preliminary experimental results on some classification tasks (the best model on each task is **underlined** and the top-3 are **bolded**).

Task	Metric	FP+RF	FP+XGB	WL	GCNN	Weave	GAT	GIN	N-Gram XGB	N-Gram RF	Parametric N-gram
NR-AR	ROC-AUC	0.7633	0.7524	0.7009	0.7615	0.7739	0.7545	0.7586	0.7765	0.7696	0.7819
NR-AR-LBD	ROC-AUC	0.8579	0.8523	0.8609	0.8443	0.8240	0.7995	0.8299	0.8732	0.8629	0.8676
NR-AhR	ROC-AUC	0.8904	0.8847	0.8758	0.8863	0.8570	0.8227	0.8718	0.8973	0.8772	0.8823
NR-Aromatase	ROC-AUC	0.8214	0.7978	0.8185	0.8277	0.8267	0.7436	0.7596	0.8476	0.8523	0.8535
NR-ER	ROC-AUC	0.7257	0.7228	0.7041	0.7371	0.7362	0.7062	0.6828	0.7536	0.7378	0.7626
NR-ER-LBD	ROC-AUC	0.8383	0.8062	0.7985	0.8134	0.8090	0.7643	0.7715	0.8341	0.8308	0.8399
NR-PPAR-gamma	ROC-AUC	0.8400	0.8219	0.8445	0.8164	0.8035	0.7585	0.7803	0.8569	0.8054	0.8540
SR-ARE	ROC-AUC	0.8204	0.7990	0.8007	0.8093	0.7706	0.7349	0.7945	0.8514	0.8385	0.8242
SR-ATAD5	ROC-AUC	0.8495	0.8091	0.8143	0.8273	0.7652	0.7543	0.8026	0.8494	0.8526	0.8409
SR-HSE	ROC-AUC	0.7969	0.7586	0.8031	0.7742	0.7488	0.6865	0.7404	0.8082	0.8012	0.8002
SR-MMP	ROC-AUC	0.8897	0.8801	0.8746	0.8771	0.8859	0.8340	0.8721	0.9045	0.8842	0.9038
SR-p53	ROC-AUC	0.8445	0.8255	0.8416	0.8179	0.7866	0.7328	0.8174	0.8597	0.8462	0.8324
CT_TOX	ROC-AUC	0.7708	0.8133	0.8296	0.8600	0.8437	0.8280	0.8594	0.8493	0.8277	0.8930
FDA_APPROVED	ROC-AUC	0.7753	0.7952	0.8615	0.8664	0.8221	0.8990	0.8834	0.8518	0.7949	0.8883
hiv	ROC-AUC	0.8558	0.8452	0.8114	0.8131	0.5560	0.7834	0.8290	0.8429	0.8262	0.8240
MUV-466	ROC-AUC	0.7653	0.7377	0.7079	0.7359	0.6337	0.7491	0.7055	0.7244	0.7155	0.8081
MUV-548	ROC-AUC	0.9020	0.9535	0.9169	0.9599	0.8209	0.7638	0.7932	0.9252	0.8097	0.9786
MUV-600	ROC-AUC	0.5063	0.5360	0.5360	0.5699	0.5751	0.4367	0.5746	0.5863	0.6746	0.6802
MUV-644	ROC-AUC	0.8927	0.8642	0.9442	0.8854	0.7865	0.7619	0.7490	0.7995	0.6692	0.9031
MUV-652	ROC-AUC	0.7217	0.7247	0.6530	0.6942	0.7215	0.4930	0.6454	0.6881	0.5693	0.8268
MUV-689	ROC-AUC	0.6762	0.5887	0.7352	0.6711	0.5759	0.5526	0.7750	0.6692	0.6188	0.7503
MUV-692	ROC-AUC	0.6509	0.6931	0.4475	0.5809	0.5448	0.6261	0.6286	0.6060	0.4979	0,6638
MUV-712	ROC-AUC	0.9272	0.8997	0.8892	0.9358	0.8538	0.7599	0.7727	0.7751	0.8121	0.9315
MUV-713	ROC-AUC	0.5471	0.5538	0.7866	0.7314	0.6865	0.5863	0.5666	0.7147	0.6734	0,7733
MUV-733	ROC-AUC	0.7090	0.6276	0.7075	0.7507	0.8195	0.6372	0.5576	0.6962	0.6903	0.8126
MUV-737	ROC-AUC	0.7367	0.7910	0.7727	0.7960	0.7842	0.6748	0.7233	0.8470	0.8792	0.8932
MUV-810	ROC-AUC	0.7816	0.7943	0.8745	0.7140	0.5929	0.5881	0.6822	0.6803	0.4921	0,7778
MUV-832	ROC-AUC	0.9863	0.9802	0.9640	0.9264	0.8436	0.9234	0.9183	0.9692	0.8890	0.9723
MUV-846	ROC-AUC	0.8770	0.8708	0.8837	0.9109	0.8920	0.8625	0.7637	0.7801	0.7814	0,9593
MUV-852	ROC-AUC	0.8421	0.8898	0.8673	0.8823	0.8588	0.7430	0.7346	0.8342	0.8050	0.9307
MUV-858	ROC-AUC	0.5291	0.7011	0.6774	0.7051	0.6545	0.6498	0.7461	0.6299	0.4391	0.6720
MUV-859	ROC-AUC	0.4581	0.5295	0.5334	0.6128	0.6093	0.4987	0.6073	0.7236	0.5776	0,6524

Thank you!