
Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (F24): W024 - 1

CS 354 - Machine Organization & Programming
Tuesday Sept 10th and Thursday Sept 12th, 2024

Project p1: DUE on or before Friday 9/13 available until Sunday 9/15

 See PM Activities for days and times for BYOL: Linux Basics this week.
Project p2A: Released this week Friday Complete Activity A02 this week.

Homework hw1: Assigned soon, complete Activity A02 this week.

Exam Conflicts: Report for e1,e2,e3 by 9/20 : http://tiny.cc/cs354-conflicts

TA Lab Consulting Available. See link on course front page.

Week 2 Learning Objectives (at a minimum be able to)

 draw basic memory diagram showing name, value, type for given code
 draw linear memory diagram showing name, address, hex contents of variable
 show binary representation and byte ordering for int, char, address, values
 declare, assign, and dereference pointer variables
 use stdlib.h functions malloc and free to manage dynamically allocated “heap” memory
 code, describe, and diagram 1D arrays showing stack and on heap allocations
 show byte representation of character arrays and C strings
 use string.h library functions: strlen, strcpy, strncpy, strcmp with string literals and C strings

This Week

Next Week

Topic: 2D Arrays and Pointers
Read:

K&R Ch. 5.7: Multi-dimensional Arrays
K&R Ch. 5.8: Initialization of Pointer Arrays
K&R Ch. 5.9: Pointers vs. Multi-dimensional Arrays
K&R Ch. 5.10: Command-line Arguments

Do: Finish project p1 and start p2A

Tuesday Thursday

Finish EDIT,COMPILE, RUN, DEBUG
Recall Variables and Meet Pointers
Practice Pointers
Recall 1D Arrays
1D Arrays and Pointers

Passing Addresses
1D Arrays on the Heap
Pointer Caveats
Meet C Strings
Meet string.h

Read before Thursday
K&R Ch. 7.8.5: Storage Management (malloc and calloc)
K&R Ch. 5.5: Character Pointers and Functions
K&R Ch. 5.6: Pointer Arrays; Pointers to Pointers

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (F24): W024 - 2

Recall Variables

What? A is primitive a unit of storage whose contents can change.

 Draw a basic memory diagram for the variable in the following code:

void someFunction(){
int i = 44;

Aspects of a Variable

identifier:

value:

type:

address:

size:

 A scalar variable used as a source operand
e.g., printf("%i\n", i);

 A scalar variable used as a destination operand
e.g., i = 11;

Linear Memory Diagram

A linear memory diagram is

byte addressability:

endianess:

little endian:

big endian:

most significant least
base 10 44
base 2 0000 0000 0000 0000 0000 0000 0010 1100
base 16 0 0 0 0 0 0 2 C

0x0000FF28

0x0000FF30

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (F24): W024 - 3

Meet Pointers

What? A pointer variable is





Why?









How?

Basic Diag. Linear Diag.
 Consider the following code:

void someFunction(){
int i = 44;

int *ptr = NULL;

 What is ptr’s initial value? address? type? size?

pointer:

pointee:

& address of operator:

* dereferencing operator:

ptr

\

i

44

0x00000008

0x00000010

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (F24): W024 - 4

Practice Pointers

 Complete the following diagrams and code
so that they all correspond to each other:

void someFunction(){

int i =

int j = 44;

int *p1 = &

int *p2; //at addr 0xFC0100EC

 What is p1’s value?

 Write the code to display p1’s pointee’s value.

 Write the code to display p1’s value.

 Is it useful to know a pointer’s exact value?

 What is p2’s value?

 Write the code to initialize p2 so that it points to nothing.

 What happens if the code below executes when p2 is NULL?
printf("%i\n", *p2);

 What happens if the code below executes when p2 is uninitialized?
printf("%i\n", *p2);

 Write the code to make p2 point to i.

 How many pointer variables are declared in the code below?
void someFunction(){

int* p1, p2;

 What does the code below do?
int **q = &p1;

p1

0xFC0100F0

0xFC0100F8

p2

i

22

j

00
00
00
16
00
00
00
2C
FC
01
00
F4
?
?
?
?

Basic Diag: Linear Diag:

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (F24): W024 - 5

Recall 1D Arrays

What? An array is







Why?





How?

void someFunction(){
int a[5];

 How many integer elements have been allocated memory?

 Where in memory was the array allocation made?

 Write the code that gives the element at index 1 a value of 11.

 Draw a basic memory diagram showing array a.

 In C, the identifier for a stack allocated array (SAA)

 A SAA identifier used as a source operand

e.g., printf("%p\n", a);

 A SAA identifier used as a destination operand

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (F24): W024 - 6

1D Arrays and Pointers

Given:

void someFunction(){
int a[5];

Address Arithmetic

 a[i]

1. compute the address

2. dereference the computed address to access the element

 Write address arithmetic code to give the element at index 3 a value of 33.

 Write address arithmetic code equivalent to a[0] = 77;

Using a Pointer

 Write the code to create a pointer p having the address of array a above.

 Write the code that uses p to give the element in a at index 4 a value of 44.

 In C, pointers and arrays

a

a:0x_20

0x_28

0x_30

? ? ? ? ?

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (F24): W024 - 7

Passing Addresses

Recall Call Stack Tracing:







 What is output by the code below?

void f(int pv1, int *pv2, int *pv3, int pv4[]) {
int lv = pv1 + *pv2 + *pv3 + pv4[0];
pv1 = 11;
*pv2 = 22;
*pv3 = 33;
pv4[0] = lv;
pv4[1] = 44;

}
int main(void) {

int lv1 = 1, lv2 = 2;
int *lv3;
int lv4[] = {4,5,6};
lv3 = lv4 + 2;
f(lv1, &lv2, lv3, lv4);
printf("%i,%i,%i\n",lv1,lv2,*lv3);
printf("%i,%i,%i\n",lv4[0],lv4[1],lv4[2]);
return 0;

}

Pass-by-Value

 scalars: param is a scalar variable that gets a copy of its scalar argument

 pointers: param is a

 arrays: param is a

 Changing a callee’s parameter

 Passing an address

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (F24): W024 - 8

1D Arrays on the Heap

What? Two key memory segments used by a program are the

STACK and HEAP
static (fixed in size) allocations
allocation size known during compile time

Why? Heap memory enables





How?

void* malloc(size_in_bytes)

void free(void* ptr)

sizeof(operand)

 For IA-32 (x86), what value is returned by sizeof(double)? sizeof(char)? sizeof(int)?

 Write the code to dynamically allocate an integer array named a having 5 elements.
void someFunction(){

 Draw a memory diagram showing array a.

 Write the code that gives the element at indexes 0, 1 and 2 a values of 0, 11 and 22
by using pointer dereferencing, indexing, and address arithmetic respectively.

 Write the code that uses a pointer named p to give the element at index 3 a value of 33.

 Write the code that frees array a’s heap memory.

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (F24): W024 - 9

Pointer Caveats

 Don't dereference uninitialized or NULL pointers!
int *p; int *q = NULL;
*p = 11; *q = 11;

 Don't dereference freed pointers!
int *p = malloc(sizeof(int));
int *q = p;
. . .
free(p);
. . .
*q = 11;

dangling pointer:

 Watch out for heap memory leaks!

memory leak:

int *p = malloc(sizeof(int));
int *q = malloc(sizeof(int));
. . .
p = q;

 Be careful with testing for equality!

assume p and q are pointers
compares nothing because it's assignment

compares values in pointers

compares values in pointees

 Don't return addresses of local variables!
int *ex1() {

int i = 11;
return &i;

}

int *ex2(int size) {
int a[size];
return a;

}

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (F24): W024 - 10

Meet C Strings

What? A string is





What? A string literal is





 In most cases, a string literal used as a source operand

How? Initialization

void someFunction(){
char *sptr = "CS 354";

 Draw the memory diagram for sptr.

 Draw the memory diagram for str below.
char str[9] = "CS 354";

 During execution, where is str allocated?

How? Assignment

 Given str and sptr declared in somefunction above,
what happens with the following code?

sptr = "mumpsimus";

str = "folderol";

 Caveat: Assignment cannot be used

4 0C S b 3 5

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (F24): W024 - 11

Meet string.h

What? string.h is

int strlen(const char *str)
Returns the length of string str up to but not including the null character.

int strcmp(const char *str1, const char *str2)
Compares the string pointed to by str1 to the string pointed to by str2.
returns: < 0 (a negative) if str1 comes before str2

0 if str1 is the same as str2
>0 (a positive) if str1 comes after str2

char *strcpy(char *dest, const char *src)
Copies the string pointed to by src to the memory pointed to by dest
and terminates with the null character.

char *strcat(char *dest, const char *src)
Appends the string pointed to by src to the end of the string pointed to by dest
and terminates with the null character.

 Ensure the destination character array

buffer overflow:

How? strcpy

 Given str and sptr as declared in somefunction on the previous page,
what happens with the following code?

strcpy(str, "folderol");

strcpy(str, "formication");

strcpy(sptr, "vomitory");

 Rather than assignment, strcpy (or strncpy) must be used to

 Caveat: Beware of

