Understanding Self-Supervised Learning Dynamics without **Contrastive Pairs¹** Mehmet F. Demirel

[1] Yuandong Tian, Xinlei Chen, Surya Ganguli Proceedings of the 38th International Conference on Machine Learning, PMLR 139:10268-10278, 2021.

July 29, 2021

Contrastive vs Non-contrastive Learning

- Contrastive: Minimize the difference between positive pairs, and constrast negative pairs.
 - Former encourages modeling invariances while the latter prevents collapse.
- Non-contrastive: No negative pair contrasting, e.g., SimSiam and BYOL
 - Pair of Siamese networks: Want the views from the online + predictor network and the target network to match.

Non-contrastive Learning

- Non-contrastive: No negative pair contrasting, e.g., SimSiam and BYOL.
 - Pair of Siamese networks: Want the views from the online + predictor network and the target network to match.
 - Target network is not trained with GD, i.e., a direct copy or a momentum encoder.
 - Don't require large batch size, memory queue, or negative pairs.

Why do these models not collapse?

- Predictor and stop-gradient is essential in non-contrastive SSL. BYOL and SimSiam collapse without either of these.
- EMA or momentum encoder is not necessary in BYOL and SimSiam.
- Both BYOL and SimSiam say that the predictor must be optimal in achieving minimal error when predicting the target network's outputs from the online network's.
- BYOL suggests that no weight decay leads to unstable results.

online

A simple model

Simple, bias-free, linear BYOL model.

Minimize
$$J(W, W_p) = \frac{1}{2} \mathbb{E}_{x_1, x_2} \left[\left\| W_p f_1 - \text{StopGrad} \right\| \right]$$

W: Linear online network

 W_a : Linear target network

 W_p : Linear predictor network

Training Dynamics in Closed Form

Lemma 1. BYOL learning dynamics following Eqn. 1: $\dot{W}_p = \alpha_p \left(-W_p W(X + X') + W_a X\right) W^{\intercal} - \eta W_p (2)$ $\dot{W} = W_p^{\intercal} \left(-W_p W(X + X') + W_a X\right) - \eta W \quad (3)$ $\dot{W}_a = \beta (-W_a + W) \quad (4)$

Here, $X := \mathbb{E}[\bar{x}\bar{x}^{\mathsf{T}}]$ where $\bar{x}(x) := \mathbb{E}_{x' \sim p_{aug}}(\cdot|x) [x']$ is the average augmented view of a data point x and X' := $\mathbb{E}_{x} [\mathbb{V}_{x'|x}[x']]$ is the covariance matrix $\mathbb{V}_{x'|x}[x']$ of augmented views x' conditioned on x, subsequently averaged over the data x. Note that α_{p} and β reflect *multiplicative learning rate ratios* between the predictor and target networks relative to the online network. Finally, the terms involving η reflect weight decay.

Exploration 1 Balancing of W and W_p that comes from weight decay

- In BYOL and SimSiam, the match between the representations produced by online and target networks cannot be explained solely by the predictor weights.
- A non-zero weight decay, parametrized by η , will remove the second term on the RHS \implies more balance between online and predictor networks.

Theorem 1 (Weight decay promotes balancing of the predictor and online networks.). Completely independent of the particular dynamics of W_a in Eqn. 4, the update rules (Eqn. 2 and Eqn. 3) possess the invariance $W(t)W^{\mathsf{T}}(t) = \alpha_p^{-1}W_p^{\mathsf{T}}(t)W_p(t) + e^{-2\eta t}C,$ (5) initialization of W and W_p .

where C is a symmetric matrix that depends only on the

Exploration 2 No predictor or no stop-gradient = collapse

- Shown to be true in empirical studies various times, but there is no theoretical explanation.
- When there is no EMA, meaning that $W_a = W$,

$$\frac{d}{dt}vec(W) = -H(t) \cdot vec(W)$$

where H(t) is a PSD matrix. This implies that if the minimal eigenvalue of H(t) is bounded below, $W(t) \rightarrow 0$, i.e., collapse.

Similar case for no predictior, i.e. $W_p = I$.

Theorem 2 (The stop-gradient signal is essential for success.). With $W_{\rm a} = W$ (SimSiam case), removing the stop-gradient signal yields a gradient update for W given by positive semi-definite (PSD) matrix $H(t) := X' \otimes$ $(W_{p}^{\intercal}W_{p} + I_{n_{2}}) + X \otimes \tilde{W}_{p}^{\intercal}\tilde{W}_{p} + \eta I_{n_{1}n_{2}}$ (here $\tilde{W}_{p} :=$ $W_p - I_{n_2}$ and \otimes is the Kronecker product):

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{vec}(W) = -H(t)\mathrm{vec}(W). \tag{6}$$

If the minimal eigenvalue $\lambda_{\min}(H(t))$ over time is bounded below, $\inf_{t>0} \lambda_{\min}(H(t)) \geq \lambda_0 > 0$, then $W(t) \to 0$.

Assumptions

- covariance.
- of W(t), i.e. W_a points to the same direction as the online weight.

- Assumption (Symmetric Predictor): $W_p(t) = W_p^{\top}(t)$

• Assumption (Isotropic Data and Augmentation): X = I and $X' = \sigma^2 I$, which comes from the assumptions that that data distribution p(x) has zero mean and identity covariance whereas the augmentation distribution $p_{aug}(\cdot | x)$ has x mean and $\sigma^2 I$

• Assumption (Proportional EMA): EMA weight $W_a(t) = \tau(t)W(t)$ is a linear function

New Dynamics

Under these assumptions, we have the following dynamics

$$\begin{split} \dot{W}_p &= -\frac{\alpha_p}{2}(1+\sigma^2)\{Wp,F\} + \alpha_p\tau F - \eta W_p \\ \dot{F} &= -(1+\sigma^2)\{W_p^2,F\} + \tau\{W_p,F\} - 2\eta F \\ &= AB + BA \text{ and } F = \mathbb{E}[f_1f_1^{\mathsf{T}}] = WXW^{\mathsf{T}} \text{ is the correlation} \\ \text{put of the predictor } W \end{split}$$

where $\{A, B\}$: matrix of the input of the predictor W_p .

Exploration 3 Eigenspace of W_p aligns with F

Theorem 3: Under certain conditions,

$$FW_p - W_p F \to 0$$

and the eigenspace of W_p and F gradually **aligns**.

Decoupled Dynamics

 $\Lambda_{W_p} = diag[p_1, ..., p_d]$, and $F = U\Lambda_F U^T$ where $\Lambda_F = diag[s_1, ..., s_d]$.

$$\dot{p}_j = lpha_p s_j [au - \dot{s}_j] = 2p_j s_j [au - s_j \dot{ au}]$$

Invariance holds: $s_j(t) = \alpha_p^{-1} p_j^2(t) + e^{-2\eta t} c_j$

Let columns of U be the common eigenvectors of W_p and F so that $W_p = U \Lambda_{W_p} U^{+}$ where

No collapse

1D dynamics of the eigenvalue p_j of W_p :

Effect of Weight Decay

BUT, if weight decay is large, then the eigenspace alignment condition is more likely to satisfy!

Effect of Other Hyperparameters

$$s_j(t) = \alpha_p^{-1} p_j^2(t) + e^{-2\eta t} c_j$$

• • • Size of triv

Condition of alignn

Training

	$\alpha_p \uparrow$	$\beta\downarrow$
vial basin		
eigenspace nent		
speed		
	Eigenvalue of F won't grow (no feature learning)	

DirectPred

- Hmm, it looks like it is very important that eigenspaces of W_p and F align well. Why not do this directly without relying on gradient descent?
- Directly set linear W_p , so no optimization.

1. Estimate
$$\hat{F} = \rho \hat{F} + (1 - \rho) \mathbb{E}[f$$

- 2. Eigen-decompose $\hat{F} = \hat{U}\Lambda_F \hat{U}^T, \Lambda_F = diag[s_1, \dots, s_d]$

3. Set $W_p = \hat{U} \operatorname{diag}[p_j] \hat{U}^{\mathsf{T}}$ following the invariance $p_j = \sqrt{s_j} + \epsilon \max_i s_j$

Eigenspaces are always and automatically aligned!

Number of enoche							
Number of epochs							
)	300	500					
STL-10							
0.16	78.77 ± 0.97	78.86 ± 1.15					
0.11	79.90 ± 0.66	80.28 ± 0.62					
0.52	75.25 ± 0.74	75.25 ± 0.74					
IFAR-10							
0.23	$\textbf{88.88} \pm \textbf{0.15}$	89.52 ± 0.04					
0.29	88.83 ± 0.10	89.56 ± 0.13					
0.20	88.57 ± 0.15	89.33 ± 0.27					

DirectPred

Downstream classification (ImageNet):

BYOL variants	Accuracy (60 ep)		Accuracy (300 ep)		
	Top-1	Top-5	Top-1	Top-5	
2-layer predictor*	64.7	85.8	72.5	90.8	
linear predictor	59.4	82.3	69.9	89.6	
DirectPred	64.4	85.8	72.4	91.0	
* 2 lorron mus distants DVOI deferste setting					

2-layer predictor is BYOL default setting.