

Walk Aggregation Graph Networks with Applications to Molecules

Mehmet F. Demirel

Qualifying Presentation

Committee: Yingyu Liang, Jerry Zhu, Dimitris Papailiopoulos

January 13, 2021

< 4 AP > - 4

- 1. Molecular Property Prediction and Representations for Molecules
- 2. Existing Approaches to Building Representations for Molecules
- 3. Our Approach I: N-gram Graph
- 4. Our Approach II: AWARE

Machine Learning Everywhere

Department of Computer Sciences, University of Wisconsin-Madison

 $\langle \Box \rangle \land \Box \rangle \land \Box \rangle \land \Box$

And more!

 $\equiv 1$

What about molecules?

E

Molecular Property Prediction

Department of Computer Sciences, University of Wisconsin-Madison

 $< \pm >$

- Þ-

Ξ

Molecular Property Prediction

Department of Computer Sciences, University of Wisconsin-Madison

 $< \pm >$

- Þ-

Ξ

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?

- Fingerprints e.g. Morgan fingerprints
- Graph kernels *e.g.* WL-kernel
- Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute. GNNs are end-to-end supervised, more expensive; but powerful.

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?

- Fingerprints e.g. Morgan fingerprints
- Graph kernels e.g. WL-kernel
- Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute. GNNs are end-to-end supervised, more expensive; but powerful.

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?

- Fingerprints e.g. Morgan fingerprints
- Graph kernels e.g. WL-kernel
- Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute. GNNs are end-to-end supervised, more expensive; but powerful.

Our previous work ¹ is inspired by the **N-gram approach in NLP**.

- Fast to compute
- Overall better performance than traditional methods

¹Liu, Shengchao, **Mehmet F. Demirel**, and Yingyu Liang. "N-gram graph: Simple unsupervised representation for graphs, with applications to molecules." Advances in Neural Information Processing Systems. 2019.

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

n-gram is a contiguous sequence of n words from a given sentence.

'I love living in Madison"

Image: A matrix and a matrix

n-gram is a contiguous sequence of n words from a given sentence.

"I love living in Madison"

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

n-gram is a contiguous sequence of n words from a given sentence.

"<u>I love</u> living in Madison"

2-grams: "I love"

< A > <

n-gram is a contiguous sequence of n words from a given sentence.

"I love living in Madison"

■ 2-grams: "I love", "love living"

< A > <

n-gram is a contiguous sequence of n words from a given sentence.

"I love living in Madison"

■ 2-grams: "I love", "love living", "living in"

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

n-gram is a contiguous sequence of n words from a given sentence.

"I love living in Madison"

2-grams: "I love", "love living", "living in", "in Madison"

t

Department of Computer Sciences, University of Wisconsin–Madison

n-gram is a contiguous sequence of n words from a given sentence.

"I love living in Madison"

- 1-grams: "I", "love", "living", "in ", "Madison"
- 2-grams: "I love", "love living", "living in", "in Madison"
- **3-grams:** "I love living", "love living in", "living in Madison"

n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector $c_{(n)}$ is a numeric representation vector:

- its coordinates correspond to all n-grams
- its coordinate values are the number of times the corresponding n-gram shows up in the sentence

Notice that $c_{(1)}$ is just the histogram of the words in the sentence.

n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector $c_{(n)}$ is a numeric representation vector:

- its coordinates correspond to all n-grams
- its coordinate values are the number of times the corresponding n-gram shows up in the sentence

Notice that $c_{(1)}$ is just the histogram of the words in the sentence.

イロト イポト イヨト イヨト

Problem: N-gram vector $c_{(n)}$ has high dimensions: $|V|^n$ for vocabulary V.

Solution: Dimensionality reduction by word embeddings: $f_{(1)} = Wc_{(1)}$

イロト イポト イヨト イヨト

Problem: N-gram vector $c_{(n)}$ has high dimensions: $|V|^n$ for vocabulary V. **Solution:** Dimensionality reduction by word embeddings: $f_{(1)} = W c_{(1)}$

Dimensionality Reduction

Department of Computer Sciences, University of Wisconsin-Madison

Problem: N-gram vector $c_{(n)}$ has high dimensions: $|V|^n$ for vocabulary V. **Solution:** Dimensionality reduction by word embeddings: $f_{(1)} = Wc_{(1)}$

Dimensionality Reduction

Department of Computer Sciences, University of Wisconsin-Madison

イロト イポト イヨト イヨト

Problem: N-gram vector $c_{(n)}$ has high dimensions: $|V|^n$ for vocabulary V. **Solution:** Dimensionality reduction by word embeddings: $f_{(1)} = Wc_{(1)}$

 $f_{(1)}$ is just the sum of the word vectors in the sentence!

Problem: N-gram vector $c_{(n)}$ has high dimensions: $|V|^n$ for vocabulary V. **Solution:** Dimensionality reduction by word embeddings: $f_{(1)} = Wc_{(1)}$

For general *n*:

- Embedding of an *n*-gram is the entry-wise product of its word vectors.
- $f_{(n)}$ is the sum of the embeddings of the *n*-grams in the sentence.

Sentences are linear graphs on words.

Molecules are graphs on atoms with attributes!

atom symbol, atom degree, is-acceptor, ...

Sentences are linear graphs on words.

Molecules are graphs on atoms with attributes!

atom symbol, atom degree, is-acceptor, ...

We can view:

- atoms with different attributes as different words
- walks of length *n* as *n*-grams.

A molecule

Sentences are linear graphs on words.

Molecules are graphs on atoms with attributes!

Given the embeddings for the atoms (vertex vectors):

- Enumerate all *n*-grams (walks of length *n*)
- Embedding of an *n*-gram: entry-wise product of its vertex vectors
- *f*_(*n*): sum of embeddings of all *n*-grams
- Final N-gram Graph embedding f_G : concatenation of $f_{(1)}, f_{(2)}, \ldots, f_{(T)}$

GNN keeps a vector h_i for each vertex in the graph and uses some neighborhood aggregation strategy that iteratively updates by aggregating those of its neighbors.

$$f_i^{(k)} = \mathsf{AGGREGATE}^{(k)} \left(\{ h_j^{(k-1)} : j \in \mathsf{Neighbor}(\mathsf{i}) \} \right)$$
$$h_i^{(k)} = \mathsf{COMBINE}^{(k)} \left(h_i^{(k-1)}, f_i^{(k)} \right)$$

Given vectors f_i for vertices *i* and graph adjacency matrix A:

$$F_{(1)} = F = [f_1, ..., f_m], f_{(1)} = F_{(1)}\mathbf{1}$$

for each $n \in [2, T]$ do
 $F_{(n)} = (F_{(n-1)}\mathcal{A}) \odot F$
 $f_{(n)} = F_{(n)}\mathbf{1}$
end for
 $f_G = [f_{(1)}; ...; f_{(T)}]$

Equivalent to a simple GNN without any parameters!

60 tasks on 10 datasets from MoleculeNet 2 .

Methods:

- WL-Kernel + SVM
- Morgan FP + RF or XGB
- Graph CNN (GCNN), Weave Neural Network, Graph Isomorphism Network (GIN)
- N-gram Graph + RF or XGB
- Vertex embedding dimension r = 100 and T = 6

²Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine learning." Chemical science 9.2 (2018): 513-530 A □ → A □

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

N-gram Graph + XGB: top-1 in 21 and top-3 in 48 out of 60 tasks Overall better performance than other methods

Table 2: Performance overview: (# of tasks with top-1 performance, # of tasks with top-3 performance) is listed for each model and each dataset. For cases with no top-3 performance on that dataset are left blank. Some models are not well tuned or too slow and are left in "-".

Dataset	# Task	Eval Metric	WL SVM	Morgan RF	Morgan XGB	GCNN	Weave	GIN	N-Gram RF	N-Gram XGB
Delaney	1	RMSE					1, 1	-	0, 1	0, 1
Malaria	1	RMSE		1, 1				-	0, 1	0, 1
CEP	1	RMSE		1, 1				-	0, 1	0, 1
QM7	1	MAE					0, 1	-	0, 1	1, 1
QM8	12	MAE		1,4	0, 1	7, 12	2,6	-	0, 2	2, 11
QM9	12	MAE	-		0, 1	4, 7	1, 8	-	0, 8	7, 12
Tox21	12	ROC-AUC	0, 2	0,7		0, 2	0, 1		3, 12	9, 12
clintox	2	ROC-AUC	0, 1			1, 2	0, 1			1, 2
MUV	17	PR-AUC	4, 12	5, 11	5, 11			0,7	2,4	1,6
HIV	1	ROC-AUC		1, 1					0, 1	0, 1
Overall	60		4, 15	9, 25	5, 13	12, 23	4, 18	0, 7	5, 31	21, 48

Assumptions.

- Each vertex has S = 1 attribute and it takes values from a set of size K.
 W ∈ ℝ^{r×K} is the vertex embedding matrix.
- Assume for simplicity that no two vertices in a walk *p* can have the same attribute value.

Idea: There exists a linear mapping $W^{[n]}$ such that $f_{(n)} = W^{[n]}c_{(n)}$.

- For S = 1, $W^{[n]}$ is the *n*-way column Hadamard product of W.
- There are a wide family of prior distributions on W such that W^[n] has RIP with high probability.

 \implies With sparse $c_{(n)}$, $c_{(n)}$ can efficiently be recovered from $f_{(n)}$.

A B + A B + A B +
 A
 B + A B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Assumptions.

- Each vertex has S = 1 attribute and it takes values from a set of size K.
 W ∈ ℝ^{r×K} is the vertex embedding matrix.
- Assume for simplicity that no two vertices in a walk *p* can have the same attribute value.

Idea: There exists a linear mapping $W^{[n]}$ such that $f_{(n)} = W^{[n]}c_{(n)}$.

- For S = 1, $W^{[n]}$ is the *n*-way column Hadamard product of W.
- There are a wide family of prior distributions on W such that W^[n] has RIP with high probability.

 \implies With sparse $c_{(n)}$, $c_{(n)}$ can efficiently be recovered from $f_{(n)}$.

· □ ▷ · (司 ▷ · (三 ▷ · (三 ▷ ·

Assumptions.

- Each vertex has S = 1 attribute and it takes values from a set of size K.
 W ∈ ℝ^{r×K} is the vertex embedding matrix.
- Assume for simplicity that no two vertices in a walk *p* can have the same attribute value.

Idea: There exists a linear mapping $W^{[n]}$ such that $f_{(n)} = W^{[n]}c_{(n)}$.

• For S = 1, $W^{[n]}$ is the *n*-way column Hadamard product of W.

There are a wide family of prior distributions on W such that W^[n] has RIP with high probability.

 \implies With sparse $c_{(n)}$, $c_{(n)}$ can efficiently be recovered from $f_{(n)}$.

Assumptions.

- Each vertex has S = 1 attribute and it takes values from a set of size K.
 W ∈ ℝ^{r×K} is the vertex embedding matrix.
- Assume for simplicity that no two vertices in a walk *p* can have the same attribute value.

Idea: There exists a linear mapping $W^{[n]}$ such that $f_{(n)} = W^{[n]}c_{(n)}$.

- For S = 1, $W^{[n]}$ is the *n*-way column Hadamard product of W.
- There are a wide family of prior distributions on W such that W^[n] has RIP with high probability.

 \implies With sparse $c_{(n)}$, $c_{(n)}$ can efficiently be recovered from $f_{(n)}$.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Assumptions.

- Each vertex has S = 1 attribute and it takes values from a set of size K.
 W ∈ ℝ^{r×K} is the vertex embedding matrix.
- Assume for simplicity that no two vertices in a walk *p* can have the same attribute value.

Idea: There exists a linear mapping $W^{[n]}$ such that $f_{(n)} = W^{[n]}c_{(n)}$.

- For S = 1, $W^{[n]}$ is the *n*-way column Hadamard product of W.
- There are a wide family of prior distributions on W such that W^[n] has RIP with high probability.

 \implies With sparse $c_{(n)}$, $c_{(n)}$ can efficiently be recovered from $f_{(n)}$.

Parametrization of the N-gram graph algorithm: Attentive Walk Aggregation GRaph NEtwork

The N-gram graph algorithm has no parameters and requires no training. Therefore, it is efficient in computation. However:

- Huge design space for adding trainable parameters.
- Concatenated with a classifier, it becomes end-to-end.

Q: Why parametrize the algorithm, though? A: Weighting!

Parametrization of the N-gram graph algorithm: Attentive Walk Aggregation GRaph NEtwork

The N-gram graph algorithm has no parameters and requires no training. Therefore, it is efficient in computation. However:

- Huge design space for adding trainable parameters.
- Concatenated with a classifier, it becomes end-to-end.

Q: Why parametrize the algorithm, though? A: Weighting!

The downstream learning tasks may prefer certain directions both in the vertex embedding space and final embedding space.

Given vectors
$$F = [f_1, \ldots, f_m]$$
 for m vertices and graph adjacency matrix A :

$$F_{(1)} = F, f_{(1)} = F_{(1)}\mathbf{1}$$

for each $n \in [2, T]$ do
$$F_{(n)} = (F_{(n-1)}\mathcal{A}) \odot F$$

$$f_{(n)} = F_{(n)}\mathbf{1}$$

end for

 $f_G = [f_{(1)}; \ldots; f_{(T)}]$

The downstream learning tasks may prefer certain directions both in the vertex embedding space and final embedding space.

Given vectors
$$F = [f_1, \ldots, f_m]$$
 for m vertices and graph adjacency matrix A :

$$F_{(1)} = \sigma(W_1F), f_{(1)} = F_{(1)}\mathbf{1}$$

for each $n \in [2, T]$ do
$$F_{(n)} = (F_{(n-1)}\mathcal{A}) \odot F$$

$$f_{(n)} = \sigma(W_3F_{(n)})\mathbf{1}$$

end for

$$f_G = [f_{(1)}; \ldots; f_{(T)}]$$

The downstream learning tasks may prefer certain directions both in the vertex embedding space and final embedding space.

Given vectors
$$F = [f_1, \ldots, f_m]$$
 for m vertices and graph adjacency matrix A :

$$F_{(1)} = \sigma(W_1F), f_{(1)} = F_{(1)}\mathbf{1}$$

for each $n \in [2, T]$ do
$$F_{(n)} = (F_{(n-1)}\mathcal{A}) \odot F$$

$$f_{(n)} = \sigma(W_3F_{(n)})\mathbf{1}$$

end for

$$f_G = [f_{(1)}; \ldots; f_{(T)}]$$

Then for a vertex embedding f_i , W_1f_i will stretch its components along W_1 's larger singular vectors while relatively shrink the components along the smaller ones.

Same idea for W_3 .

Some nodes have more impact on their neighbors.

• Weighted sum of latent vectors from neighbors (with attention).

Given vectors $F = [f_1, \ldots, f_m]$ for *m* vertices and graph adjacency matrix A:

$$F_{(1)} = \sigma(W_1F), f_{(1)} = F_{(1)}\mathbf{1}$$

for each $n \in [2, T]$ do
$$F_{(n)} = (F_{(n-1)}\mathcal{A}) \odot F$$

 $f_{(n)} = \sigma(W_3F_{(n)})\mathbf{1}$
end for
 $f_G = [f_{(1)}; \ldots; f_{(T)}]$

Some nodes have more impact on their neighbors.

Weighted sum of latent vectors from neighbors (with attention).

Given vectors $F = [f_1, \ldots, f_m]$ for *m* vertices and graph adjacency matrix A:

$$F_{(1)} = \sigma(W_1F), f_{(1)} = F_{(1)}\mathbf{1}$$

for each $n \in [2, T]$ do
$$F_{(n)} = (F_{(n-1)}(\mathcal{A} \odot \overline{S}_{(n-1)})) \odot F_{(1)}$$

 $f_{(n)} = \sigma(W_3F_{(n)})\mathbf{1}$
end for
 $f_G = [f_{(1)}; ...; f_{(T)}]$

$$[s_{(n-1)}]_{ji} = [F_{(n-1)}]_j^\top W_2[F_{(n-1)}]_i$$

$$[\bar{S}_{(n-1)}]_{ji} = \frac{\exp([s_{(n-1)}]_{ji})}{\sum_{k \in \text{neighbors of } i} \exp([s_{(n-1)}]_{ki})}$$

Attentive Messages: Visualization

Department of Computer Sciences, University of Wisconsin-Madison

Mutagenicity dataset: NO_2 and NH_2 atom groups are known to have a mutagenic effect in a molecule.

Image: A matrix and a matrix

AWARE performs top-1 in 27 and top-3 in 48 out of 60 tasks Overall better performance than other methods, including N-gram Graph

Table 3. Overall performance: (# of tasks with top-1 performance, # of tasks with top-3 performance) is listed for each model and each dataset. For cases with no top-3 performance on that dataset are left blank. Some models are not well tuned or too slow and are left in "."

	Number	Eval	FP	FP	WL				N-Gram	N-Gram	
Dataset	of	Matria	+	+	+	GCNN	GAT	GIN	+	+	AWARE
	Tasks	Methe	RF	XGB	SVM				XGB	RF	
Delaney	1	RMSE							0,1	0,1	1,1
Malaria	1	RMSE	1,1	0,1						0,1	
CEP	1	RMSE		0,1				1,1			0,1
QM7	1	MAE							0,1	0,1	1,1
QM8	12	MAE				5,7		2,6	0,11		5,11
QM9	12	MAE				3,7		4,7	1,11	0,6	4,7
Tox21	12	ROC	0,4		0,2				5,12	1,7	6,11
clintox	2	ROC				0,1	1,1	0,2			1,2
HIV	1	ROC	1,1	0,1					0,1		
MUV	17	ROC	1,7	1,7	3,5	1,9	0,1	1,2	1,4	0,2	9,14
Total	60		3,13	1,10	3,7	9,24	1,2	8,18	7,41	1,18	27,48

4 D b 4 A b 4 B b

Assumption. Each vertex has S = 1 attribute and it takes values from a set of size K. $W \in \mathbb{R}^{r \times K}$ is the vertex embedding matrix. Also assume that $W_1 = W_3 = I$ and σ is linear.

Idea: There exists a linear mapping $W^{[n]}$ such that $f_{(n)} = W^{[n]} \Lambda_{(n)} c_{(n)}$ where $\Lambda_{(n)}$ is a diagonal weighting matrix that depends on the scoring matrix \overline{S} .

- A similar analysis can be applied to $\Lambda_{(n)}c_{(n)}$ instead of $c_{(n)}$.
- Benefit of weighting: If $\Lambda_{(n)}$ emphasizes important features for prediction, then better to learn over $\Lambda_{(n)}c_{(n)}$ rather than $c_{(n)}$. Thus, we can learn over $f_{(n)} = W^{[n]}\Lambda_{(n)}c_{(n)}$.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Assumption. Each vertex has S = 1 attribute and it takes values from a set of size K. $W \in \mathbb{R}^{r \times K}$ is the vertex embedding matrix. Also assume that $W_1 = W_3 = I$ and σ is linear.

Idea: There exists a linear mapping $W^{[n]}$ such that $f_{(n)} = W^{[n]}\Lambda_{(n)}c_{(n)}$ where $\Lambda_{(n)}$ is a diagonal weighting matrix that depends on the scoring matrix \overline{S} .

• A similar analysis can be applied to $\Lambda_{(n)}c_{(n)}$ instead of $c_{(n)}$.

Benefit of weighting: If $\Lambda_{(n)}$ emphasizes important features for prediction, then better to learn over $\Lambda_{(n)}c_{(n)}$ rather than $c_{(n)}$. Thus, we can learn over $f_{(n)} = W^{[n]}\Lambda_{(n)}c_{(n)}$.

A B A B A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Assumption. Each vertex has S = 1 attribute and it takes values from a set of size K. $W \in \mathbb{R}^{r \times K}$ is the vertex embedding matrix. Also assume that $W_1 = W_3 = I$ and σ is linear.

Idea: There exists a linear mapping $W^{[n]}$ such that $f_{(n)} = W^{[n]}\Lambda_{(n)}c_{(n)}$ where $\Lambda_{(n)}$ is a diagonal weighting matrix that depends on the scoring matrix \overline{S} .

• A similar analysis can be applied to $\Lambda_{(n)}c_{(n)}$ instead of $c_{(n)}$.

Benefit of weighting: If $\Lambda_{(n)}$ emphasizes important features for prediction, then better to learn over $\Lambda_{(n)}c_{(n)}$ rather than $c_{(n)}$. Thus, we can learn over $f_{(n)} = W^{[n]}\Lambda_{(n)}c_{(n)}$.

《日》 《國》 《臣》 《臣》

Assumption. Each vertex has S = 1 attribute and it takes values from a set of size K. $W \in \mathbb{R}^{r \times K}$ is the vertex embedding matrix. Also assume that $W_1 = W_3 = I$ and σ is linear.

Idea: There exists a linear mapping $W^{[n]}$ such that $f_{(n)} = W^{[n]}\Lambda_{(n)}c_{(n)}$ where $\Lambda_{(n)}$ is a diagonal weighting matrix that depends on the scoring matrix \overline{S} .

- A similar analysis can be applied to $\Lambda_{(n)}c_{(n)}$ instead of $c_{(n)}$.
- Benefit of weighting: If Λ_(n) emphasizes important features for prediction, then better to learn over Λ_(n)c_(n) rather than c_(n). Thus, we can learn over f_(n) = W^[n]Λ_(n)c_(n).

Thank you!

Ξ

< E >

Theorem 1 If $r = \Omega(ns_n^3 \log K)$ where s_n is the sparsity of $c_{(n)}$, then there is a prior distribution over W so that $f_{(n)} = T_{(n)}c_{(n)}$ for a linear mapping $T_{(n)}$. If additionally $c_{(n)}$ is the sparsest vector satisfying $f_{(n)} = T_{(n)}c_{(n)}$, then with probability $1 - O(S \exp(-(r/S)^{1/3}))$, $c_{(n)}$ can be efficiently recovered from $f_{(n)}$.

(日) (四) (三) (三) (三)

Prediction Power. Consider a prediction task and let $\ell_{\mathcal{D}}(g)$ denote the risk of a prediction function g over the data distribution \mathcal{D} .

Theorem 2 Let g_c be a prediction function on the count statistics $c_{[T]}$. In the same setting as in Theorem 1, with probability $1 - O(TS \exp(-(r/S)^{1/3}))$, there is a function g_f on the N-gram graph embeddings f_G with risk $\ell_D(g_f) = \ell_D(g_c)$.

I D F I A B F I B F

Consider the binary classification task with the logistic loss function $\ell(g, y)$ where g is the prediction and y is the true label. Let $\ell_{\mathcal{D}}(\theta) = \mathbb{E}_{\mathcal{D}}[\ell(g_{\theta}, y)]$ denote the risk of a linear classifier g_{θ} with weight vector θ over the data distribution \mathcal{D} . Let θ^* denote the weight of the classifier over $c_{[n]}$ minimizing $\ell_{\mathcal{D}}$. Suppose we have a dataset $\{(G_i, y_i)\}_{i=1}^M$ i.i.d. sampled from \mathcal{D} , and $\hat{\theta}$ is the weight over f_G which is learned via ℓ_2 -regularization with regularization coefficient λ :

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{M} \sum_{i=1}^{M} \ell(\langle \theta, f_{G_i} \rangle, y_i) + \lambda \|\theta\|_2.$$
(4)

Theorem 3 Assume that f_G is scaled so that $||f_G||_2 \leq 1$ for any graph from \mathcal{D} . There exists a prior distribution over W, such that with $r = \Omega(\frac{ns_{\max}^2}{\epsilon^2} \log K)$ for $s_{\max} = \max\{s_n : 1 \leq n \leq T\}$ and appropriate choice of regularization coefficient, with probability $1 - \delta - O(TS \exp(-(r/S)^{1/3}))$, the $\hat{\theta}$ minimizing the ℓ_2 -regularized logistic loss over the N-gram graph embeddings f_{G_i} 's satisfies

$$\ell_{\mathcal{D}}(\hat{\theta}) \le \ell_{\mathcal{D}}(\theta^*) + O\left(\|\theta^*\|_2 \sqrt{\epsilon + \frac{1}{M} \log \frac{1}{\delta}} \right).$$
(5)

(日) (四) (三) (三) (三)

Theorem 4 (Restatement of Theorem 1.1 in [12]) Suppose A is $(2k, \epsilon)$ -RIP for an $\epsilon < \sqrt{2} - 1$. Let \hat{x} denote the solution to (9), and let x_k denote the vector x with all but the k-largest entries set to zero. Then

$$\|\hat{x} - x\|_1 \le C_0 \|x_k - x\|_1$$

and

$$\|\hat{x} - x\|_2 \le C_0 k^{-1/2} \|x_k - x\|_1.$$

In particular, if x is k-sparse, the recovery is exact.

Furthermore, it has been shown that A is (k, ϵ) -RIP with overwhelming probability when $d = \Omega(k \log \frac{N}{k})$ and $\sqrt{d}A_{ij} \sim \mathcal{N}(0, 1)(\forall i, j)$ or $\sqrt{d}A_{ij} \sim \mathcal{U}\{-1, 1\}(\forall i, j)$.

< D > < B > < E > < E >

Definition 3 (*l*-way Column Hadamard Product) Let A be $a d \times N$ matrix, and let ℓ be a natural integer. The ℓ -way column Hadamard-product of A is $a d \times \binom{N}{\ell}$ matrix denoted as $A^{(\ell)}$, whose columns indexed by a sequence $1 \leq i_1 < i_2 \cdots < i_\ell \leq d$ is the element-wise product of the i_1, i_2, \ldots, i_ℓ -th columns of A, i.e., $(i_1, i_2, \ldots, i_\ell)$ -th column in $A^{(\ell)}$ is $A_{i_1} \odot A_{i_2} \odot \cdots \odot A_{i_\ell}$ where A_j for $j \in [N]$ is the *j*-th column in A.

We have the following theorems:

Theorem 5 (Restatement of Theorem 4.1 in [32]) Let X be an $n \times d$ matrix, and let A be a $d \times N$ random matrix with independent entries R_{ij} such that $\mathbb{E}[R_{ij}] = 0$, $\mathbb{E}[R_{ij}] = 1$, and $|R_{ij}| \leq \tau$ almost surely. Let $\epsilon \in (0, 1)$, and let k be an integer satisfying $sr(X) \geq \frac{C_{+}k}{\epsilon^2}k^2 \log \frac{N^2}{k\epsilon}$ for some universal constant C > 0. Then with probability at least $1 - \exp(-c\epsilon^2 sr(X)/(k^2\tau^8))$ for some universal constant c > 0, the matrix $XA^{(\ell)}/||X||_F$ is (k, ϵ) -RIP.

Here, sr $(X) = ||X||_{P}^{2}/||X||^{2}$ is the stable rank of X. In our case, we will apply the theorem with X being $\mathbf{I}_{d \times d}/\sqrt{d}$ where $\mathbf{I}_{d \times d} \in \mathbb{R}^{d \times d}$ is the identity matrix.

Theorem 6 (Restatement of Theorem 4.3 in [32]) Let X be an $n \times d$ matrix, and let A be a $d \times N$ random matrix with independent entries R_{ij} such that $\mathbb{E}[R_{ij}] = 0$, $\mathbb{E}[R_{ij}] = 1$, and $|R_{ij}| \leq \tau$ almost surely. Let $\ell \geq 3$ be a constant. Let $\epsilon \in (0,1)$, and let k be an integer satisfying $sr(X) \geq \frac{C_{\tau}^{4\ell}}{\epsilon^2}k^3 \log \frac{N}{k\epsilon}$ for some universal constant C > 0. Then with probability at least $1 - \exp(-c\epsilon^2 sr(X)/(k^2\tau^{4\ell}))$ for some universal constant c > 0, the matrix $XA^{(\ell)}/||X||_F$ is (k, ϵ) -RIP.

<ロト (四) (三) (三) (三)

Theorem 7 (Restatement of Theorem 4.2 in [3]) Suppose A is $(\Delta X, \epsilon)$ -RIP. Then with probability at least $1 - \delta$,

$$\ell_{\mathcal{D}}^{A}(\hat{\theta}_{A}) \leq \ell_{\mathcal{D}}(\theta^{*}) + O\left(\lambda_{\ell}B\|\theta^{*}\|\sqrt{\epsilon + \frac{1}{M}\log\frac{1}{\delta}}\right)$$

for appropriate choice of C. Here, $\Delta \mathcal{X} = \{x - x' : x, x' \in \mathcal{X}\}$ for any $\mathcal{X} \subseteq \mathbb{R}^N$.

Ξ

Definition 3 (Walk Weights). Define the weight for one attribute value v as w(v) = 1, and define the weight for a sequence of attribute values (v_0, \ldots, v_{n-1}) with n > 1 as:

$$w(v_0, \dots, v_{n-1}) := \prod_{i=0}^{n-2} S(F_{(1)}(v_i), F_{(1)}(v_{i+1}))$$
(4)

where $S(\cdot, \cdot)$ is the score function in Eq (2), $F_{(1)}(v_i) = Wh(v_i)$, and $h(v_i)$ is the one-hot vector for the attribute value v_i .

E

Appendix

Theorem 1. The embedding $f_{(n)}$ is a linear mapping of the walk statistics $c_{(n)}$:

$$f_{(n)} = W^{[n]} \Lambda_{(n)} c_{(n)}$$
(5)

where $W^{[n]}$ is the n-way column products of W, and $\Lambda_{(n)}$ is a K^n -dimensional diagonal matrix, whose columns correspond to all possible length-*n* sequences of attribute values, with the diagonal entry in the column indexed by a sequence of attribute values (v_0, \ldots, v_{n-1}) being its weight $w(v_0, \ldots, v_{n-1})$. Then

$$f_{[T]} := \mathcal{M}\Lambda c_{[T]} \tag{6}$$

where \mathcal{M} is a block-diagonal matrix with diagonal blocks $W, W^{[2]}, \ldots, W^{[T]}$, and Λ a block-diagonal matrix with diagonal blocks $\Lambda_{(1)}, \Lambda_{(2)}, \ldots, \Lambda_{(T)}$.

<ロト < 部 ト < 三 ト

The intuition for the benefit of appropriate weighting is simple. Suppose that the label is given by a linear function on $c_{[T]}$ with parameter θ^* , i.e., $y = \langle \theta^*, c_{[T]} \rangle$. When we learn over the weighted features $\Lambda c_{[T]}$ if the support of the diagonal entries $\operatorname{diag}(\Lambda)$ contains the support of θ^* (i.e., if $\theta^*_i \neq 0$ then $\Lambda_{ii} \neq 0$), the parameter $\Lambda^{\dagger}\theta^*$ on $\Lambda c_{[T]}$ has the same predictions and loss as θ^* on $c_{[T]}$. So we only need to learn $\Lambda^{\dagger}\theta^*$ on $\Lambda c_{[T]}$, which can require fewer data samples for learning (equivalently, smaller loss for a fixed amount of samples). Learning over $f_{[T]}$ is learning over a compressed version of $\Lambda c_{[T]}$, which shares the same intuition.

<ロト < 同ト < 巨ト

< ∃ >

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{M} \sum_{i=1}^{M} \ell(\langle \theta, f_{[T]}(G_i) \rangle, y_i) + \lambda \|\theta\|_2.$$
(7)

Theorem 2. Assume that \mathcal{M} satisfies the $(2s, \epsilon)$ -RIP, and $c_{[T]}$ is s-sparse. Also assume that the support of diag(Λ) contains the support of θ^* . For any $\delta \in (0, 1)$, the $\hat{\theta}$ minimizing the ℓ_2 -regularized logistic loss over the embeddings $f_{[T]}(G_i)$'s satisfies with probability at least $1 - \delta$:

$$\ell_{\mathcal{D}}(\hat{\theta}) \le \ell_{\mathcal{D}}(\theta^*) + O\left(B_{\Lambda}\sqrt{\epsilon + \frac{1}{M}\log\frac{1}{\delta}}\right)$$
 (8)

for an appropriate choice of regularization coefficient λ . Here the term B_{Λ} is defined as

$$B_{\Lambda} := \|\Lambda^{\dagger}\theta^*\|_2 \max_{G \sim \mathcal{D}} \|\Lambda c_{[T]}(G)\|_2 \tag{9}$$

and Λ^{\dagger} is the pseudo-inverse of Λ .

< D > < B > < E > < E >

Definition 7 (Walk Statistics for the General Case). Given a walk $p = (i_1, \ldots, i_n)$ of length n, the vector $\mathbf{e}_p \in \{0, 1\}^{(\mathbf{I}], k_j)^n}$ is defined as the one-hot vector for the attribute value sequence $(V_{i_1}, \ldots, V_{i_n})$ along the walk. The walk statistics vector $c_{(n)}(G) = \sum_p \mathbf{e}_p$ with the sum over all walks p of length n in the graph G. Furthermore, let the walk statistics $c_{(\mathbf{T})}(G)$ be the concatenation of $c_{(1)}(G), \ldots, c_{(\mathbf{T})}(G)$. When G is clear from the context, we write $c_{(n)}$ and $c_{(\mathbf{T})}$ for short.

So the definition is similar to that for the case with S = 1, except that now it is in dimension $K_n = (\prod_{i=0}^{S-1} k_i)^n$.

To describe the linear mapping from $c_{(n)}$ to $f_{(n)}$, we need to introduce the following notation.

Definition 8. Let $(W_1W)^{\{n\}}$ be a matrix with K_n column corresponding to all possible length-*n* sequences of attribute values, with the column indexed by a sequence of attribute values (v_0, \ldots, v_{n-1}) being $(W_1Wh(v_0)) \odot (W_1Wh(v_1)) \odot \cdots \odot (W_1Wh(v_{n-1}))$, where $h(v_i) = [h(v_i^0), \ldots, h(v_i^{n-1})]$ and $h(v_i^1)$ is the one-hot vector for the attribute value v_i^l for the *j*-th attribute in v_i .

The following theorem then shows that $f_{(n)}$ can be a compressed version of the walk statistics, weighted by the weighting parameter matrix W_1, W_3 and also by the attention scores \bar{S} .

Theorem 6. The embedding $f_{(n)}$ is a linear mapping of the walk statistics $c_{(n)}$:

$$f_{(n)} = W_3(W_1W)^{\{n\}}\Lambda_{(n)}c_{(n)}.$$
 (40)