
Department of Computer Sciences, University of Wisconsin–Madison

Walk Aggregation Graph Networks
with Applications to Molecules

Mehmet F. Demirel

Qualifying Presentation

Committee: Yingyu Liang, Jerry Zhu, Dimitris Papailiopoulos

January 13, 2021

Walk Aggregation Graph Networks 1

Department of Computer Sciences, University of Wisconsin–Madison

Overview

1. Molecular Property Prediction and Representations for Molecules

2. Existing Approaches to Building Representations for Molecules

3. Our Approach I: N-gram Graph

4. Our Approach II: AWARE

Walk Aggregation Graph Networks 2

Department of Computer Sciences, University of Wisconsin–Madison

Machine Learning Everywhere

Computer
Vision

Medical Imaging NLP Game Playing

And more!

Walk Aggregation Graph Networks 3

Department of Computer Sciences, University of Wisconsin–Madison

Molecules?

What about molecules?

Walk Aggregation Graph Networks 4

Department of Computer Sciences, University of Wisconsin–Madison

Molecular Property Prediction

Walk Aggregation Graph Networks 5

Department of Computer Sciences, University of Wisconsin–Madison

Molecular Property Prediction

Walk Aggregation Graph Networks 5

Department of Computer Sciences, University of Wisconsin–Madison

Challenge: Representation

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?
Fingerprints e.g. Morgan fingerprints
Graph kernels e.g. WL-kernel
Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute.
GNNs are end-to-end supervised, more expensive; but powerful.

Walk Aggregation Graph Networks 6

Department of Computer Sciences, University of Wisconsin–Madison

Challenge: Representation

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?
Fingerprints e.g. Morgan fingerprints
Graph kernels e.g. WL-kernel
Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute.
GNNs are end-to-end supervised, more expensive; but powerful.

Walk Aggregation Graph Networks 6

Department of Computer Sciences, University of Wisconsin–Madison

Challenge: Representation

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?
Fingerprints e.g. Morgan fingerprints
Graph kernels e.g. WL-kernel
Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute.
GNNs are end-to-end supervised, more expensive; but powerful.

Walk Aggregation Graph Networks 6

Department of Computer Sciences, University of Wisconsin–Madison

N-gram Graph

Our previous work 1 is inspired by the N-gram approach in NLP.

Unsupervised
Fast to compute

Overall better performance than traditional methods

1Liu, Shengchao, Mehmet F. Demirel, and Yingyu Liang. ”N-gram graph: Simple
unsupervised representation for graphs, with applications to molecules.” Advances in
Neural Information Processing Systems. 2019.

Walk Aggregation Graph Networks 7

Department of Computer Sciences, University of Wisconsin–Madison

N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

Walk Aggregation Graph Networks 8

Department of Computer Sciences, University of Wisconsin–Madison

N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

Walk Aggregation Graph Networks 8

Department of Computer Sciences, University of Wisconsin–Madison

N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

2-grams: “I love”

Walk Aggregation Graph Networks 8

Department of Computer Sciences, University of Wisconsin–Madison

N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

2-grams: “I love”, “love living”

Walk Aggregation Graph Networks 8

Department of Computer Sciences, University of Wisconsin–Madison

N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

2-grams: “I love”, “love living”, “living in”

Walk Aggregation Graph Networks 8

Department of Computer Sciences, University of Wisconsin–Madison

N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

2-grams: “I love”, “love living”, “living in”, “in Madison”

Walk Aggregation Graph Networks 8

Department of Computer Sciences, University of Wisconsin–Madison

N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

1-grams: “I”, “love”, “living”, “in ”, “Madison”
2-grams: “I love”, “love living”, “living in”, “in Madison”
3-grams: “I love living”, “love living in”, “living in Madison”

...

Walk Aggregation Graph Networks 8

Department of Computer Sciences, University of Wisconsin–Madison

N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector c(n) is a numeric representation vector:
its coordinates correspond to all n-grams
its coordinate values are the number of times the corresponding
n-gram shows up in the sentence

Notice that c(1) is just the histogram of the words in the sentence.

Walk Aggregation Graph Networks 9

Department of Computer Sciences, University of Wisconsin–Madison

N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector c(n) is a numeric representation vector:
its coordinates correspond to all n-grams
its coordinate values are the number of times the corresponding
n-gram shows up in the sentence

Notice that c(1) is just the histogram of the words in the sentence.

Walk Aggregation Graph Networks 9

Department of Computer Sciences, University of Wisconsin–Madison

Dimensionality Reduction

Problem: N-gram vector c(n) has high dimensions: |V |n for vocabulary V .

Solution: Dimensionality reduction by word embeddings: f(1) = W c(1)

Walk Aggregation Graph Networks 10

Department of Computer Sciences, University of Wisconsin–Madison

Dimensionality Reduction

Problem: N-gram vector c(n) has high dimensions: |V |n for vocabulary V .

Solution: Dimensionality reduction by word embeddings: f(1) = W c(1)

Walk Aggregation Graph Networks 10

Department of Computer Sciences, University of Wisconsin–Madison

Dimensionality Reduction

Problem: N-gram vector c(n) has high dimensions: |V |n for vocabulary V .
Solution: Dimensionality reduction by word embeddings: f(1) = W c(1)

f(1) is just the sum of the word vectors in the sentence!

Walk Aggregation Graph Networks 11

Department of Computer Sciences, University of Wisconsin–Madison

Dimensionality Reduction

Problem: N-gram vector c(n) has high dimensions: |V |n for vocabulary V .
Solution: Dimensionality reduction by word embeddings: f(1) = W c(1)

f(1) is just the sum of the word vectors in the sentence!

Walk Aggregation Graph Networks 11

Department of Computer Sciences, University of Wisconsin–Madison

Dimensionality Reduction

Problem: N-gram vector c(n) has high dimensions: |V |n for vocabulary V .
Solution: Dimensionality reduction by word embeddings: f(1) = W c(1)

For general n:
Embedding of an n-gram is the entry-wise product of its word vectors.
f(n) is the sum of the embeddings of the n-grams in the sentence.

Walk Aggregation Graph Networks 12

Department of Computer Sciences, University of Wisconsin–Madison

N-gram graphs?

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

atom symbol, atom degree, is-acceptor, ...

We can view:
atoms with different attributes as different words
walks of length n as n-grams.

A molecule Its 2-grams

Walk Aggregation Graph Networks 13

Department of Computer Sciences, University of Wisconsin–Madison

N-gram graphs?

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

atom symbol, atom degree, is-acceptor, ...

We can view:
atoms with different attributes as different words
walks of length n as n-grams.

A molecule Its 2-grams

Walk Aggregation Graph Networks 13

Department of Computer Sciences, University of Wisconsin–Madison

N-gram Graph algorithm

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

Given the embeddings for the atoms (vertex vectors):
Enumerate all n-grams (walks of length n)
Embedding of an n-gram: entry-wise product of its vertex vectors
f(n): sum of embeddings of all n-grams
Final N-gram Graph embedding fG : concatenation of f(1), f(2), . . . , f(T)

Walk Aggregation Graph Networks 14

Department of Computer Sciences, University of Wisconsin–Madison

N-gram Graph as simple GNN

GNN keeps a vector hi for each vertex in the graph and uses some
neighborhood aggregation strategy that iteratively updates by aggregating
those of its neighbors.

f (k)i = AGGREGATE(k)
(
{h(k−1)

j : j ∈ Neighbor(i)}
)

h(k)
i = COMBINE(k)

(
h(k−1)

i , f (k)i

)

Walk Aggregation Graph Networks 15

Department of Computer Sciences, University of Wisconsin–Madison

N-gram Graph as simple GNN

Given vectors fi for vertices i and graph adjacency matrix A:

F(1) = F = [f1, . . . , fm], f(1) = F(1)1
for each n ∈ [2,T] do

F(n) = (F(n−1)A)� F
f(n) = F(n)1

end for
fG = [f(1); . . . ; f(T)]

Equivalent to a simple GNN without any parameters!

Walk Aggregation Graph Networks 16

Department of Computer Sciences, University of Wisconsin–Madison

Experimental Results

60 tasks on 10 datasets from MoleculeNet 2.
Methods:

WL-Kernel + SVM
Morgan FP + RF or XGB
Graph CNN (GCNN), Weave Neural Network, Graph Isomorphism
Network (GIN)

N-gram Graph + RF or XGB
Vertex embedding dimension r = 100 and T = 6

2Wu, Zhenqin, et al. ”MoleculeNet: a benchmark for molecular machine learning.”
Chemical science 9.2 (2018): 513-530

Walk Aggregation Graph Networks 17

Department of Computer Sciences, University of Wisconsin–Madison

Experimental Results

N-gram Graph + XGB: top-1 in 21 and top-3 in 48 out of 60 tasks
Overall better performance than other methods

Walk Aggregation Graph Networks 17

Department of Computer Sciences, University of Wisconsin–Madison

Theoretical Analysis

Assumptions.

Each vertex has S = 1 attribute and it takes values from a set of size K .
W ∈ Rr×K is the vertex embedding matrix.
Assume for simplicity that no two vertices in a walk p can have the same
attribute value.

Idea: There exists a linear mapping W [n] such that f(n) = W [n]c(n).

For S = 1, W [n] is the n-way column Hadamard product of W .

There are a wide family of prior distributions on W such that W [n] has RIP
with high probability.

=⇒ With sparse c(n), c(n) can efficiently be recovered from f(n).

A linear classifier learned on f(n) is comparable to the best linear classifier on
c(n).

Walk Aggregation Graph Networks 18

Department of Computer Sciences, University of Wisconsin–Madison

Theoretical Analysis

Assumptions.

Each vertex has S = 1 attribute and it takes values from a set of size K .
W ∈ Rr×K is the vertex embedding matrix.
Assume for simplicity that no two vertices in a walk p can have the same
attribute value.

Idea: There exists a linear mapping W [n] such that f(n) = W [n]c(n).

For S = 1, W [n] is the n-way column Hadamard product of W .

There are a wide family of prior distributions on W such that W [n] has RIP
with high probability.

=⇒ With sparse c(n), c(n) can efficiently be recovered from f(n).

A linear classifier learned on f(n) is comparable to the best linear classifier on
c(n).

Walk Aggregation Graph Networks 18

Department of Computer Sciences, University of Wisconsin–Madison

Theoretical Analysis

Assumptions.

Each vertex has S = 1 attribute and it takes values from a set of size K .
W ∈ Rr×K is the vertex embedding matrix.
Assume for simplicity that no two vertices in a walk p can have the same
attribute value.

Idea: There exists a linear mapping W [n] such that f(n) = W [n]c(n).

For S = 1, W [n] is the n-way column Hadamard product of W .

There are a wide family of prior distributions on W such that W [n] has RIP
with high probability.

=⇒ With sparse c(n), c(n) can efficiently be recovered from f(n).

A linear classifier learned on f(n) is comparable to the best linear classifier on
c(n).

Walk Aggregation Graph Networks 18

Department of Computer Sciences, University of Wisconsin–Madison

Theoretical Analysis

Assumptions.

Each vertex has S = 1 attribute and it takes values from a set of size K .
W ∈ Rr×K is the vertex embedding matrix.
Assume for simplicity that no two vertices in a walk p can have the same
attribute value.

Idea: There exists a linear mapping W [n] such that f(n) = W [n]c(n).

For S = 1, W [n] is the n-way column Hadamard product of W .

There are a wide family of prior distributions on W such that W [n] has RIP
with high probability.

=⇒ With sparse c(n), c(n) can efficiently be recovered from f(n).

A linear classifier learned on f(n) is comparable to the best linear classifier on
c(n).

Walk Aggregation Graph Networks 18

Department of Computer Sciences, University of Wisconsin–Madison

Theoretical Analysis

Assumptions.

Each vertex has S = 1 attribute and it takes values from a set of size K .
W ∈ Rr×K is the vertex embedding matrix.
Assume for simplicity that no two vertices in a walk p can have the same
attribute value.

Idea: There exists a linear mapping W [n] such that f(n) = W [n]c(n).

For S = 1, W [n] is the n-way column Hadamard product of W .

There are a wide family of prior distributions on W such that W [n] has RIP
with high probability.

=⇒ With sparse c(n), c(n) can efficiently be recovered from f(n).

A linear classifier learned on f(n) is comparable to the best linear classifier on
c(n).

Walk Aggregation Graph Networks 18

Department of Computer Sciences, University of Wisconsin–Madison

Current Work: AWARE

Parametrization of the N-gram graph algorithm:
Attentive Walk Aggregation GRaph NEtwork

The N-gram graph algorithm has no parameters and requires no training.
Therefore, it is efficient in computation. However:

Huge design space for adding trainable parameters.
Concatenated with a classifier, it becomes end-to-end.

Q: Why parametrize the algorithm, though?
A: Weighting!

Walk Aggregation Graph Networks 19

Department of Computer Sciences, University of Wisconsin–Madison

Current Work: AWARE

Parametrization of the N-gram graph algorithm:
Attentive Walk Aggregation GRaph NEtwork

The N-gram graph algorithm has no parameters and requires no training.
Therefore, it is efficient in computation. However:

Huge design space for adding trainable parameters.
Concatenated with a classifier, it becomes end-to-end.

Q: Why parametrize the algorithm, though?
A: Weighting!

Walk Aggregation Graph Networks 19

Department of Computer Sciences, University of Wisconsin–Madison

Weighted Features

The downstream learning tasks may prefer certain directions both in the
vertex embedding space and final embedding space.

Given vectors F = [f1, . . . , fm] for m
vertices and graph adjacency matrix
A:

F(1) = F , f(1) = F(1)1
for each n ∈ [2,T] do

F(n) = (F(n−1)A)� F
f(n) = F(n)1

end for
fG = [f(1); . . . ; f(T)]

Walk Aggregation Graph Networks 20

Department of Computer Sciences, University of Wisconsin–Madison

Weighted Features

The downstream learning tasks may prefer certain directions both in the
vertex embedding space and final embedding space.

Given vectors F = [f1, . . . , fm] for m
vertices and graph adjacency matrix
A:

F(1) = σ(W1F) , f(1) = F(1)1
for each n ∈ [2,T] do

F(n) = (F(n−1)A)� F
f(n) = σ(W3F(n))1

end for
fG = [f(1); . . . ; f(T)]

Walk Aggregation Graph Networks 20

Department of Computer Sciences, University of Wisconsin–Madison

Weighted Features

The downstream learning tasks may prefer certain directions both in the
vertex embedding space and final embedding space.

Given vectors F = [f1, . . . , fm] for m
vertices and graph adjacency matrix
A:

F(1) = σ(W1F) , f(1) = F(1)1
for each n ∈ [2,T] do

F(n) = (F(n−1)A)� F
f(n) = σ(W3F(n))1

end for
fG = [f(1); . . . ; f(T)]

Then for a vertex embedding fi ,
W1fi will stretch its components
along W1’s larger singular vectors
while relatively shrink the
components along the smaller ones.

Same idea for W3.

Walk Aggregation Graph Networks 20

Department of Computer Sciences, University of Wisconsin–Madison

Attentive Messages

Some nodes have more impact on their neighbors.
Weighted sum of latent vectors from neighbors (with attention).

Given vectors F = [f1, . . . , fm] for m vertices
and graph adjacency matrix A:

F(1) = σ(W1F), f(1) = F(1)1
for each n ∈ [2,T] do

F(n) = (F(n−1)A)� F
f(n) = σ(W3F(n))1

end for
fG = [f(1); . . . ; f(T)]

Walk Aggregation Graph Networks 21

Department of Computer Sciences, University of Wisconsin–Madison

Attentive Messages

Some nodes have more impact on their neighbors.
Weighted sum of latent vectors from neighbors (with attention).

Given vectors F = [f1, . . . , fm] for m vertices
and graph adjacency matrix A:

F(1) = σ(W1F), f(1) = F(1)1
for each n ∈ [2,T] do

F(n) = (F(n−1)(A� S̄(n−1)))� F(1)

f(n) = σ(W3F(n))1
end for
fG = [f(1); . . . ; f(T)]

[s(n−1)]ji=[F(n−1)]
>
j W2[F(n−1)]i

[S̄(n−1)]ji=
exp([s(n−1)]ji)∑

k∈neighbors of i exp([s(n−1)]ki)

Walk Aggregation Graph Networks 21

Department of Computer Sciences, University of Wisconsin–Madison

Attentive Messages: Visualization

Mutagenicity dataset: NO2 and NH2 atom groups are known to have a
mutagenic effect in a molecule.

Walk Aggregation Graph Networks 22

Department of Computer Sciences, University of Wisconsin–Madison

AWARE: Experiments

AWARE performs top-1 in 27 and top-3 in 48 out of 60 tasks
Overall better performance than other methods, including N-gram Graph

Walk Aggregation Graph Networks 23

Department of Computer Sciences, University of Wisconsin–Madison

Theoretical Analysis

Assumption. Each vertex has S = 1 attribute and it takes values from a
set of size K . W ∈ Rr×K is the vertex embedding matrix. Also assume
that W1 = W3 = I and σ is linear.

Idea: There exists a linear mapping W [n] such that f(n) = W [n]Λ(n)c(n)
where Λ(n) is a diagonal weighting matrix that depends on the scoring
matrix S̄.

A similar analysis can be applied to Λ(n)c(n) instead of c(n).
Benefit of weighting: If Λ(n) emphasizes important features for
prediction, then better to learn over Λ(n)c(n) rather than c(n). Thus,
we can learn over f(n) = W [n]Λ(n)c(n).

Walk Aggregation Graph Networks 24

Department of Computer Sciences, University of Wisconsin–Madison

Theoretical Analysis

Assumption. Each vertex has S = 1 attribute and it takes values from a
set of size K . W ∈ Rr×K is the vertex embedding matrix. Also assume
that W1 = W3 = I and σ is linear.

Idea: There exists a linear mapping W [n] such that f(n) = W [n]Λ(n)c(n)
where Λ(n) is a diagonal weighting matrix that depends on the scoring
matrix S̄.

A similar analysis can be applied to Λ(n)c(n) instead of c(n).
Benefit of weighting: If Λ(n) emphasizes important features for
prediction, then better to learn over Λ(n)c(n) rather than c(n). Thus,
we can learn over f(n) = W [n]Λ(n)c(n).

Walk Aggregation Graph Networks 24

Department of Computer Sciences, University of Wisconsin–Madison

Theoretical Analysis

Assumption. Each vertex has S = 1 attribute and it takes values from a
set of size K . W ∈ Rr×K is the vertex embedding matrix. Also assume
that W1 = W3 = I and σ is linear.

Idea: There exists a linear mapping W [n] such that f(n) = W [n]Λ(n)c(n)
where Λ(n) is a diagonal weighting matrix that depends on the scoring
matrix S̄.

A similar analysis can be applied to Λ(n)c(n) instead of c(n).
Benefit of weighting: If Λ(n) emphasizes important features for
prediction, then better to learn over Λ(n)c(n) rather than c(n). Thus,
we can learn over f(n) = W [n]Λ(n)c(n).

Walk Aggregation Graph Networks 24

Department of Computer Sciences, University of Wisconsin–Madison

Theoretical Analysis

Assumption. Each vertex has S = 1 attribute and it takes values from a
set of size K . W ∈ Rr×K is the vertex embedding matrix. Also assume
that W1 = W3 = I and σ is linear.

Idea: There exists a linear mapping W [n] such that f(n) = W [n]Λ(n)c(n)
where Λ(n) is a diagonal weighting matrix that depends on the scoring
matrix S̄.

A similar analysis can be applied to Λ(n)c(n) instead of c(n).
Benefit of weighting: If Λ(n) emphasizes important features for
prediction, then better to learn over Λ(n)c(n) rather than c(n). Thus,
we can learn over f(n) = W [n]Λ(n)c(n).

Walk Aggregation Graph Networks 24

Department of Computer Sciences, University of Wisconsin–Madison

Thank you!

Walk Aggregation Graph Networks 25

Department of Computer Sciences, University of Wisconsin–Madison

Appendix

Walk Aggregation Graph Networks 26

Department of Computer Sciences, University of Wisconsin–Madison

Appendix

Walk Aggregation Graph Networks 27

Department of Computer Sciences, University of Wisconsin–Madison

Appendix

Walk Aggregation Graph Networks 28

Department of Computer Sciences, University of Wisconsin–Madison

Appendix

Walk Aggregation Graph Networks 29

Department of Computer Sciences, University of Wisconsin–Madison

Appendix

Walk Aggregation Graph Networks 30

Department of Computer Sciences, University of Wisconsin–Madison

Appendix

Walk Aggregation Graph Networks 31

Department of Computer Sciences, University of Wisconsin–Madison

Appendix

Walk Aggregation Graph Networks 32

Department of Computer Sciences, University of Wisconsin–Madison

Appendix

Walk Aggregation Graph Networks 33

Department of Computer Sciences, University of Wisconsin–Madison

Appendix

Walk Aggregation Graph Networks 34

Department of Computer Sciences, University of Wisconsin–Madison

Appendix

Walk Aggregation Graph Networks 35

Department of Computer Sciences, University of Wisconsin–Madison

Appendix

Walk Aggregation Graph Networks 36

