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Why?

Make accurate predictions on test data that is distributionally
different from training data.
Scarce task-specific labels
Solution: Pre-train on related task, and fine-tune it for task of
interest.
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Graphs

Success in vision and NLP, but few studies generalize pre-training to graph
data.
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Negative Transfer

Good transfer learning doesn’t just depend the number of labeled
pre-training data that is from the same domain as the task of interest.
Domain expertise is needed.
If pre-training data is not correlated with task of interest, the
generalization after transfer can be harmed (i.e. negative transfer).
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Method

Overview
Node-level Pre-training

Context Prediction
Attribute Masking

Graph-level Pre-training
Supervised Graph-level Property Prediction

Strategies for Pre-training Graph Neural Networks 5



Department of Computer Sciences, University of Wisconsin–Madison

Method: Overview

Main idea: pre-train a GNN both at the node and graph level.
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Method: Context Prediction

K -hop neighborhood of vertex v : h(K)
v —obtained by using a

K -layer GNN (main GNN)
Context graph of vertex v : The graph structure that surrounds v ’s
neighborhood. It’s a subgraph that lies between r1-hops and r2-hops
away form v where r1 < K .
Context anchor node: Common in both neighborhood and context
graph

Context Prediction
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Method: Context Prediction

Use an auxiliary GNN (context GNN) to obtain node embeddings in
the context graph.
Average the embeddings of context anchor nodes to get context
embedding of vector v : cG

v

Context Prediction
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Method: Context Prediction

Negative sampling
Train both GNN and GNN’ with the objective of

σ(h(K)
v , cG′

v ′ ) ≈ 1{v and v ′ are the same nodes}
Positive pair: v ′ = v ,G ′ = G.
Negative pair: Randomly sample v ′ from randomly-chosen G ′

Context Prediction
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Method: Attribute Masking

Mask node/edge attributes, and let GNNs predict the masked
attributes based on neighboring structure.
Masking edge attributes

Context Prediction
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Method: Supervised Graph-level Property Prediction

Graph-level representation hG is directly used for fine-tuning on
downstream prediction tasks. So, it is important to directly encode
domain-specific information into hG .
Pre-train graph representation using graph-level multi-task supervised
pre-training to jointly predict a diverse set of supervised labels of
individual graphs.

Strategies for Pre-training Graph Neural Networks 14



Department of Computer Sciences, University of Wisconsin–Madison

Method: Supervised Graph-level Property Prediction

Problem: Only performing multi-task graph-level pre-training can fail
to give transferable graph representations as some supervised
pre-training tasks might be unrelated to the task of interest.
Solution?: Pick relevant tasks (costly)
Solution!: Apply node-level pre-training methods first before
performing graph-level pre-training.
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Final Method

Pre-trained GNN and downstream linear classifier is fine-tuned in an
end-to-end manner.
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Experimental Results
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Observations

Some important observations
1. Using an expressive GNN model (GIN is the most expressive) is

essential to benefit from pre-training. Otherwise, it might even be
hurtful.
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Observations

2. Using only graph-level multi-task supervised pre-training gives limited
performance gain and even yields negative transfer on many
downstream tasks.
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Observations

3. Using only node-level self-supervised pre-training gives limited
performance improvement.
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Observations

4. Models pre-trained on both node- and graph-level achieve
orders-of-magnitude faster training and validation convergence
compared to other models.
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