
Deb's D&D for P3

dev and debug (with help from Perry Kivolowitz April 2012)
Friday 10/22/21 2:30-3:45pm
270 Soils

TODO:
1. vim: set configuration options, favorite vi commands

2. tree p3

a. make libheap.so from myHeap.o

b. make and run heap allocator test programs

c. edit - make - run - repeat

d. functions: provided and must be implemented

3. debugging: (slides based on Perry Kivolowitz's talk -- April 2012)

a. The Scientific Method and defensive programming

4. divide and conquer: (gdb) GNU debugger

a. launch

b. basic operations

5. In Conclusion

my vi settings

syntax on

set number

set ruler

set tabstop=4

set shiftwidth=4

set softtabstop=4

:color desert

vim ~/.vimrc

https://piazza.com/class/k
t4m3f1whqj24w?cid=47

my favorite
vi commands

/main

123G

yy p

r R

x p

dd D

cw dw

gg=G

ZZ

:tabe newfile

:n :p

:1,$s/[Tab]/ /g

tree p3 build instructions for myHeap.so
heap allocator source files

test file source files

build instructions for test progs

p3 Heap Allocator

a. Build myHeap.o and libheap.so

 cd p3
 make

b. Build executable test programs:

 cd p3/tests
 make
 ./test_align1

Pro Tip: Open multiple terminal windows. One for p3 and the other for p3/tests
Pro Tip: Copy a test source to your own temporary mytest.c file and edit that to get started

edit
make
test
repeat

p3 Heap Allocator (Header)
c. defined for you

int myInit(int size);

void dispMem();

d. must define as described in comments

void* myAlloc(int size);

int myFree(void *ptr);

int coalesce();

Initial state of the heap after calling myInit(4096)

Common
Debugging
Algorithm

https://www.carthage.edu/live/profiles/1477-perry-kivolowitz Credit: Perry Kivolowitz April 2012 Debugging Talk

Credit: Perry Kivolowitz April 2012 Debugging Talk

Defensive
Programming

● if you “know” a condition is true, assert it

● this helps eliminate the impossible

 and identify the improbable

Credit: Perry Kivolowitz April 2012 Debugging Talk

Comment before CODE
Answer WHY instead of WHAT

● write down your thoughts to get clarity

● to help you recall what you were thinking ...

a year from now? Next week? Tomorrow?

// increment j

Credit: Perry Kivolowitz April 2012 Debugging Talk

// score_index

Descriptive Variable Names

pk: What does ineedsleep do?

student: I don't remember, I was tired.

"keystrokes are guaranteed to end, debugging is not." pk

Credit: Perry Kivolowitz April 2012 Debugging Talk

Testing

Testing can only prove the presence

of bugs, not their absence.

 Edsger W. Dijkstra

Credit: Perry Kivolowitz April 2012 Debugging Talk

Quality Assurance (QA)

If you are fortunate to have a QA group

● It is not their job to find bugs

● That is your job

● It is their job to confirm bugs you found are gone

Credit: Perry Kivolowitz April 2012 Debugging Talk

Debugging Tool:
The Scientific Method

Credit: Perry Kivolowitz April 2012 Debugging Talk

Debugging Tools: test harnesses
and incremental development

Credit: Perry Kivolowitz April 2012 Debugging Talk

Write a minimal test harness

that manifests the bug

“Write in small units – Test in small units”

Debugging Tool: debugger

Credit: Perry Kivolowitz April 2012 Debugging Talk

● Single step
● Set Breakpoints

○ Always
○ Conditional

■ In debugger
■ In code

● Call stack

● Re-execution of code
● Immediate modes
● Value inspection
● Value modification

GNU debugger
rockhopper-04$ gdb mytest
GNU gdb (Ubuntu 9.2-0ubuntu1~20.04) 9.2
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and
redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "x86_64-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources
online at:
 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to
"word"...
Reading symbols from mytest...
(gdb)

rockhopper-04$ gcc -g test.c
rockhopper-04$ gdb a.out

(gdb) quit

(gdb) help

(gdb) run arg1 arg2

Now What?

● set breakpoints

● run until next breakpoint is reached

● step through code or continue to next bp
● print variables and expressions

● edit - compile - run (in gdb)

● repeat until works as advertised

gdb commands
q quit
h help
r run arg1 arg2
b break main
b myAlloc
r run
s step
n next
p prev
c continue
d display
p print

> gcc -g ... -o test
> gdb test.c
(gdb) break main
(gdb) run
(gdb) print argc
(gdb) help display
(gdb) display
(gdb) step
(gdb) next
(gdb) continue
(gdb) quit

Solve the Puzzle: Divide and Conquer
Where are the values for the output set and modified?

Work forward from declaration and initialization toward ...

Work backwards from the output ...

Split distance in half and check the value.

Repeat until instruction that sets or computes value
incorrectly is found.

Fix it.

In Conclusion

Credit: Perry Kivolowitz April 2012 Debugging Talk

Bugs want to be found
● Listen, hypothesize, test

Hone your craft and
● master the art of debugging

Deb: Many thanks to Perry Kivolowitz who taught me
to use Science when debugging my code!

