
Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 1

CS 354 - Machine Organization & Programming
Tuesday Sept 17, and Thursday Sept 19, 2024

Submit Exam Conflicts and Accommodations Requests Today

PM BYOL #2: Vim, SCP, GDB

Project p2A: Due on or before 9/27

Project p2B: Due on or before 10/4 (due after E1, but should be written before E1)

Homework hw1 DUE: Monday 9/23, must first mark hw policies page

Homework hw2 DUE: Monday 9/30, must first mark hw policies

Week 3 Learning Objectives (at a minimum be able to)

 use <string.h> functions: strlen, strcp, strncpy, strcat, on C strings
 use information passed in via command line arguments CLAs in program
 understand and show binary representation and byte ordering for pointers and arrays
 create, allocate, and fill 2D arrays on heap
 create, allocate, and fill 2D arrays on the stack
 diagram 2D arrays on stack and on heap
 understand and show byte representation of elements in 2D arrays
 understand and use struct to create compound variables with different typed values
 next compound types within other compound types
 pass structs to and return them from functions
 pass addresses to structs

This Week

Tuesday Thursday

(finish last week)
Command-line Arguments
Recall 2D Arrays
2D Arrays on the Heap
2D Arrays on the Stack
2D Arrays: Stack vs. Heap

Array Caveats
Meet Structures
Nesting in Structures and
 Arrays of Structures
Passing Structures
Pointers to Structures

Read before next Week
K&R Ch. 7.1: Standard I/O
K&R Ch. 7.2: Formatted Output - Printf
K&R Ch. 7.4: Formatted Input - Scanf
K&R Ch. 7.5: File Access

Read before next week Thursday
B&O 9.1 Physical and Virtual Addressing
B&O 9.2 Address Spaces
B&O 9.9 Dynamic Memory Allocation
B&O 9.9.1 The malloc and free Functions
Do: Work on project p2A / Start project p2B, and finish homework hw1 (arrays and pointers)

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 2

Command Line Arguments

What? Command line arguments are a whitespace separated list of input entered
after the terminal’s command prompt

program arguments:follow the program/command name and are
typically file names and/or options/flags that specify the program's behavior.

$gcc myprog.c -Wall -m32 -std=gnu99 -o myprog

Why?

How?

int main(int argc, char *argv[]) {
for (int i = 0; i < argc; i++)

printf("%s\n", argv[i]);
return 0;

}

argc:argument count
 number of the cla's

argv:argument values/vector
 an array of char pointers where each element points to a cla string in order entered

 Assume the program above is run with the command "$a.out eleven -22.2"
Draw the memory diagram for argv.

NOTE: these are all C strings (not int or other types)

 Show what is output by the program:

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 3

Recall 2D Arrays

2D Arrays in Java

int[][] m = new int[2][4];

 Draw a basic memory diagram of resulting 2D array:

for (int i = 0; i < 2; i++)
for (int j = 0; j < 4; j++)

m[i][j] = i + j;

 What is output by this code fragment?

for (int i = 0; i < 2; i++) {
for (int j = 0; j < 4; j++)

printf("%i", m[i][j]);
printf("\n");

}

 What memory segment does Java use to allocate 2D arrays?

 What technique does Java use to layout a 2D array?

 What does the memory allocation look like for m as declared at the top of the page?

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 4

2D Arrays on the Heap

2D “Array of Arrays” in C

 1. Make a 2D array pointer named m.
 Declare a pointer to an integer pointer.

 2. Assign m an “array of arrays”.
 Allocate of a 1D array of integer pointers of size 2 (the number of rows).

 3. Assign each element in the “array of arrays” it own row of integers.
 Allocate for each row a 1D array of integers of size 4 (the number of columns).

 What is the contents of m after the code below executes?
for (int i = 0; i < 2; i++) {

for (int j = 0; j < 4; j++)
m[i][j] = i + j;

 Write the code to free the heap allocated 2D array.

 Avoid memory leaks; free the components of your heap 2D array

Address Arithmetic

 Which of the following are equivalent to m[i][j]?

a.) *(m[i]+j)
b.) (*(m+i))[j]
c.) *(*(m+i)+j)

 m[i][j]

 compute row i‘s address
 dereference address in 1. gives
 compute element j‘s address in row i
 dereference the address in 3. to access element at row i column j

 m[0][0]

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 5

2D Arrays on the Stack

Stack Allocated 2D Arrays in C

void someFunction(){
int m[2][4] = {{0,1,2,3},{4,5,6,7}};

 2D arrays allocated on the stack

Stack & Heap 2D Array Compatibility

 For each one below, what is provided when used as
a source operand? What is its type and scale factor?

1. **m?

type?
scale factor?

2. *m? *(m+i)?

type?
scale factor?

3. m[0]? m[i]?

4. m?

type?
scale factor?

For 2D STACK Arrays ONLY

 m and *m are

 m[i][j]

7

6

5

4

3

2

1

0

Stack

0x_28

0x_30

0x_38

0x_40

0x_48

0x_50

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 6

2D Arrays: Stack vs. Heap

Stack: row-major order layout Heap: array-of-arrays layout

m

0 1 2 3

4 5 6 7

m

7

3

6

2

5

1

4

0

7

6

5

4

3

2

1

0

0xB_28

0xB_30

0xB_38

0xB_40

0xB_48

0xB_50

0xB_20

7

6

5

4

3

0x0_38

0x0_40

0x0_48

0x0_50

0x0_58

0x0_30 0

1

2

 0x0_50

 0x0_30

0xB_F8 0x0_44
Stack

.

.

.

.

.

.

Heap

Stack

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 7

Array Caveats

 Arrays have no bounds checking!
int a[5];
for (int i = 0; i < 11; i++)

a[i] = 0;

 Arrays cannot be return types!
int[] makeIntArray(int size) {

return malloc(sizeof(int) * size);
}

 Not all 2D arrays are alike!

 What is the layout for ALL 2D arrays on the stack?
 What is the layout for 2D arrays on the heap?

 An array argument must match its parameter’s type!

 Stack allocated arrays require all but their first dimension specified!

int a[2][4] = {{1,2,3,4},{5,6,7,8}};
printIntArray(a,2,4); //size of 2D array must be passed in (last 2 arguments)

 Which of the following are type compatible with a declared above?
void printIntArray(int a[2][4],int rows,int cols)
void printIntArray(int a[8][4],int rows,int cols)
void printIntArray(int a[][4], int rows,int cols)
void printIntArray(int a[4][8],int rows,int cols)
void printIntArray(int a[][], int rows,int cols)
void printIntArray(int (*a)[4],int rows,int cols)
void printIntArray(int **a, int rows,int cols)

 Why is all but the first dimension needed?

m

0 1 2 3

10 11 12 13

m

0 1 2 3 10 11 12 13

m

0 1 2 3 10 11 12 13

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 8

Meet Structures

What? A structure

Why?

How? Definition

struct <typename> { typedef struct {
<data-member-declaratns>; <data-member-declaratns>;

}; } <typename>;

 Define a structure representing a date having integers month, day of month, and year.

How? Declaration

 Create a Date variable containing today’s date.

 dot operator:

 A structure’s data members

 A structure’s identifier used as a source operand

 A structure’s identifier used as a destination operand
struct Date tomorrow;
tomorrow = today;

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 9

Nesting in Structures and Array of Structures

Nesting in Structures

 Add a Date struct, named caught, to the structure code below.

typedef struct { ... } Date; //assume as done on prior page

typedef struct {
char name[12];
char type[12];
float weight;

} Pokemon;

 Structures can contain

 Identify how a Pokemon is laid out in the memory diagram.

Array of Structures

 Arrays can have

 Statically allocate an array, named pokedex,
and initialize it with two pokemon.

 Write the code to change the weight to 22.2 for the Pokemon at index 1.

 Write the code to change the month to 11 for the Pokemon at index 0.

0x_20

0x_28

0x_30

0x_38

0x_40

0x_18

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 10

Passing Structures

 Complete the function below so that it displays a Date structure.

void printDate (Date date) {

 Structures are passed-by-value to a function,

Consider the additional code:

//assume code for Date, Pokemon, printDate same as prior pages

void printPm(Pokemon pm) {
 printf("\nPokemon Name : %s",pm.name);

printf("\nPokemon Type : %s",pm.type);
printf("\nPokemon Weight : %f",pm.weight);
printf("\nPokemon Caught on : "); printDate(pm.caught);
printf("\n");

}

int main(void) {
Pokemon pm1 = {"Abra","Psychic",30,{1,21,2017}};
printPm(pm1);
...

 Complete the function below so that it displays a pokedex.

void printDex(Pokemon dex[], int size) {

 Recall: Arrays are passed-by-value to a function,

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 11

Pointers to Structures

Why? Using pointers to structures

How?

 Declare a pointer to a Pokemon and dynamically allocate it’s structure.

 Assign a weight to the Pokemon.

 points-to operator:
 Assign a name and type to the Pokemon.

 Assign a caught date to the Pokemon.

 Deallocate the Pokemon‘s memory.

 Update the code below to efficiently pass and print a Pokemon.
void printPm(Pokemon pm) {
 printf("\nPokemon Name : %s",pm name);

printf("\nPokemon Type : %s",pm type);
printf("\nPokemon Weight : %f",pm weight);
printf("\nPokemon Caught on : "); printDate(pm caught);
printf("\n");

}
int main(void) {

Pokemon pm1 = {"Abra","Psychic",30,{1,21,2017}};
printPm(pm1)

