

< E >

- Þ-

Ξ

Strategies for Pre-training Graph Neural Networks

Mehmet F. Demirel

April 15, 2021

Strategies for Pre-training Graph Neural Networks

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Make accurate predictions on test data that is distributionally different from training data.
- Scarce task-specific labels
- Solution: Pre-train on related task, and fine-tune it for task of interest.

∃ >

I D > I A P > I B >

 $< \Xi >$

Ξ

Success in vision and NLP, but few studies generalize pre-training to graph data.

- Good transfer learning doesn't just depend the number of labeled pre-training data that is from the same domain as the task of interest.
- Domain expertise is needed.
- If pre-training data is not correlated with task of interest, the generalization after transfer can be harmed (i.e. *negative transfer*).

Overview

Node-level Pre-training

- Context Prediction
- Attribute Masking
- Graph-level Pre-training
 - Supervised Graph-level Property Prediction

< E >

- Þ-

E

Method: Overview

Department of Computer Sciences, University of Wisconsin-Madison

Main idea: pre-train a GNN both at the node and graph level.

Overview

Node-level Pre-training

- Context Prediction
- Attribute Masking

Graph-level Pre-training

Supervised Graph-level Property Prediction

< E >

- Þ-

E

Method: Context Prediction

Department of Computer Sciences, University of Wisconsin-Madison

- K-hop neighborhood of vertex v: h_v^(K)—obtained by using a K-layer GNN (main GNN)
- Context graph of vertex v: The graph structure that surrounds v's neighborhood. It's a subgraph that lies between r_1 -hops and r_2 -hops away form v where $r_1 < K$.
- Context anchor node: Common in both neighborhood and context graph

Method: Context Prediction

Department of Computer Sciences, University of Wisconsin–Madison

- Use an auxiliary GNN (context GNN) to obtain node embeddings in the context graph.
- Average the embeddings of context anchor nodes to get context embedding of vector v: c_v^G

Method: Context Prediction

Department of Computer Sciences, University of Wisconsin-Madison

Negative sampling

Train both GNN and GNN' with the objective of

$$\sigma(h_{v}^{(K)},c_{v'}^{G'})pprox {f 1}_{\{v ext{ and } v' ext{ are the same nodes}\}}$$

• Positive pair: v' = v, G' = G.

Negative pair: Randomly sample v' from randomly-chosen G'

Overview

Node-level Pre-training

- Context Prediction
- Attribute Masking
- Graph-level Pre-training
 - Supervised Graph-level Property Prediction

토 > 토

Method: Attribute Masking

Department of Computer Sciences, University of Wisconsin-Madison

- Mask node/edge attributes, and let GNNs predict the masked attributes based on neighboring structure.
- Masking edge attributes

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Overview

Node-level Pre-training

- Context Prediction
- Attribute Masking
- Graph-level Pre-training
 - Supervised Graph-level Property Prediction

E

- Graph-level representation *h_G* is directly used for fine-tuning on downstream prediction tasks. So, it is *important to directly encode domain-specific information into h_G*.
- Pre-train graph representation using graph-level multi-task supervised pre-training to jointly predict a diverse set of supervised labels of individual graphs.

- Problem: Only performing multi-task graph-level pre-training can fail to give transferable graph representations as some supervised pre-training tasks might be unrelated to the task of interest.
- **Solution?**: Pick relevant tasks (*costly*)
- **Solution!**: Apply node-level pre-training methods first before performing graph-level pre-training.

<ロト <回ト < 回ト < 回ト

 Pre-trained GNN and downstream linear classifier is fine-tuned in an end-to-end manner.

Ξ

Dataset		BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	Average
# Molecules		2039	7831	8575	1427	1478	93087	41127	1513	1
# Binary prediction tasks		1	12	617	27	2	17	1	1	1
Pre-training strategy		Out of distribution prediction (coeffold calit)								
Graph-level Node-level		Out-or-distribution prediction (scarroid spire)								
-	-	65.8 ± 4.5	74.0 ± 0.8	63.4 ± 0.6	57.3 ± 1.6	58.0 ± 4.4	71.8 ± 2.5	75.3 ±1.9	70.1 ± 5.4	67.0
-	Infomax	68.8 ±0.8	75.3 ± 0.5	62.7 ± 0.4	58.4 ± 0.8	69.9 ± 3.0	75.3 ± 2.5	76.0 ± 0.7	75.9 ± 1.6	70.3
-	EdgePred	67.3 ±2.4	76.0 ± 0.6	64.1 ± 0.6	60.4 ± 0.7	64.1 ± 3.7	74.1 ± 2.1	76.3 ± 1.0	79.9 ± 0.9	70.3
	AttrMasking	64.3 ±2.8	76.7±0.4	64.2 ± 0.5	61.0±0.7	71.8 ± 4.1	74.7±1.4	77.2 ± 1.1	79.3±1.6	71.1 - '
-	ContextPred	68.0 ± 2.0	75.7 ± 0.7	63.9 ± 0.6	60.9 ± 0.6	65.9 ± 3.8	75.8 ± 1.7	77.3 ± 1.0	79.6 ± 1.2	70.9
Supervised	-	68.3 ± 0.7	77.0 ± 0.3	64.4 ± 0.4	62.1 ± 0.5	57.2 ± 2.5	79.4 ±1.3	74.4 ± 1.2	76.9 ± 1.0	70.0
Supervised	Infomax	68.0 ± 1.8	77.8 ± 0.3	64.9 ± 0.7	60.9 ± 0.6	71.2 ± 2.8	81.3 ±1.4	77.8 ± 0.9	80.1 ± 0.9	72.8
Supervised	EdgePred	66.6 ± 2.2	78.3 ± 0.3	66.5 ± 0.3	63.3 ± 0.9	70.9 ± 4.6	78.5 ± 2.4	77.5 ± 0.8	79.1 ± 3.7	72.6
Supervised	AttrMasking	66.5 ± 2.5	77.9±0.4	65.1 ± 0.3	63.9±0.9	$7\bar{3}.7 \pm 2.8$	81.2 ±1.9	77.1 ± 1.2	80.3 ±0.9	73.2
Supervised	ContextPred	68.7 ±1.3	$\textbf{78.1} \pm \textbf{0.6}$	65.7 ± 0.6	62.7 ± 0.8	$\textbf{72.6} \pm \textbf{1.5}$	81.3 ± 2.1	$\textbf{79.9} \pm \textbf{0.7}$	84.5 ± 0.7	74.2

Table 1: **Test ROC-AUC (%) performance on molecular prediction benchmarks using different pre-training strategies with GIN.** The rightmost column averages the mean of test performance across the 8 datasets. The best result for each dataset and comparable results (*i.e.*, results within one standard deviation from the best result) are bolded. The shaded cells indicate negative transfer, *i.e.*, ROC-AUC of a pre-trained model is worse than that of a non-pre-trained model. Notice that node- as well as graph-level pretraining are essential for good performance.

イロト イポト イラト

Some important observations

1. Using an expressive GNN model (GIN is the most expressive) is essential to benefit from pre-training. Otherwise, it might even be hurtful.

	Che	emistry		Biology			
	Non-pre-trained	Pre-trained	Gain	Non-pre-trained	Pre-trained	Gain	
GIN	67.0	74.2	+7.2	64.8 ± 1.0	74.2 ± 1.5	+9.4	
GCN	68.9	72.2	+3.4	63.2 ± 1.0	70.9 ± 1.7	+7.7	
GraphSAGE	68.3	70.3	+2.0	65.7 ± 1.2	68.5 ± 1.5	+2.8	
GAT	66.8	60.3	-6.5	$\textbf{68.2} \pm \textbf{1.1}$	67.8 ± 3.6	-0.4	

Table 2: Test ROC-AUC (%) performance of different GNN architectures with and without pre-training. Without pre-training, the less expressive GNNs give slightly better performance than the most expressive GIN because of their smaller model complexity in a low data regime. However, with pre-training, the most expressive GIN is properly regularized and dominates the other architectures. For results split by chemistry datasets, see Table 4 in Appendix H. Pre-training strategy for chemistry data: Context Prediction + Graph-level supervised pre-training; pre-training strategy for biology data: Attribute Masking + Graph-level supervised pre-training.

Observations

Department of Computer Sciences, University of Wisconsin-Madison

 Using only graph-level multi-task supervised pre-training gives limited performance gain and even yields negative transfer on many downstream tasks.

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3. Using only node-level self-supervised pre-training gives limited performance improvement.

Pre-traini	Out-of-dist.	
Graph-level	Node-level	(species split)
-	-	64.8 ± 1.0
-	Infomax	64.1 ± 1.5
-	EdgePred	65.7 ± 1.3
	ContextPred	$\overline{65.2 \pm 1.6}$
_	AttrMasking	64.4 ± 1.3

E

- E - F

Observations

Department of Computer Sciences, University of Wisconsin-Madison

4. Models pre-trained on both node- and graph-level achieve orders-of-magnitude faster training and validation convergence compared to other models.

Figure 4: **Training and validation curves of different pre-training strategies on GINs.** Solid and dashed lines indicate training and validation curves, respectively.