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Contrastive vs Non-contrastive Learning

 Contrastive: Minimize the difference between positive pairs, and constrast
negative pairs.

 Former encourages modeling invariances while the latter prevents
collapse.

 Non-contrastive: No negative pair contrasting, e.g., SimSiam and BYOL

* Pair of Siamese networks: Want the views from the online + predictor
network and the target network to match.



* Non-contrastive: No negative pair
contrasting, e.g., SimSiam and BYOL.

* Pair of Siamese networks: Want the
views from the online + predictor

network and the target network to
match.

* Target network is not trained with GD,

l.e., a direct copy or a momentum
encodet.

 Don’t require large batch size, memory
gueue, or negative pairs.

Non-contrastive Learning
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Why do these models not collapse?

* Predictor and stop-gradient is essential in
non-contrastive SSL. BYOL and SimSiam
collapse without either of these.

« EMA or momentum encoder is not necessary
in BYOL and SimSiam.

 Both BYOL and SimSiam say that the
predictor must be optimal in achieving
minimal error when predicting the target
network’s outputs from the online network’s.

 BYOL suggests that no weight decay leads
to unstable results.
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A simple model

Simple, bias-free, linear BYOL model.

. | > L2 loss |«
o | I ¢ QQ0o |
Minimize J(W, W) = 5 =, | || W1 — StopGrad(f,,) ; rcicor concradien ]
00 O f2a O O O O
W: Linear online network /1Y oniihe | /X Tarar
W _: Linear target network . 00 OO00 OCJO0000
* 1 Augmentation X2
Wp: Linear predictor network . \ X /

. Figure 1. Two-layer setting with a linear, bias-free predictor.



Training Dynamics in Closed Form

Lemma 1. BYOL learning dynamics following Egn. 1:
W, = a, (—W,W(X +X') + Wo X) WT — W, (2)
W=W](-W,W(X+X')+W,X)—nqW (3

Wa = B(—Wo+ W) (4) > [2(@) = Earopo (o) [@]
° _ N | T .
Here, X := E [Z2ZT| where Z(x) := R oo (-2) x']is X/ = E [zxT] C(/)varlance of the data
the average augmented view of a data point  and X’ := X' = Eg [Vm'|w[$ ]] Covariance of the augmentation

~

Uz |V 1z[€']] is the covariance matrix V. [2] of aug-
mented views ' conditioned on x, subsequently averaged
over the data . Note that o, and 3 reflect multiplicative
learning rate ratios between the predictor and target net-
works relative to the online network. Finally, the terms in-
volving 7 reflect weight decay.




Exploration 1

Balancing of W and Wp that comes from weight decay

 |n BYOL and SimSiam, the match
between the representations produced
by online and target networks cannot
be explained solely by the predictor
weights.

* A non-zero weight decay, parametrized
by #, will remove the second term on

the RHS = more balance between
online and predictor networks.

Theorem 1 (Weight decay promotes balancing of the pre-
dictor and online networks.). Completely independent of

the particular dynamics of W, in Eqgn. 4, the update rules
(Egn. 2 and Eqgn. 3) possess the invariance

W)W (t) = ay ' WI[E)W,(t) + e *"C,  (5)

where C' is a symmetric matrix that depends only on the
initialization of W and W,



Exploration 2

No predictor or no stop-gradient = collapse

 Shown to be true in empirical studies various
times, but there i1s no theoretical explanation.

« When there is no EMA, meaning that W, = W,

ivec(W) = — H(t) - vec(W)
dt

where H(?) is a PSD matrix. This implies that if
the minimal eigenvalue of H(?) is bounded
below, W(t) — O, i.e., collapse.

Similar case for no predictior, i.e. Wp = I

Theorem 2 (The stop-gradient signal is essential for suc-
cess.). With W, = W (SimSiam case), removing the
stop-gradient signal yields a gradient update for W given
by positive semi-definite (PSD) matrix H(t) = X' ®
(WIWp + In,) + X @ WIW, + 0l n, (here Wy, =
W, — I, and ® is the Kronecker product):

d
Evec(W) = —H (t)vec(W). (6)

If the minimal eigenvalue )i, (H (t)) over time is bounded
below, inf;>¢ Amin (H (t)) > Ao > 0, then W (t) — 0.



Assumptions

. Assumption (Isotropic Data and Augmentation): X = / and X’ = o1, which comes
from the assumptions that that data distribution p(x) has zero mean and identity

covariance whereas the augmentation distribution p,,,.( - | x) has x mean and o°1
covariance.

» Assumption (Proportional EMA): EMA weight W (1) = (1) W(z) is a linear function
of W(?), i.e. W points to the same direction as the online weight.

- Assumption (Symmetric Predictor): W (1) = WpT (1)



New Dynamics

 Under these assumptions, we have the following dynamics

, a,
W, = ——(1 +062){Wp,F} + a,tF —nW,
F=—-(1 +02){W2,F} +{W,, F} — 2nF
where {A,B} ;= AB+ BA and F = E[f,f, | = WXW " is the correlation

matrix of the input of the predictor Wp.



Exploration 3
Eigenspace of Wp aligns with F

Eigenspace alignment
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Decoupled Dynamics

Let columns of U be the common eigenvectors of W, and F so that W, = UAWpU " where
AWp = diag[p,, ...,p,;|,and F = UANU" where A = diagls,, ...,s,].

pj = apsj|T— (1+0%)p;] —np;
7 ’ J[ ]] 7 1D (scalar)

. 2\ T 9re. eeeses
5 = 2pjs; [T — (14 0%)p;| — 2ns; > dynamics
Sj7.' — ﬁ(l—T)Sj—TSj/Q.

Invariance holds: s;(t) = aglp? (t) + e “"c;




No collapse
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Effect of Weight Decay

Dj 1
j— ~
T

(b) A | < 72
| 1 4(1 + o?)
|
! Stable
: Nontrivial

No Weight Decay

Weak Weight Decay

Strong Weight Decay

‘ Stable stationary point ‘ Unstable stationary point

BUT, if weight decay is large, then the eigenspace alignment condition is more likely to satisfy!



Effect of Other Hyperparameters

o o o oSjze of trivial basin T

Condition of eigenspace
alighment

Training speed

Eigenvalue of F won’t
grow (no feature
learning)




DirectPred

. Hmm, it looks like it is very important that eigenspaces of Wp and [ align
well. Why not do this directly without relying on gradient descent?

o Directly set linear Wp , SO no optimization.

1. Estimate F' = pﬁ +(1-p) ELff] ... g ?r;"r?[;;ﬁmog@i

2. Eigen-decompose F = lA]AFlA]T, Ap = diaglsy, ..., s,]

3. Set W, = U diag|p;] U following the invariance p; = \/FJ + € mJaX S;

Eigenspaces are always and automatically aligned!



DirectPred

Downstream Classification Top-1

Number of epochs

100 300 500
STL-10
DirectPred 77.806 +0.16| 78.77 =0.97 | 78.80 = 1.15
DirectPred (freq=5)|| 77.54 £ 0.11 |79.90 - 0.66|80.28 4 0.62
SGD baseline 75.00 £0.52 | 75.20 =0.74 | 75.25 £ 0.74
CIFAR-10

DirectPred 85.21 -+ 0.23(88.88 £ 0.15| 89.52 + 0.04
DirectPred (freq=5)|| 84.93 = 0.29 | 88.83 = 0.10 |89.56 = 0.13
SGD baseline 84.49 4+ 0.20 | 88.57 == 0.15 | 89.33 £ 0.27




DirectPred

Downstream classification (ImageNet):

. Accuracy (60 ep) || Accuracy (300 ep)
BIOL vanans Top-1 Top-5 Top-1 Top-5
2-layer predictor || 64.7 85.8 72.5 90.8
linear predictor 59.4 82.3 69.9 89.6
DirectPred 64.4 85.8 72.4 91.0

" 2-layer predictor is BYOL default setting.




