SPEC CODES	UWNET LOGIN NAME	Last, First Name (as in email and on scantron)
EF		
21		

Computer Sciences 354 Midterm Exam 2 Secondary

Thursday, Nov 7th, 2024 72 points (20% of final grade)

Instructors: Debra Deppeler, Hina Mahmood

1. PRINT your UWNET Login Name in box above.

- 2. PRINT Last, First Name in box above.
- 3. Use #2 pencil for all SCANTRON marks.
 - (a) **Record LAST NAME** Must be left aligned.
 - (b) **Record FIRST NAME** First five letters.
 - (c) IDENTIFICATION NUMBER Your UW WiscCard number.
 - (d) Leave Special Codes ABCD Leave these empty.
 - (e) Record Special Codes EF as 21 This is exam version.
- 4. Taking this exam indicates that you agree: to not write answers in large letters on exam paper for others to see, and to keep your scantron answers covered; to not view or use another student's work or use any unauthorized devices in any way; to not make any type of copy of any portion of this exam; and that you understand that being caught doing any of these actions, or other actions that may any student to see or submit work that is not wholly their own will result in automatic failure of the exam and possible failure of the course. Penalties are reported to the Deans Office for all involved.

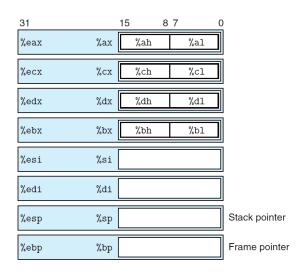
	Number of	Question	Possible
Parts	Questions	Format	Points
I	10	2 pt Simple Choice	20
II	17	3 pt Multiple Choice	51
III	1	1 pt Scantron Check	1
	28	Total	72

Assumptions unless instructions explicitly state otherwise:

addresses and integers are 4 bytes unless explicitly stated otherwise. code questions are about C std=gnu99 and IA-32 on our Linux platform

Reference: Powers of 2

$$2^5=32,\,2^6=64,\,2^7=128,\,2^8=256,\,2^9=512,\,2^{10}=1024$$
 $2^{10}=K=KiB,\,2^{20}=M=MiB,\,2^{30}=G=GiB$ $2^A*2^B=2^{A+B},\,2^A$ / $2^B=2^{A-B}$


Turn off and put away all notes and electronic devices and wait for the proctor to signal the start of the exam.

Α

END OF EXAM 2 (Special Codes EF-21)

Do not speak to classmates and keep your answers covered while waiting to submit.

Reference: IA-32

Instruction		Effect	Description	
MOV	S, D	$D \leftarrow S$	Move	
movb		Move byte		
movw Move word		Move word		
movl		Move double word		
MOVS	S, D	$D \leftarrow SignExtend(S)$	Move with sign extension	
movsbw Move sign-extended byte to word		Move sign-extended byte to word		
movsbl		Move sign-extended byte to double word		
movswl		Move sign-extended word to double word		
MOVZ	S, D	$D \leftarrow ZeroExtend(S)$	Move with zero extension	
movzbw		Move zero-extended byte to word		
movzbl		Move zero-extended byte to double word		
movzwl Move zero-extended word to double word		Move zero-extended word to double word		
pushl	S	$R[\%esp] \leftarrow R[\%esp] - 4;$	Push double word	
		$M[R[\%esp]] \leftarrow S$		
popl	D	$D \leftarrow M[R[\%esp]];$	Pop double word	
20.12		$R[\%esp] \leftarrow R[\%esp] + 4$		

Type	Form	Operand value	Name
Immediate	\$Imm	Imm	Immediate
Register	E_a	$R[E_a]$	Register
Memory	Imm	M[Imm]	Absolute
Memory	(E_a)	$M[R[E_a]]$	Indirect
Memory	$Imm(E_b)$	$M[Imm + R[E_b]]$	Base + displacement
Memory	(E_b, E_i)	$M[R[E_b] + R[E_i]]$	Indexed
Memory	$Imm(E_b, E_i)$	$M[Imm + R[E_b] + R[E_i]]$	Indexed
Memory	$(,E_i,s)$	$M[R[E_i] \cdot s]$	Scaled indexed
Memory	$Imm(,E_i,s)$	$M[Imm + R[E_i] \cdot s]$	Scaled indexed
Memory	(E_b, E_i, s)	$M[R[E_b] + R[E_i] \cdot s]$	Scaled indexed
Memory	$Imm(E_b, E_i, s)$	$M[Imm + R[E_b] + R[E_i] \cdot s]$	Scaled indexed

Figure 3.3 Operand forms. Operands can denote immediate (constant) values, register values, or values from memory. The scaling factor s must be either 1, 2, 4, or 8.

Instruction		Effect	Description
leal	S, D	$D \leftarrow \&S$	Load effective address
INC	D	$D \leftarrow D + 1$	Increment
DEC	D	$D \leftarrow D - 1$	Decrement
NEG	D	$D \leftarrow -D$	Negate
NOT	D	$D \leftarrow \sim D$	Complement
ADD	S, D	$D \leftarrow D + S$	Add
SUB	S, D	$D \leftarrow D - S$	Subtract
IMUL	S, D	$D \leftarrow D * S$	Multiply
XOR	S, D	$D \leftarrow D \hat{\ } S$	Exclusive-or
OR	S, D	$D \leftarrow D \mid S$	Or
AND	S, D	$D \leftarrow D \& S$	And
SAL	k, D	$D \leftarrow D \lessdot \lessdot k$	Left shift
SHL	k, D	$D \leftarrow D \lessdot \lessdot k$	Left shift (same as sal)
SAR	k, D	$D \leftarrow D >>_A k$	Arithmetic right shift
SHR	k, D	$D \leftarrow D >>_L k$	Logical right shift