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Overview WISCONSIN

1. Molecular Property Prediction and Representations for Molecules

2. Existing Approaches to Building Representations for Molecules

w

. Our Approach I: N-gram Graph

I

. Our Approach Il: AWARE
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Molecules? WISCONSIN
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What about molecules?
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Challenge: Representation WISCONSIN
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Input to traditional machine learning models: vectors
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Challenge: Representation WISCONSIN

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?
m Fingerprints e.g. Morgan fingerprints
m Graph kernels e.g. WL-kernel
m Graph neural networks (GNN): GCN, Weave
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Challenge: Representation WISCONSIN

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?
m Fingerprints e.g. Morgan fingerprints
m Graph kernels e.g. WL-kernel
m Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute.
GNNs are end-to-end supervised, more expensive; but powerful.
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N-gram Graph WISCONSIN
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Our previous work ! is inspired by the N-gram approach in NLP.

m Unsupervised
m Fast to compute

m Overall better performance than traditional methods

!Liu, Shengchao, Mehmet F. Demirel, and Yingyu Liang. "N-gram graph: Simple
unsupervised representation for graphs, with applications to molecules.” Advances in
Neural Information Processing Systems. 2019.
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N-gram approach in NLP WISCONSIN
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n-gram is a contiguous sequence of n words from a given sentence.
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n-gram is a contiguous sequence of n words from a given sentence.
“I love living in Madison”

m 2-grams: “| love”
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N-gram approach in NLP WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

n-gram is a contiguous sequence of n words from a given sentence.
“I love living in Madison”

m 2-grams: “l love”, “love living”
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n-gram is a contiguous sequence of n words from a given sentence.
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m 2-grams: “l love”, “love living”, “living in”
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N-gram approach in NLP WISCONSIN

n-gram is a contiguous sequence of n words from a given sentence.

“I'love living in_ Madison”

m 2-grams: “| love”, “love living”, “living in”, "in Madison”
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N-gram approach in NLP WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

m 1l-grams: “I”, “love”, “living”, “in ", “Madison”
m 2-grams: “l love”, “love living”, “living in”, "“in Madison”
m 3-grams: "l love living”, “love living in”, “living in Madison”
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N-gram approach in NLP WISCONSIN

n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector ¢(,) is a numeric representation vector:
m its coordinates correspond to all n-grams

m its coordinate values are the number of times the corresponding
n-gram shows up in the sentence
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N-gram approach in NLP WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector ¢(,) is a numeric representation vector:
m its coordinates correspond to all n-grams

m its coordinate values are the number of times the corresponding
n-gram shows up in the sentence

Notice that ¢(1) is just the histogram of the words in the sentence.
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Dimensionality Reduction WISCONSIN
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Problem: N-gram vector c(,) has high dimensions: [V|" for vocabulary V.

Walk Aggregation Graph Networks 10
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Problem: N-gram vector c(,) has high dimensions: [V|" for vocabulary V.

Solution: Dimensionality reduction by word embeddings: f1) = W¢(y)
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Dimensionality Reduction

UNIVERSITY OF WISCONSIN-MADISON

Department of Computer Sciences, University of Wisconsin—Madison

WISCONSIN
Problem: N-gram vector c(,) has high dimensions: [V/|" for vocabulary V.
Solution: Dimensionality reduction by word embeddings: f1) = W¢(y)
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ith column is the embedding vector for the it word in the vocabulary
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Problem: N-gram vector c(,) has high dimensions: [V/|" for vocabulary V.

Solution: Dimensionality reduction by word embeddings: f1) = W¢(y)

Q
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ith column is the embedding vector for the it word in the vocabulary

f(1) is just the sum of the word vectors in the sentence!
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Dimensionality Reduction WISCONSIN

Problem: N-gram vector c(,) has high dimensions: |V|" for vocabulary V.

Solution: Dimensionality reduction by word embeddings: f1) = Wc(y)
For general n:

m Embedding of an n-gram is the entry-wise product of its word vectors.

m f(,) is the sum of the embeddings of the n-grams in the sentence.
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N-gram graphs? WISCONSIN
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Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

m atom symbol, atom degree, is-acceptor, ...
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N-gram graphs? WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

m atom symbol, atom degree, is-acceptor, ...

We can view:
m atoms with different attributes as different words
m walks of length n as n-grams.

H=C

i IR =6

H=C—C—0 IR
A molecule Its 2-grams
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N-gram Graph algorithm WISCONSIN

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

Given the embeddings for the atoms (vertex vectors):
m Enumerate all n-grams (walks of length n)
m Embedding of an n-gram: entry-wise product of its vertex vectors
m f(;): sum of embeddings of all n-grams

m Final N-gram Graph embedding fg: concatenation of f(y), f(2), ..., f(T)
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N-gram Graph as simple GNN WISCONSIN
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GNN keeps a vector h; for each vertex in the graph and uses some

neighborhood aggregation strategy that iteratively updates by aggregating
those of its neighbors.

£ = AGGREGATE(k)({hJ(-k_l) je Neighbor(i)})
h) = COMBINE() (), 7))
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N-gram Graph as simple GNN WISCONSIN

Given vectors f; for vertices i and graph adjacency matrix A:

F(]_) :F: [ﬂ,...,fm],f(l) = F(l)]'
for each n € [2, T] do
Finy = (F(o—1)A) © F

fin) = Fn)1
end for

fe = [fyi - )l

Equivalent to a simple GNN without any parameters!
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Experimental Results WISCONSIN
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60 tasks on 10 datasets from MoleculeNet 2.

Methods:
m WL-Kernel + SVM
m Morgan FP + RF or XGB

m Graph CNN (GCNN), Weave Neural Network, Graph Isomorphism
Network (GIN)

N-gram Graph + RF or XGB
Vertex embedding dimension r =100 and T =6

2Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine learning.”
Chemical science 9.2 (2018): 513-530
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Experimental Results WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

N-gram Graph + XGB: top-1 in 21 and top-3 in 48 out of 60 tasks
Overall better performance than other methods

Table 2: Performance overview: (# of tasks with top-1 performance, # of tasks with top-3 performance) is listed
for each model and each dataset. For cases with no top-3 performance on that dataset are left blank. Some
models are not well tuned or too slow and are left in “-”.

WL Morgan | Morgan

| Dataset | # Task | Eval Metric | gyt RE o | GONN | Weave | GIN ‘ N'g;f‘m N;(Gcrgm ‘
Delaney i RMSE L1 = 0,1 0,1
Malaria 1 RMSE 1,1 - 0,1 0,1
CEP 1 RMSE L1 - 0,1 0,1
QM7 1 MAE 0,1 - 0,1 1,1
QMs 12 MAE 1,4 0,1 7,12 2,6 - 0,2 2,11
QM9 12 MAE - 0,1 4,7 1,8 - 0,8 7,12
Tox21 12 ROC-AUC | 0,2 0,7 0,2 0,1 3,12 9,12
clintox 2 ROC-AUC | 0,1 1,2 0,1 1,2
MUV 17 PR-AUC | 4,12 | 511 5,11 0,7 2,4 1,6
HIV 1 ROC-AUC 1,1 0,1 0,1
Overall 60 715 | 9,25 5,13 12,23 | 4,18 | 0,7 | 5,31 21,48
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Theoretical Analysis WISCONSIN
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Assumptions.

m Each vertex has S = 1 attribute and it takes values from a set of size K.
W € R"*K is the vertex embedding matrix.

m Assume for simplicity that no two vertices in a walk p can have the same
attribute value.
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Assumptions.

m Each vertex has S = 1 attribute and it takes values from a set of size K.
W € R"*K is the vertex embedding matrix.

m Assume for simplicity that no two vertices in a walk p can have the same
attribute value.

Idea: There exists a linear mapping W!" such that finy = W[”]c(,,).
m For S =1, Wl is the n-way column Hadamard product of W.

m There are a wide family of prior distributions on W such that W has RIP
with high probability.

= With sparse c(,), ¢, can efficiently be recovered from f,).
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Assumptions.

m Each vertex has S = 1 attribute and it takes values from a set of size K.
W € R"*K is the vertex embedding matrix.
m Assume for simplicity that no two vertices in a walk p can have the same
attribute value.
Idea: There exists a linear mapping W!" such that finy = W[”]c(,,).
m For S =1, Wl is the n-way column Hadamard product of W.

m There are a wide family of prior distributions on W such that W[l has RIP
with high probability.

= With sparse c(,), ¢, can efficiently be recovered from f,).

m A linear classifier learned on f(,) is comparable to the best linear classifier on
C(,,).
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Current Work: AWARE WISCONSIN
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Parametrization of the N-gram graph algorithm:
Attentive Walk Aggregation GRaph NEtwork

The N-gram graph algorithm has no parameters and requires no training.
Therefore, it is efficient in computation. However:

m Huge design space for adding trainable parameters.

m Concatenated with a classifier, it becomes end-to-end.

Q: Why parametrize the algorithm, though?
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Current Work: AWARE WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

Parametrization of the N-gram graph algorithm:
Attentive Walk Aggregation GRaph NEtwork

The N-gram graph algorithm has no parameters and requires no training.
Therefore, it is efficient in computation. However:

m Huge design space for adding trainable parameters.

m Concatenated with a classifier, it becomes end-to-end.

Q: Why parametrize the algorithm, though?
A: Weighting!
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Weighted Features WISCONSIN

The downstream learning tasks may prefer certain directions both in the
vertex embedding space and final embedding space.

Given vectors F = [f,. .., fy] for m
vertices and graph adjacency matrix
A:

Fay=F fa) = Fo)l

for each n € [2, T] do
Fiy = (Flnn)A) © F
finy = F(m)1

end for

fe = [fwy: -+ 1l
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Weighted Features WISCONSIN

The downstream learning tasks may prefer certain directions both in the
vertex embedding space and final embedding space.

Given vectors F = [fi, ..., fy] for m
vertices and graph adjacency matrix
A:

F(l) = U(WlF) ,f(l) = F(l)]-
for each n € [2, T] do
Fin) = (Fin_1)A) © F
f(n) = J(W3F(n))1
end for
fe = fw:--- i fm)]
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Weighted Features WISCONSIN

The downstream learning tasks may prefer certain directions both in the
vertex embedding space and final embedding space.

Given vectors F = [fi, ..., fy] for m

vertices and graph adjacency matrix

A: Then for a vertex embedding f;,
Wi f; will stretch its components

F(1) = o(W4F) ,f(l) _ F(l)l along Wi's larger singular vectors

while relatively shrink the
components along the smaller ones.

for each n € [2, T] do
F(n) = (F(n—l)A) OF
f(n) = J(W3F(n))1 Same idea for Wj.

end for

fe = fw:--- i fm)]
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Attentive Messages WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

Some nodes have more impact on their neighbors.
m Weighted sum of latent vectors from neighbors (with attention).

Given vectors F = [f, ..., f,] for m vertices
and graph adjacency matrix A:

Fy = o(WiF), f1y = Fpyl
for each n € [2, T] do
F(n) = (F(n_l)A) OF
fin) = U(W3F(n))1
end for
fe = [fay: - fm)]

Walk Aggregation Graph Networks 21



Attentive Messages WISCONSIN
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Department of Computer Sciences, University of Wisconsin—Madison

Some nodes have more impact on their neighbors.

m Weighted sum of latent vectors from neighbors (with attention).

Given vectors F = [fi, ..., f] for m vertices
and graph adjacency matrix A:

Fy = o(WiF), fy = Fpyl

for each n € [2, T] do st i={Fn-vl” WelFo-1):
F(n) = (F(n_l)(A ©) 5(n_1))) © F(l) [S‘(n_l)],-,:Zkeneig:::fs[siffelx):ﬁi(n,I)Jk,-)
f(n) = U(W3F(n))1

end for
fe = [fyi - 1)l
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Attentive Messages: Visualization

mutagenic effect in a molecule.

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Department of Computer Sciences, University of Wisconsin—Madison

Molecule 600
o9

Mutagenicity dataset: NO, and NH, atom groups are known to have a

e
@y
0@ TR ®
‘o0
8
g @

Molecule 600 node importance
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AWARE: Experiments WISCONSIN

AWARE performs top-1 in 27 and top-3 in 48 out of 60 tasks
Overall better performance than other methods, including N-gram Graph

Table 3. Overall performance: (# of tasks with top-1 performance, # of tasks with top-3 performance) is listed for each model and each
dataset. For cases with no top-3 performance on that dataset are left blank. Some models are not well tuned or too slow and are left in

Number Eval FP Fp WL N-Gram | N-Gram
Dataset of Metric + + + GCNN | GAT | GIN + + AWARE
Tasks RF | XGB | SVM XGB RF
Delaney 1 RMSE 0,1 0,1 1,1
Malaria 1 RMSE | LI 0.1 0,1
CEP 1 RMSE 0.1 11 0,1
QM7 1 MAE 0.1 0,1 1,1
QM8 12 MAE 57 2,6 0,11 SATY
QM9 12 MAE 3,7 4.7 L11 0,6 47
Tox21 12 ROC 0.4 0.2 512 1.7 6,11
clintox 2 ROC 0,1 1,1 02 1,2
HIV 1 ROC 1,1 0,1 0,1
MUV 17 ROC 17 1.7 3.5 19 0.1 12 14 0,2 9.14
Total 60 313 | 1,10 3.7 9,24 1,2 | 8.18 741 1,18 27,48
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Theoretical Analysis WISCONSIN

Assumption. Each vertex has S =1 attribute and it takes values from a
set of size K. W € R™K is the vertex embedding matrix. Also assume
that W7 = W53 =1 and o is linear.
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Assumption. Each vertex has S =1 attribute and it takes values from a
set of size K. W € R™K is the vertex embedding matrix. Also assume
that W7 = W53 =1 and o is linear.

Idea: There exists a linear mapping Wl such that fln) = W["]/\(,,)c(,,)
where A is a diagonal weighting matrix that depends on the scoring
matrix S.
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Assumption. Each vertex has S =1 attribute and it takes values from a
set of size K. W € R™K is the vertex embedding matrix. Also assume
that W7 = W53 =1 and o is linear.

Idea: There exists a linear mapping Wl such that fln) = W["]/\(,,)c(,,)
where A is a diagonal weighting matrix that depends on the scoring
matrix S.

m A similar analysis can be applied to A(,)c(,) instead of ¢(y).
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Department of Computer Sciences, University of Wisconsin—Madison

Assumption. Each vertex has S =1 attribute and it takes values from a
set of size K. W € R™K is the vertex embedding matrix. Also assume
that W7 = W53 =1 and o is linear.

Idea: There exists a linear mapping Wl such that fln) = W["]/\(n)c(,,)
where A is a diagonal weighting matrix that depends on the scoring
matrix S.

m A similar analysis can be applied to A(,)c(,) instead of ¢(y).

m Benefit of weighting: If A(,;) emphasizes important features for
prediction, then better to learn over A, c(, rather than ¢(,). Thus,
we can learn over f(,) = W[”]/\(,,)c(,,).
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Thank you!
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Appendix WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

Theorem 1 Ifr = Q(ns3 log K) where s., is the sparsity of C(n), then there is a prior distribution
over W so that f(ny = T(n)C(n) for a linear mapping T . If additionally c () is the sparsest vector
satisfying finy = T(n)C(n), then with probability 1 — O(S exp(—(r/S)'/3)), c(n) can be efficiently
recovered from f(y).
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Appendix WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Department of Computer Sciences, University of Wisconsin—Madison

Prediction Power. Consider a prediction task and let £p(g) denote the risk of a prediction function
g over the data distribution D.

Theorem 2 Let g. be a prediction function on the count statistics c(r). In the same setting as in

Theorem 1, with probability 1 — O(T'S exp(—(r/S)Y/3)), there is a function g; on the N-gram graph
embeddings fc with risk £p(g5) = £p(gc).
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Appendix WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

Consider the binary classification task with the logistic loss function £(g, y) where g is the prediction
and y is the true label. Let £p(0) = Ep[€(gs,y)] denote the risk of a linear classifier go with weight
vector 6 over the data distribution D. Let 6* denote the weight of the classifier over c[,) minimizing

£p. Suppose we have a dataset {(G;,y;)}4, ii.d. sampled from D, and 6 is the weight over fg
which is learned via £2-regularization with regularization coefficient A:

R 1 &
0=argme1nM;1((9,fG,>,yi)+/\||0H2- )

Theorem 3 Assume that fc is scaled so that || fg||2 < 1 for any graph from D. There exists a prior
distribution over W, such that with v = Q(™32x log K) for smax = max{s, : 1 <n < T} and
appropriate choice of regularization coefficient, with probability 1 — § — O(TS exp(—(r/S)'/?)),
the § minimizing the {2-regularized logistic loss over the N-gram graph embeddings fg,’s satisfies

o 1 1
to(6) < tp(6%) + O (ue*uz e+ 37108 5) : ©)
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Appendix WISCONSIN

Theorem 4 (Restatement of Theorem 1.1 in [12]) Suppose A is (2k, €)-RIP for an € < v/2 — 1.
Let & denote the solution to (9), and let xy, denote the vector x with all but the k-largest entries set to
zero. Then

£ —zll1 < Collzx — 2|1
and
2 — |2 < Cok™*/?||lzx — 1.
In particular, if © is k-sparse, the recovery is exact.

Furthermore, it has been shown that A is (k, €)-RIP with overwhelming probability when d =
Q(klog &) and vVdA;; ~ N(0,1)(¥4, 5) or VdA;; ~ U{—1,1}(Vi, ).
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Appendix WISCONSIN

Department of Computer Sciences, University of Wisconsin—Madison

Definition 3 (/-way Column Hadamard Product) Let A be a d X N matrix, and let £ be a natural
integer. The {-way column Hadamard-product of A is a d x (]Z ) matrix denoted as A, whose
columns indexed by a sequence 1 < iy < iy--- < iy < d is the element-wise product of the
i1,12, ..., 4-th columns of A, i.e., (i1,12,...,%¢)-th column in AWO s A, ©A;, ©--- O A;, where
A; for j € [N] is the j-th column in A.

‘We have the following theorems:

Theorem 5 (Restatement of Theorem 4.1 in [32]) Let X be ann X d matrix, and let Abe a dx N
random matrix with independent entries R;; such that E[R;;] = 0,E[R;;] = 1, and |R;;| < T almost
surely. Let € € (0,1), and let k be an integer satisfying sr(X) > %Z—Skz log IZ—: for some universal
constant C > 0. Then with probability at least 1 — exp(—ce2sr(X)/(k?7%)) for some universal
constant ¢ > 0, the matrix X A© /|| X ||y is (k, €)-RIP.

Here, st(X) = || X||%/| X ||? is the stable rank of X. In our case, we will apply the theorem with X
being I,M/\/E where Igyq € R4 is the identity matrix.

Theorem 6 (Restatement of Theorem 4.3 in [32]) Let X be ann X d matrix, and let Abea d x N
random matrix with independent entries R;; such that E[R;;] = 0,E[R;;] = 1, and |R;j| <
7 almost surely. Let £ > 3 be a constant. Let ¢ € (0,1), and let k be an integer satisfying
sr(X) > C%;el& log IZ—S for some universal constant C > 0. Then with probability at least 1 —
exp(—cesr(X)/ (k*14)) for some universal constant ¢ > 0, the matrix X A®) /|| X || is (k, €)-RIP.
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Department of Computer Sciences, University of Wisconsin—Madison

Theorem 7 (Restatement of Theorem 4.2 in [3]) Suppose A is (AX, €)-RIP. Then with probability

at least 1 — 6,
Alp * « 1 1
£5(04) < £p(07) + O | AcB|07[l4/e + u log 3

for appropriate choice of C. Here, AX = {x — z' : z,2' € X} for any X CRN.
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Department of Computer Sciences, University of Wisconsin—Madison

Definition 3 (Walk Weights). Define the weight for one
attribute value v as w(v) = 1, and define the weight for a

sequence of attribute values (v, . .., vp—1) withn > 1 as:
n—2

w(vo, ..., vn-1) = [ S(Fwy@:), Foy(vis1)) @)
i=0

where S(-,-) is the score function in Eq (2), F(y)(v;) =
Wh(v;), and h(v;) is the one-hot vector for the attribute
value v;.

Walk Aggregation Graph Networks
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WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Department of Computer Sciences, University of Wisconsin—Madison

Theorem 1. The embedding f(y,) is a linear mapping of the
walk statistics ¢(n):

Sy = WAy ®)

where W™ is the n-way column products of W, and Ay
is a K"-dimensional diagonal matrix, whose columns cor-
respond to all possible length-n seq es of attribute val-
ues, with the diagonal entry in the column indexed by a se-

quence of attribute values (v, . ..,vn_1) being its weight
w(vo, . ..,Vn—1). Then
fir == MAcn 6)

where M is a block-diagonal matrix with diagonal blocks
w,wl ... WIT| and A a block-diagonal matrix with
diagonal blocks A1y, A2y, - - -, A7)
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The intuition for the benefit of appropriate weighting is
simple. Suppose that the label is given by a linear func-
tion on ¢z} with parameter 6%, i.e., y = (6%, cir}). When
we learn over the weighted features Acjzy, if the support
of the diagonal entries diag(A) contains the support of 6*
(i.e., if 67 # 0 then A;; # 0), the parameter At6* on Aciry
has the same predictions and loss as 0* on c(r). So we only
need to learn AT6* on Acqry, which can require fewer data
samples for learning (equivalently, smaller loss for a fixed
amount of samples). Learning over f7) is learning over a
compressed version of Aciz), which shares the same intu-
ition.
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M
~ 1
0 = argmin - Z;é (6: fir)(Gi)Y, ws) + Alblla. (D

Theorem 2. Assume that M satisfies the (2s, €)-RIP, and
cqr) is s-sparse. Also assume that the support of diag(A)
contains the support of 0*. For any § € (0, 1), the 6 mini-
mizing the {y-regularized logistic loss over the embeddings
fir1(Gi)’s satisfies with probability at least 1 — 6:

R } 11
Lp(0) < Lp(0*)+ O (BA €+ i log 3) ®)

for an appropriate choice of regularization coefficient \.
Here the term B\ is defined as

= | AT0" |12 max | Aciz) (G2 ®

and A% is the pseudo-inverse of A.
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Definition 7 (Walk Statistics for the General Case). Given a walk p = (i1,...,i,) of length n, the vector e, €
{0, 1}(1_[7 k)" is defined as the one-hot vector for the attribute value sequence (Viys -, Vi) along the walk. The walk
statistics vector c()(G) = EP e, with the sum over all walks p of length n. in the graph G. Furthermore, let the walk
statistics cir)(G) be the concatenation of c(1)(G), ..., c(r)(G). When G is clear from the context, we write ¢(n) and c(r|
for short.

So the definition is similar to that for the case with S = 1, except that now it is in dimension K, = (H;;Ul kj)".

To describe the linear mapping from c(,) to f(n), we need to introduce the following notation.

Definition 8. Let (W1 W){"} be a matrix with K,, column corresponding to all possible length-n sequences of attribute
values, with the column indexed by a sequence of attribute values (vo, . .., vn—1) being (WiWh(vg)) © (WiWh(v1)) ©
- @ (WiWh(va_1)), where h(v;) = [R(v?),. .., h(v7~")] and h(v]) is the one-hot vector for the attribute value v? for
the j-th attribute in v;.

The following theorem then shows that f(,,) can be a compressed version of the walk statistics, weighted by the weighting
parameter matrix W, W and also by the attention scores S.

Theorem 6. The embedding fy,) is a linear mapping of the walk statistics ¢(n):

oy = Wa(WiW) ™A ey (40)
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