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SSL

 Data augmentation to get two views of the same image.
* Despite empirical success, theoretical understanding lacks.

e Some papers (e.g. Arora et al. (2019)) provide guarantees under the
assumption that two views are somewhat conditionally independent given the
label or a hidden variable.

 However, this Is not true In practical cases, I.e., two views are augmentations
of a natural image, and usually have strong correlation.

* They are not independent conditioned on the label.



This paper

* Presents a theoretical framework for self-supervised learning without requiring
conditional independence

* Designs a principled, practical loss function for learning neural net
representations that resembles state-of-the-art contrastive learning methods.

 Proves that, under a simple and realistic data assumption, linear classification
using representations learned on a polynomial number of unlabeled data
samples can recover the ground-truth labels of the data with high accuracy.



Idea

 “The fundamental data property that we leverage is a notion of continuity of
the population data within the same class. Though a random pair of examples
from the same class can be far apart, the pair is often connected by (many)
sequences of examples, where consecutive examples in the sequences are
close neighbors within the same class. This property is more salient when the

neighborhood of an example includes many different types of
augmentations.”



Setting

« X: set of all natural data (raw input without augmentation)

* Assumed to be finite but exponentially large

» Each X € X belongs to one of r classes

ey X —

* ["y. POPU

] is the labeling function

ation distribution over X from which we draw training data.

e A( - | X): distribution of the augmentations of a given X € X

« X : set of all augmented data

» Assumed to be finite but exponentially large, | X | = N

- We will learn an embedding function f : X — R* and evaluate its quality using linear probe g with weights B € R

. 8¢p(x) = arg max (f(x)'B),

, Then given raw data x, we ensemble the predictions on augmented data and predict gﬁ p(X) = argmax P

,6(f)= min Pr |

=td

BERM" x~Py

) [gf,B(x) = 1]
ic[r] X~ACIY)

y(X) # 8 5(X)]: linear probe error (the error of the best possible linear classifier on the representations)



Augmentation Graph

» Population augmentation graph G(X, w), where the vertex set is all
augmentation data X, and w denotes the edge weights.

» For any two augmented data x, x’ € X, w,,.denotes the marginal probability
of generating the pair x and x’ from a random natural data X ~ Pjx:

Wy = [A(x | X)AX | X)]

XX ~%~Py

)

x,x'eX
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Spectral Decomposition

o Wy = 2 Wix'

x'eX

. A e RVVis adjacency matrix with A, . = w_.

. D e RV Wisa diagonal matrix with Dxx = W,

. A = D"7AD™7 is the normalized adjacency matrix.



Spectral Decomposition

Standard spectral graph theory approaches produce vertex embeddings as follows. Let
1,72, - Yk be the k largest eigenvalues of A, and vy, v9, - - - , vg be the corresponding unit-norm
eigenvectors. Let F* = [v1,ve, -+ ,v;] € RY Xk be the matrix that collects these eigenvectors in
columns, and we refer to it as the eigenvector matrix. Let u} € R” be the z-th row of the matrix
F*. It turns out that u},’s can serve as desirable embeddings of z’s because they exhibit clustering
structure in Euclidean space that resembles the clustering structure of the graph G(X, w).



Spectral Contrastive Learning

Standard spectral graph theory approaches produce vertex embeddings as follows. Let
1,72, " , Yk be the k largest eigenvalues of A, and vy, vo, - - - , vx be the corresponding unit-norm
eigenvectors. Let F* = [v1,ve, -+ ,v;] € RY Xk be the matrix that collects these eigenvectors in
columns, and we refer to it as the eigenvector matrix. Let u} € R” be the z-th row of the matrix
F*. It turns out that u}’s can serve as desirable embeddings of z’s because they exhibit clustering
structure in Euclidean space that resembles the clustering structure of the graph G(X, w).

 The embeddings u:* obtained by eigendecomposition are non-parametric.
» The embedding matrix F* cannot be stored efficiently.

« Then, parametrize the rows of [ as a neural net function, and assume that
embeddings u;* can be represented by f(x) for some f € F



Spectral Contrastive Learning

Standard spectral graph theory approaches produce vertex embeddings as follows. Let
1,72, - Yk be the k largest eigenvalues of A, and vy, v9, - - - , vg be the corresponding unit-norm
eigenvectors. Let F* = [v1,ve, -+ ,v;] € RY Xk be the matrix that collects these eigenvectors in
columns, and we refer to it as the eigenvector matrix. Let u} € R” be the z-th row of the matrix
F*. It turns out that u}’s can serve as desirable embeddings of z’s because they exhibit clustering
structure in Euclidean space that resembles the clustering structure of the graph G(X, w).

» Design a loss function for f such that minimizing it could recover F* up to
some linear transformation.
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Spectral Contrastive Learning

By the classical theory on low-rank approximation (Eckart-Young-Mirsky theorem (Eckart
and Young, 1936)), any minimizer F' of L¢(F') contains scaling of the largest eigenvectors of

A up to a right transformation—for some orthonormal matrix R € R***, we have FF = F* .
diag([\/71,-- - ,+/7k])R. Fortunately, multiplying the embedding matrix by any matrix on the right
and any diagonal matrix on the left does not change its linear probe performance, which is formal-
ized by the following lemma.



Spectral Contrastive Learning

Lemma 3.1. Consider an embedding matrix F € RV*¥ and a linear classifier B € R¥*", Let D € RYV*HN
be a diagonal matrix with positive diagonal entries and Q € R*** be an invertible matrix. Then, for any

embedding matrix F = D - F - Q, the linear classifier B = Q1B on F has the same prediction as B on F.
As a consequence, we have

E(F) = E(F). (5)

where E(F') denotes the linear probe performance when the rows of F are used as embeddings.

Proof of Lemma 3.1. Let D = diag(s) where s, > 0 for x € X. Let uy, 4, € R” be the z-th row of
matrices F' and F, respectively. Recall that g, p(r) = argmax;c, (u, B); is the prediction on an

augmented datapoint z € X with representation u, and linear classifier B. Let B = Q! B, it’s easy
to see that g. z(z) = arg max;¢(,(sz - u, B);. Notice that s, > 0 doesn’t change the prediction since
it changes all dimensions of u, B by the same scale, we have g =(z) = g, 5(z) for any augmented
datapoint z € X. The equivalence of loss naturally follows.




Spectral Contrastive Learning

min L,¢(F):=|A-FF'"| .
FeRN Xk F

» Z,¢is based on the rows u, of F.

 Then (FF") .=u u,

X X

« £ mf Can be decomposed into a sum of N“ terms with u; U,



Spectral Contrastive Learning

= =/

¢ X,X ~ Py are arandom raw data points
« Define positive pair (x,x") where x,x™ ~ A( - | X)

 Define negative pair (x,x™) where x~ ~ A( - | X')



Spectral Loss

Lemma 3.2 (Spectral contrastive loss). Recall that u,, is the x-th row of F'. Let u, = wa!? f(x) for some
function f. Then, the loss function L.¢(F') is equivalent to the following loss function for f, called spectral
contrastive loss, up to an additive constant:

Lni(F) = L(f)+ const

where L(f) £ -2 -Ep .+ [f(z)' f(T)] + Ep o -(f(a:)T f(x_)) (6)

Proof of Lemma 3.2. We can expand L¢(F') and obtain

= 2 (- 2w S@) 1) + v (F@)T5)) ”



Spectral Loss
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Guarantees for spectral loss on pop. data

Definition 3.3 (Dirichlet conductance). For a graph G = (X,w) and a subset S C X, we define the
Dirichlet conductance of S as

ZwES,w’¢S Wz
ZwES Wy

We note that when S is a singleton, there is ¢ (5) = 1 due to the definition of w,. We introduce
the sparsest m-partition to represent the number of edges between m disjoint subsets.

PG (S) :=

Definition 3.4 (Sparsest m-partition). Let G = (X, w) be the augmentation graph. For an integer m €
2, | X||, we define the sparsest m-partition as

O 1= Slr,pj,rgm max{¢a(51),-- -, ¢c(Sm)}

where Sy, - - - , Sy, are non-empty sets that form a partition of X.



Guarantees for spectral loss on pop. data

Assumption 3.5 (Labels are recoverable from augmentations). Let £ ~ P5 and y(Z) be its label. Let
the augmentation x ~ A(-|x). We assume that there exists a classifier g that can predict y(x) given x with
error at most a.. That is, g(x) = y(&) with probability at least 1 — «.

We also introduce the following assumption which states that some universal minimizer of the
population spectral contrastive loss can be realized by the hypothesis class.

Assumption 3.6 (Realizability). Let F be a hypothesis class containing functions from X to R*. We
assume that at least one of the global minima of L( f) belongs to F.

Theorem 3.7. Assume the representation dimension k > 2r and Assumption 3.5 holds for o > 0. Let F be

a hypothesis class that satisfies Assumption 3.6 and let f7., € F be a minimizer of L(f). Then, we have

E(f3op) < O (/pfya)) -



Finite-sample generalization bounds

training dataset {Z1, Z2, - - -
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Finite-sample generalization bounds

define the Rademacher complexity of F on n data as

1 n

Rn(F) := maxg, ... o cx Eo {supfef,ie[k] ~ (ijl Ujfi(iEj))J , Where ¢ is a uniform random vector in {—1, 1}"
and f;(z) is the i-th dimension of f(z).

Theorem 4.1. For some k > 0, assume ||f(z)||, < & forall f € Fandxz € X. Let f},, € F bea

minimizer of the population loss L(f). Given a random dataset of size n, let femp c F be a minimizer of

empirical loss L, (f). Then, when Assumption 3.6 holds, with probability at least 1 — § over the randomness
of data, we have

A~

L(femp) < L(fiop) + 1 Ryj2(F) +c2- (\/log i | 5) ,

n

where constants c1 < k*k? + kk and co < kk? + k*k%.



Finite-sample generalization bounds

Theorem 4.2. Assume representation dimension k > 4r + 2, Assumption 3.5 holds for o > 0 and Assump-
tion 3.6 holds. Recall ~y; be the i-th largest eigenvalue of the normalized adjacency matrix. Then, for any

e < i and femp € F such that L( femp) < L(f3op) t+ € we have:

Q ke

g(femp) 5 ' log k A2 9
B

Plis2
where A~ := 7y|35,/4] — Yk 1S the eigenvalue gap between the |3k /4 |-th and the k-th eigenvalue.



Guarantee for learning linear probe with labeled data

((2,y()), B) == Yi_ymin{ (B'z — (z)); , 1}

Theorem 5.1. In the setting of Theorem 3.7, assume v, > C)\ for some C) > 0. Learn a linear probe

n

B € arg min g <1/c, 2ie1 £((fpop(i), Y(Zi)), B) by minimizing the capped quadratic loss subject to a
norm constraint. Then, with probability at least 1 — § over random data, we have

. . . o i k log1/6
:T:rv?l;y (ngOP’B(x) 7 y(x)) P pfk/ZJ e Cy \/;—I_ n

Here the first term is the population error from Theorem 3.7. The last two terms are the general-
ization gap from standard concentration inequalities for linear classification and are small when the
number of labeled data n is polynomial in the feature dimension k. We note that this result reveals
a trade-off when choosing the feature dimension k: when n is fixed, a larger k decreases the pop-
ulation contrastive loss while increases the generalization gap for downstream linear classification.
The proof of Theorem 5.1 is in Section E.



Experiments

Datasets CIFAR-10 CIFAR-100 Tiny-ImageNet
Epochs 200 400 800 | 200 400 800 | 200 400 800
SImMCLR (repro.) | 83.73 87.72 90.60 | 54.74 61.05 63.88 | 43.30 46.46 48.12

SimSiam (repro.)

8754 90.31 9140 | 61.56 6496 6587 | 3482 39.46 46.76

Ours

88.66 90.17 92.07 | 62.45 65.82 66.18 | 41.30 4536 49.86

Table 1: Top-1 accuracy under linear evaluation protocal.

dCcC. (O/o)

SIMCLR BYOL MoCov2 SimSiam Ours
66.5 66.5 67.4 68.1 66.97

Table 2: ImageNet linear evaluation accuracy with 100-epoch pre-training. All results but ours are
reported from (Chen and He, 2020). We use batch size 384 during pre-training.



