CS 354 - Machine Organization & Programming
Tuesday Jan 30th and Thursday Feb 1st, 2024

Project p1: DUE on or before Tuesday 2/6, available until Sunday 2/11

*

See PM Activities for days and times for BYOL: Linux Basics this week.

Project p2A: Released this week Friday

Homework hw1: Assigned soon

Exam Conflicts: Report for e1,e2,e3 by 2/9 : http://tiny.cc/cs354-conflicts
TA Lab Consulting Available. See link on course front page.

Week 2 Learning Objectives (at a minimum be able to)

+ state and show in memory diagrams the name, value, type, address, size of variable
¢ understand and show binary representation and byte ordering for int, char, address, values
¢ declare, assign, and dereference pointer variables
+ use stdlib.h functions malloc and free to manage dynamically allocated “heap” memory
¢ code, describe, and diagram 1D arrays on stack and on heap
¢ understand and show byte representation of character arrays and C strings
¢ understand and use string.h library functions with string literals and C strings
This Week
Tuesday Thursday
Finish COMPILE, RUN, DEBUG Passing Addresses
Recall Variables and Meet Pointers 1D Arrays on the Heap
Practice Pointers Pointer Caveats
Recall 1D Arrays Meet C Strings
1D Arrays and Pointers Meet string.h

Read before Thursday

K&R Ch. 7.8.5: Storage Management (malloc and calloc)
K&R Ch. 5.5: Character Pointers and Functions
K&R Ch. 5.6: Pointer Arrays; Pointers to Pointers

Next Week

Topic: 2D Arrays and Pointers
Read:

K&R Ch. 5.7: Multi-dimensional Arrays

K&R Ch. 5.8: Initialization of Pointer Arrays

K&R Ch. 5.9: Pointers vs. Multi-dimensional Arrays
K&R Ch. 5.10: Command-line Arguments

Do: Finish project p1 and start p2A

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (S24): L4 -1

Recall Variables

What? A is primitive a unit of storage whose contents can change.

—> Draw a basic memory diagram for the variable in the following code:

void someFunction () {
int 1 = 44;

Aspects of a Variable
identifier:

value:
type:
address:
size:

% A scalar variable used as a source operand
e.g.,, printf ("$i\n", 1);

% A scalar variable used as a destination operand

eg., i = 11;
Linear Memory Diagram
A linear memory diagram is
0x0000FF30 most significant
base 10

base 16 0 0 0 0 0

0x0000FF28

byte addressability:

endianess:

little endian:

big endian:

least
44

base2 0000 0000 0000 0000 0000 0000 0010 1100

0 2 C

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (S24): L4 -2

Meet Pointers

What? A pointer variable is

L 2
L 2
Why?
*
*
L 2
*
How?
Basic Diag. Linear Diag.
—> Consider the following code:
void someFunction () { 44
int 1 = 44;] 0x00000010
1
int *ptr = NULL;
*
ptr
0x00000008
- What is ptr’s initial value? address? type? size?

pointer:

pointee:

& address of operator:

* dereferencing operator:

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (S24): L4 -3

Practice Pointers

—> Complete the following diagrams and code Basic Diag: Linear Diag: 00
so that they all correspond to each other: 88
void someFunction () { 22 OxFCO100F8 %8

int 1 = i j 88

int j = 44; %8

. 01

int *pl = & 00

F4

int *p2; //at addr 0xFCO100EC 0xFCOL00FO =

pl p2 2

= Whatis p1’s value? =

- Write the code to display p1’s pointee’s value.

- Write the code to display p1’s value.

- Is it useful to know a pointer’s exact value?

- What is p2’s value?

- Write the code to initialize p2 so that it points to nothing.

- What happens if the code below executes when p2 is NULL?
printf ("$i\n", *p2);

—> What happens if the code below executes when p2 is uninitialized?
printf ("%$i\n", *p2);

- Write the code to make p2 point to i.

- How many pointer variables are declared in the code below?
void someFunction () {
int* pl, p2;

- What does the code below do?
int **q = &pl;

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (S24): L4-4

Recall 1D Arrays

What? An arrayis
*

Why?

How?

void someFunction () {
int al[5];

- How many integer elements have been allocated memory?

- Where in memory was the array allocation made?

- Write the code that gives the element at index 1 a value of 11.

—> Draw a basic memory diagram showing array a.

% In C, the identifier for a stack allocated array (SAA)
3%k A SAA identifier used as a source operand

e.g., printf ("$p\n", a);

% A SAA identifier used as a destination operand

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (S24):L4-5

1D Arrays and Pointers

Given:
void someFunction () { 2 2 |a 2 |2
int al[5]; 0x_ 30
a _
Address Arithmetic 0x 28
% ali]
1. compute the address a:0x 20

2. dereference the computed address to access the element

—> Write address arithmetic code to give the element at index 3 a value of 33.

- Write address arithmetic code equivalentto a[0] = 77;

Using a Pointer

- Write the code to create a pointer p having the address of array a above.

- Write the code that uses p to give the element in a at index 4 a value of 44.

% In C, pointers and arrays

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (S24): L4-6

Passing Addresses

Recall Call Stack Tracing:

*

» What is output by the code below?

void f (int pvl, int *pv2, int *pv3, int pv4[]) {
int 1v = pvl + *pv2 + *pv3 + pv4[0];
pvl = 11;
*pv2 = 22;
*pv3 = 33;
pv4[0] = 1lv;
pv4[l] = 44;

}
int main (void) {
int 1vl =1, 1lv2 = 2;
int *1v3;
int 1v4[] = {4,5,6};
1v3 = 1v4d + 2;
f(lvl, &lv2, 1v3, 1v4);
printf ("%i, %1i,%i\n",1v1l,1v2, *1v3);
printf ("%i,%i,%i\n",1v4[0],1v4[1],1v4[2]);
return 0;

}

Pass-by-Value
¢ scalars: param is a scalar variable that gets a copy of its scalar argument

¢ pointers: param is a
¢ arrays: paramis a

3% Changing a callee’s parameter

% Passing an address

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (S24): L4 -7

1D Arrays on the Heap

What? Two key memory segments used by a program are the

STACK and HEAP
static (fixed in size) allocations
allocation size known during compile time

Why? Heap memory enables
L 2

How?

void* malloc(size in bytes)

void free(void* ptr)

sizeof (operand)
- For IA-32 (x86), what value is returned by sizeof (double)? sizeof (char)? sizeof (int)?

- Write the code to dynamically allocate an integer array named a having 5 elements.
void someFunction () {

- Draw a memory diagram showing array a.

- Write the code that gives the element at indexes 0, 1 and 2 a values of 0, 11 and 22
by using pointer dereferencing, indexing, and address arithmetic respectively.

- Write the code that uses a pointer named p to give the element at index 3 a value of 33.

—> Write the code that frees array a’s heap memory.

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (S24):L4-8

Pointer Caveats

% Don't dereference uninitialized or NULL pointers!

int *p; int *gq = NULL;

*p = 11; *q = 11;

% Don't dereference freed pointers!
int *p
int *g

malloc (sizeof (int));
P

free(p);
*q = 11;

dangling pointer:

% Watch out for heap memory leaks!

memory leak:

int *p = malloc(sizeof (int));
int *g = malloc(sizeof (int));
p = q;

3% Be careful with testing for equality!

assume p and q are pointers

compares nothing because it's assignment

compares values in pointers

compares values in pointees

#* Don't return addresses of local variables!
int *exl () {
int 1 = 11;
return &i;

}

int *ex2 (int size) {
int a[size];
return a;

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler

CS 354 (S24): L4 -9

Meet C Strings

What? A string is

*

What? A string literal is
. C S b 3 5 4 o

% In most cases, a string literal used as a source operand

How? Initialization

void someFunction () {
char *sptr = "CS 354";

—> Draw the memory diagram for sptr.

—> Draw the memory diagram for st r below.
char str[9] = "CS 354";

—> During execution, where is st r allocated?

How? Assignment

- Given str and sptr declared in somefunction above,
what happens with the following code?

sptr = "mumpsimus";

str = "folderol";

% Caveat: Assignment cannot be used

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (S24): L4-10

Meet string.h

What? string.his

int strlen(const char *str)
Returns the length of string str up to but not including the null character.

int strcmp(const char *strl, const char *str2)
Compares the string pointed to by str1 to the string pointed to by str2.
returns: < 0 (a negative) if str1 comes before str2
0 if str1 is the same as str2
>0 (a positive) if str1 comes after str2

char *strcpy(char *dest, const char *src)
Copies the string pointed to by src to the memory pointed to by dest
and terminates with the null character.

char *strcat (char *dest, const char *src)

Appends the string pointed to by src to the end of the string pointed to by dest
and terminates with the null character.

3% Ensure the destination character array

buffer overflow:

How? strcpy

- Given str and sptr as declared in somefunction on the previous page,
what happens with the following code?

strcpy(str, "folderol");

strcpy(str, "formication");

strcpy (sptr, "vomitory");

3% Rather than assignment, strcpy (or strncpy) must be used to

¥ Caveat: Beware of

Copyright © 2016-2024 Jim Skrentny, Debra Deppeler CS 354 (S24): L4 - 11

