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SSL

• Data augmentation to get two views of the same image.


• Despite empirical success, theoretical understanding lacks.


• Some papers (e.g. Arora et al. (2019)) provide guarantees under the 
assumption that two views are somewhat conditionally independent given the 
label or a hidden variable.


• However, this is not true in practical cases, i.e., two views are augmentations 
of a natural image, and usually have strong correlation.


• They are not independent conditioned on the label.



This paper

• Presents a theoretical framework for self-supervised learning without requiring 
conditional independence


• Designs a principled, practical loss function for learning neural net 
representations that resembles state-of-the-art contrastive learning methods. 


• Proves that, under a simple and realistic data assumption, linear classification 
using representations learned on a polynomial number of unlabeled data 
samples can recover the ground-truth labels of the data with high accuracy.



Idea

• “The fundamental data property that we leverage is a notion of continuity of 
the population data within the same class. Though a random pair of examples 
from the same class can be far apart, the pair is often connected by (many) 
sequences of examples, where consecutive examples in the sequences are 
close neighbors within the same class. This property is more salient when the 
neighborhood of an example includes many different types of 
augmentations.”



Setting
• : set of all natural data (raw input without augmentation)


• Assumed to be finite but exponentially large


• Each  belongs to one of  classes


•  is the labeling function


• : population distribution over  from which we draw training data.


• : distribution of the augmentations of a given 


•  set of all augmented data


• Assumed to be finite but exponentially large, 


• We will learn an embedding function  and evaluate its quality using linear probe  with weights 


• 


• Then given raw data , we ensemble the predictions on augmented data and predict 


• : linear probe error (the error of the best possible linear classifier on the representations)
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Augmentation Graph

• Population augmentation graph , where the vertex set is all 
augmentation data , and  denotes the edge weights.


• For any two augmented data ,    denotes the marginal probability 
of generating the pair  and  from a random natural data :
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Augmentation Graph



Spectral Decomposition

• 


•  is adjacency matrix with 


•  is a diagonal matrix with 


•  is the normalized adjacency matrix.
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Spectral Decomposition



Spectral Contrastive Learning

• The embeddings  obtained by eigendecomposition are non-parametric.


• The embedding matrix  cannot be stored efficiently.


• Then, parametrize the rows of  as a neural net function, and assume that 
embeddings  can be represented by  for some 

u*x
F*

F*
u*x f(x) f ∈ ℱ



Spectral Contrastive Learning

• Design a loss function for    such that minimizing it could recover  up to 
some linear transformation.

f F*



Spectral Contrastive Learning



Spectral Contrastive Learning



Spectral Contrastive Learning

•  is based on the rows  of .


• Then 


•   can be decomposed into a sum of  terms with 

ℒmf ux F

(FF⊤)xx′ 
= u⊤

x ux′ 

ℒmf N2 u⊤
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Spectral Contrastive Learning

•  are a random raw data points


• Define positive pair  where 


• Define negative pair  where 

x̄, x̄′ ∼ PX̄

(x, x+) x, x+ ∼ A( ⋅ | x̄)

(x, x−) x− ∼ A( ⋅ | x̄′ )



Spectral Loss



Spectral Loss



Guarantees for spectral loss on pop. data



Guarantees for spectral loss on pop. data



Finite-sample generalization bounds

unbiased estimator of ℒ( f )



Finite-sample generalization bounds



Finite-sample generalization bounds



Guarantee for learning linear probe with labeled data



Experiments


