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Contrastive vs Non-contrastive Learning

• Contrastive: Minimize the difference between positive pairs, and constrast 
negative pairs.


• Former encourages modeling invariances while the latter prevents 
collapse. 

• Non-contrastive: No negative pair contrasting, e.g., SimSiam and BYOL


• Pair of Siamese networks: Want the views from the online + predictor 
network and the target network to match.



Non-contrastive Learning

• Non-contrastive: No negative pair 
contrasting, e.g., SimSiam and BYOL.


• Pair of Siamese networks: Want the 
views from the online + predictor 
network and the target network to 
match.


• Target network is not trained with GD, 
i.e., a direct copy or a momentum 
encoder.


• Don’t require large batch size, memory 
queue, or negative pairs.



Why do these models not collapse?

• Predictor and stop-gradient is essential in 
non-contrastive SSL. BYOL and SimSiam 
collapse without either of these.


• EMA or momentum encoder is not necessary 
in BYOL and SimSiam.


• Both BYOL and SimSiam say that the 
predictor must be optimal in achieving 
minimal error when predicting the target 
network’s outputs from the online network’s.


• BYOL suggests that no weight decay leads 
to unstable results.



A simple model

Simple, bias-free, linear BYOL model.


Minimize 


: Linear online network  

: Linear target network 

: Linear predictor network

J(W, Wp) =
1
2

𝔼x1,x2[ Wp f1 − StopGrad( f2a)
2

2]
W

Wa

Wp



Training Dynamics in Closed Form



Exploration 1

• In BYOL and SimSiam, the match 
between the representations produced 
by online and target networks cannot 
be explained solely by the predictor 
weights.


• A non-zero weight decay, parametrized 
by , will remove the second term on 
the RHS  more balance between 
online and predictor networks. 

η
⟹

Balancing of  and  that comes from weight decayW Wp



Exploration 2

• Shown to be true in empirical studies various 
times, but there is no theoretical explanation.


• When there is no EMA, meaning that , 





where  is a PSD matrix. This implies that if 
the minimal eigenvalue of  is bounded 
below, , i.e., collapse.


Similar case for no predictior, i.e. .

Wa = W

d
dt

vec(W) = − H(t) ⋅ vec(W)

H(t)
H(t)

W(t) → 0

Wp = I

No predictor or no stop-gradient = collapse



Assumptions

• Assumption (Isotropic Data and Augmentation): , which comes 
from the assumptions that that data distribution  has zero mean and identity 
covariance whereas the augmentation distribution  has  mean and  
covariance.  

• Assumption (Proportional EMA): EMA weight  is a linear function 
of , i.e.  points to the same direction as the online weight.


• Assumption (Symmetric Predictor): 

X = I and X′ = σ2I
p(x)

paug( ⋅ |x) x σ2I

Wa(t) = τ(t)W(t)
W(t) Wa

Wp(t) = W⊤
p (t)



New Dynamics

• Under these assumptions, we have the following dynamics





where  and  is the correlation 
matrix of the input of the predictor .

·Wp = −
αp

2
(1 + σ2){Wp, F} + αpτF − ηWp

·F = − (1 + σ2){W2
p , F} + τ{Wp, F} − 2ηF

{A, B} := AB + BA F = 𝔼[ f1 f⊤
1 ] = WXW⊤

Wp



Exploration 3

Theorem 3: Under certain conditions,





and the eigenspace of  and  
gradually aligns.

FWp − WpF → 0

Wp F

Eigenspace of  aligns with Wp F



Decoupled Dynamics

Let columns of  be the common eigenvectors of  and  so that  where 
, and  where .


U Wp F Wp = UΛWp
U⊤

ΛWp
= diag[p1, …, pd] F = UΛFU⊤ ΛF = diag[s1, …, sd]

1D (scalar) 
dynamics



No collapse



Effect of Weight Decay

BUT, if weight decay is large, then the eigenspace alignment condition is more likely to satisfy!



Effect of Other Hyperparameters

Size of trivial basin

Condition of eigenspace 
alignment

Training speed

Eigenvalue of F won’t 
grow (no feature 

learning) 

αp ↑

↓
↓

β ↓

↓
↑

↓



DirectPred

• Hmm, it looks like it is very important that eigenspaces of  and  align 
well. Why not do this directly without relying on gradient descent? 

• Directly set linear  , so no optimization.


1. Estimate 


2. Eigen-decompose 


3. Set  following the invariance 

Wp F

Wp

̂F = ρ ̂F + (1 − ρ) 𝔼[ ffT]
̂F = ÛΛFÛ⊤, ΛF = diag[s1, …, sd]

Wp = Û diag[pj] Û⊤ pj = sj + ϵ max
j

sj

Online estimation of 
 via EMAF = 𝔼[ ff⊤]

Eigenspaces are always and automatically aligned!



DirectPred



DirectPred


