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m Make accurate predictions on test data that is distributionally
different from training data.

m Scarce task-specific labels

m Solution: Pre-train on related task, and fine-tune it for task of
interest.
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Success in vision and NLP, but few studies generalize pre-training to graph
data.
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Negative Transfer WISCONSIN
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m Good transfer learning doesn't just depend the number of labeled
pre-training data that is from the same domain as the task of interest.

m Domain expertise is needed.

m If pre-training data is not correlated with task of interest, the
generalization after transfer can be harmed (i.e. negative transfer).
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Method: Overview WISCONSIN
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Main idea: pre-train a GNN both at the node and graph level.
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[
m Node-level Pre-training

m Context Prediction
=
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Method: Context Prediction WISCONSIN
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)

—obtained by using a

m K-hop neighborhood of vertex v: h\(,K
K-layer GNN (main GNN)

m Context graph of vertex v: The graph structure that surrounds v's
neighborhood. It's a subgraph that lies between ri-hops and r>-hops
away form v where 1 < K.

m Context anchor node: Common in both neighborhood and context

graph

l'2 K-hop neighborhood

\/‘ E—
GNN

Context graph ,‘\'(}NN'(_\ [
@ = Center node -

@ = Context anchor nodes

Context Prediction
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Method: Context Prediction WISCONSIN
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m Use an auxiliary GNN (context GNN) to obtain node embeddings in
the context graph.
m Average the embeddings of context anchor nodes to get context

embedding of vector v: cC

r2 K-hop neighborhood

7 kGNN/(

Context graph >3NNQ
e = Center node

@ = Context anchor nodes

Context Prediction
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Method: Context Prediction
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Negative sampling
m Train both GNN and GNN' with the objective of

(K) -Gy~
U(hv » €y ) ~ l{v and v/ are the same nodes}
m Positive pair: v = v, G = G.

m Negative pair: Randomly sample v/ from randomly-chosen G’

rz K-hop neighborhood
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Context Prediction
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m Node-level Pre-training

[
m Attribute Masking
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Method: Attribute Masking WISCONSIN
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m Mask node/edge attributes, and let GNNs predict the masked
attributes based on neighboring structure.
m Masking edge attributes

>GNN

(C,N,0,S, ..}
X = Masked node

Context Prediction
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m Graph-level Pre-training
m Supervised Graph-level Property Prediction
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Method: Supervised Graph-level Property Prediction WISCONSIN
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m Graph-level representation hg is directly used for fine-tuning on
downstream prediction tasks. So, it is important to directly encode
domain-specific information into h¢.

m Pre-train graph representation using graph-level multi-task supervised
pre-training to jointly predict a diverse set of supervised labels of
individual graphs.
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Method: Supervised Graph-level Property Prediction WISCONSIN
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m Problem: Only performing multi-task graph-level pre-training can fail
to give transferable graph representations as some supervised
pre-training tasks might be unrelated to the task of interest.

m Solution?: Pick relevant tasks (costly)

m Solution!: Apply node-level pre-training methods first before
performing graph-level pre-training.
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Final Method WISCONSIN
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m Pre-trained GNN and downstream linear classifier is fine-tuned in an
end-to-end manner.
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Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE Average
# Molecules 2039 7831 8575 1427 1478 93087 41127 1513 7
# Binary prediction tasks 1 12 617 27 2 17 1 1 /

Pre-training strategy
Graph-level | Node-level
= = 65.8+45 740+08 634+06 57.3%x1.6 580+44 T1.8+£25 753£19 701+£54 67.0
- Infomax 68.8 £0.8 753405 @ 627 £0.4 584+0.8 699430 753425 76.0+0.7 759+1.6 70.3
- EdgePred | 67.3424 76.040.6 64.1+0.6 604407 641437 741421 763+£1.0 79.9+09 70.3

Out-of-distribution prediction (scaffold split)

- AttrMasking | 643 £2.8 76.7+04 642+£05 61.0£07 718+41 T747+£14 772£11 793*16 1.1

- ContextPred | 68.0 £2.0 75.740.7 639 £0.6 60.9 £0.6 659438 758 £1.7 773 £1.0 79.6£1.2 70.9
Supervised - 68.3 £0.7 64.4+04 62.1£05 57.2+£25 794+£13 T44£12 769 +1.0 70.0
Supervised Infomax 68.0 £1.8 649 £0.7 609406 71.2+28 81.3+1.4 778+09 80.1+09 72.8
Supervised EdgePred 66.6 £2.2 66.5+0.3 633409 709+4.6 785424 775408 79.1+£3.7 72.6
Supervised | AtrMasking | 66.5 £2.5 ~ 77.9+04  65.1£03 63.9+0.9 737+28 81.2+1.9 77.01£12 80309 | 732
Supervised | ContextPred | 68.7 £1.3 78.140.6 657 +0.6 62.7+0.8 72.6+15 813+21 79.9+0.7 84.5+0.7 74.2

Table 1: Test ROC-AUC (%) performance on molecular prediction benchmarks using different
pre-training strategies with GIN. The rightmost column averages the mean of test performance
across the 8 datasets. The best result for each dataset and comparable results (i.e., results within one
standard deviation from the best result) are bolded. The shaded cells indicate negative transfer, i.e.,
ROC-AUC of a pre-trained model is worse than that of a non-pre-trained model. Notice that node- as
well as graph-level pretraining are essential for good performance.
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Observations WISCONSIN
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Some important observations

1. Using an expressive GNN model (GIN is the most expressive) is
essential to benefit from pre-training. Otherwise, it might even be

hurtful.
Chemistry Biology
Non-pre-trained | Pre-trained | Gain | Non-pre-trained | Pre-trained | Gain
GIN 67.0 74.2 +7.2 648 £ 1.0 742 £15 | 494
GCN 68.9 722 +34 632£1.0 709+ 1.7 +1.7
GraphSAGE 68.3 70.3 +2.0 657+1.2 685+ 15| +2.8
GAT 66.8 60.3 -6.5 682 £ 1.1 678 £3.6 | -04

Table 2: Test ROC-AUC (%) performance of different GNN architectures with and without
pre-training. Without pre-training, the less expressive GNNs give slightly better performance
than the most expressive GIN because of their smaller model complexity in a low data regime.
However, with pre-training, the most expressive GIN is properly regularized and dominates the other
architectures. For results split by chemistry datasets, see Table 4 in Appendix H. Pre-training strategy
for chemistry data: Context Prediction + Graph-level supervised pre-training; pre-training strategy
for biology data: Attribute Masking + Graph-level supervised pre-training.
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2. Using only graph-level multi-task supervised pre-training gives limited
performance gain and even yields negative transfer on many
downstream tasks.
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3. Using only node-level self-supervised pre-training gives limited

performance improvement.

Pre-training strategy Out-of-dist.
Graph-level | Node-level | (species split)
- - 64.8 £1.0
- Infomax 64.1 £1.5
- EdgePred 65.7 £1.3
=] ContextPred | 65.2+1.6 |
- AttrMasking 644 +1.3
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4. Models pre-trained on both node- and graph-level achieve
orders-of-magnitude faster training and validation convergence
compared to other models.

Chemistry: MUV Biology: PPI prediction
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Figure 4: Training and validation curves of different pre-training strategies on GINs. Solid and
dashed lines indicate training and validation curves, respectively.
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