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Overview

1. Molecular Property Prediction and Representations for Molecules

2. Existing Approaches to Building Representations for Molecules

3. Our Approach I: N-gram Graph

4. Our Approach II: AWARE
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Machine Learning Everywhere

Computer
Vision

Medical Imaging NLP Game Playing

And more!
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Molecules?

What about molecules?
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Molecular Property Prediction

Walk Aggregation Graph Networks 5



Department of Computer Sciences, University of Wisconsin–Madison

Molecular Property Prediction
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Challenge: Representation

Input to traditional machine learning models: vectors

How to represent a molecule as a vector?
Fingerprints e.g. Morgan fingerprints
Graph kernels e.g. WL-kernel
Graph neural networks (GNN): GCN, Weave

Fingerprints/kernels are unsupervised and fast to compute.
GNNs are end-to-end supervised, more expensive; but powerful.
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N-gram Graph

Our previous work 1 is inspired by the N-gram approach in NLP.

Unsupervised
Fast to compute

Overall better performance than traditional methods

1Liu, Shengchao, Mehmet F. Demirel, and Yingyu Liang. ”N-gram graph: Simple
unsupervised representation for graphs, with applications to molecules.” Advances in
Neural Information Processing Systems. 2019.
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N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”
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N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence.

“I love living in Madison”

1-grams: “I”, “love”, “living”, “in ”, “Madison”
2-grams: “I love”, “love living”, “living in”, “in Madison”
3-grams: “I love living”, “love living in”, “living in Madison”

...
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N-gram approach in NLP

n-gram is a contiguous sequence of n words from a given sentence

N-gram count vector c(n) is a numeric representation vector:
its coordinates correspond to all n-grams
its coordinate values are the number of times the corresponding
n-gram shows up in the sentence

Notice that c(1) is just the histogram of the words in the sentence.
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Dimensionality Reduction

Problem: N-gram vector c(n) has high dimensions: |V |n for vocabulary V .

Solution: Dimensionality reduction by word embeddings: f(1) = W c(1)
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Dimensionality Reduction
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Dimensionality Reduction

Problem: N-gram vector c(n) has high dimensions: |V |n for vocabulary V .
Solution: Dimensionality reduction by word embeddings: f(1) = W c(1)

For general n:
Embedding of an n-gram is the entry-wise product of its word vectors.
f(n) is the sum of the embeddings of the n-grams in the sentence.
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N-gram graphs?

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

atom symbol, atom degree, is-acceptor, ...

We can view:
atoms with different attributes as different words
walks of length n as n-grams.

A molecule Its 2-grams
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N-gram Graph algorithm

Sentences are linear graphs on words.
Molecules are graphs on atoms with attributes!

Given the embeddings for the atoms (vertex vectors):
Enumerate all n-grams (walks of length n)
Embedding of an n-gram: entry-wise product of its vertex vectors
f(n): sum of embeddings of all n-grams
Final N-gram Graph embedding fG : concatenation of f(1), f(2), . . . , f(T )
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N-gram Graph as simple GNN

GNN keeps a vector hi for each vertex in the graph and uses some
neighborhood aggregation strategy that iteratively updates by aggregating
those of its neighbors.

f (k)i = AGGREGATE(k)
(
{h(k−1)

j : j ∈ Neighbor(i)}
)

h(k)
i = COMBINE(k)

(
h(k−1)

i , f (k)i

)
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N-gram Graph as simple GNN

Given vectors fi for vertices i and graph adjacency matrix A:

F(1) = F = [f1, . . . , fm], f(1) = F(1)1
for each n ∈ [2,T ] do

F(n) = (F(n−1)A)� F
f(n) = F(n)1

end for
fG = [f(1); . . . ; f(T )]

Equivalent to a simple GNN without any parameters!
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Experimental Results

60 tasks on 10 datasets from MoleculeNet 2.
Methods:

WL-Kernel + SVM
Morgan FP + RF or XGB
Graph CNN (GCNN), Weave Neural Network, Graph Isomorphism
Network (GIN)

N-gram Graph + RF or XGB
Vertex embedding dimension r = 100 and T = 6

2Wu, Zhenqin, et al. ”MoleculeNet: a benchmark for molecular machine learning.”
Chemical science 9.2 (2018): 513-530
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Experimental Results

N-gram Graph + XGB: top-1 in 21 and top-3 in 48 out of 60 tasks
Overall better performance than other methods
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Theoretical Analysis

Assumptions.

Each vertex has S = 1 attribute and it takes values from a set of size K .
W ∈ Rr×K is the vertex embedding matrix.
Assume for simplicity that no two vertices in a walk p can have the same
attribute value.

Idea: There exists a linear mapping W [n] such that f(n) = W [n]c(n).

For S = 1, W [n] is the n-way column Hadamard product of W .

There are a wide family of prior distributions on W such that W [n] has RIP
with high probability.

=⇒ With sparse c(n), c(n) can efficiently be recovered from f(n).

A linear classifier learned on f(n) is comparable to the best linear classifier on
c(n).
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Current Work: AWARE

Parametrization of the N-gram graph algorithm:
Attentive Walk Aggregation GRaph NEtwork

The N-gram graph algorithm has no parameters and requires no training.
Therefore, it is efficient in computation. However:

Huge design space for adding trainable parameters.
Concatenated with a classifier, it becomes end-to-end.

Q: Why parametrize the algorithm, though?
A: Weighting!
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Weighted Features

The downstream learning tasks may prefer certain directions both in the
vertex embedding space and final embedding space.

Given vectors F = [f1, . . . , fm] for m
vertices and graph adjacency matrix
A:

F(1) = F , f(1) = F(1)1
for each n ∈ [2,T ] do

F(n) = (F(n−1)A)� F
f(n) = F(n)1

end for
fG = [f(1); . . . ; f(T )]
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F(n) = (F(n−1)A)� F
f(n) = σ(W3F(n))1

end for
fG = [f(1); . . . ; f(T )]

Then for a vertex embedding fi ,
W1fi will stretch its components
along W1’s larger singular vectors
while relatively shrink the
components along the smaller ones.

Same idea for W3.
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Attentive Messages

Some nodes have more impact on their neighbors.
Weighted sum of latent vectors from neighbors (with attention).

Given vectors F = [f1, . . . , fm] for m vertices
and graph adjacency matrix A:
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Given vectors F = [f1, . . . , fm] for m vertices
and graph adjacency matrix A:

F(1) = σ(W1F ), f(1) = F(1)1
for each n ∈ [2,T ] do

F(n) = (F(n−1)(A� S̄(n−1)))� F(1)

f(n) = σ(W3F(n))1
end for
fG = [f(1); . . . ; f(T )]

[s(n−1)]ji=[F(n−1)]
>
j W2[F(n−1)]i

[S̄(n−1)]ji=
exp([s(n−1)]ji )∑

k∈neighbors of i exp([s(n−1)]ki )
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Attentive Messages: Visualization

Mutagenicity dataset: NO2 and NH2 atom groups are known to have a
mutagenic effect in a molecule.
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AWARE: Experiments

AWARE performs top-1 in 27 and top-3 in 48 out of 60 tasks
Overall better performance than other methods, including N-gram Graph
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Theoretical Analysis

Assumption. Each vertex has S = 1 attribute and it takes values from a
set of size K . W ∈ Rr×K is the vertex embedding matrix. Also assume
that W1 = W3 = I and σ is linear.

Idea: There exists a linear mapping W [n] such that f(n) = W [n]Λ(n)c(n)
where Λ(n) is a diagonal weighting matrix that depends on the scoring
matrix S̄.

A similar analysis can be applied to Λ(n)c(n) instead of c(n).
Benefit of weighting: If Λ(n) emphasizes important features for
prediction, then better to learn over Λ(n)c(n) rather than c(n). Thus,
we can learn over f(n) = W [n]Λ(n)c(n).
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Thank you!
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