
Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 1

CS 354 - Machine Organization & Programming
Tuesday Sept 17, and Thursday Sept 19, 2024

Submit Exam Conflicts and Accommodations Requests Today

PM BYOL #2: Vim, SCP, GDB

Project p2A: Due on or before 9/27

Project p2B: Due on or before 10/4 (due after E1, but should be written before E1)

Homework hw1 DUE: Monday 9/23, must first mark hw policies page

Homework hw2 DUE: Monday 9/30, must first mark hw policies

Week 3 Learning Objectives (at a minimum be able to)

 use <string.h> functions: strlen, strcp, strncpy, strcat, on C strings
 use information passed in via command line arguments CLAs in program
 understand and show binary representation and byte ordering for pointers and arrays
 create, allocate, and fill 2D arrays on heap
 create, allocate, and fill 2D arrays on the stack
 diagram 2D arrays on stack and on heap
 understand and show byte representation of elements in 2D arrays
 understand and use struct to create compound variables with different typed values
 next compound types within other compound types
 pass structs to and return them from functions
 pass addresses to structs

This Week

Tuesday Thursday

(finish last week)
Command-line Arguments
Recall 2D Arrays
2D Arrays on the Heap
2D Arrays on the Stack
2D Arrays: Stack vs. Heap

Array Caveats
Meet Structures
Nesting in Structures and
 Arrays of Structures
Passing Structures
Pointers to Structures

Read before next Week
K&R Ch. 7.1: Standard I/O
K&R Ch. 7.2: Formatted Output - Printf
K&R Ch. 7.4: Formatted Input - Scanf
K&R Ch. 7.5: File Access

Read before next week Thursday
B&O 9.1 Physical and Virtual Addressing
B&O 9.2 Address Spaces
B&O 9.9 Dynamic Memory Allocation
B&O 9.9.1 The malloc and free Functions
Do: Work on project p2A / Start project p2B, and finish homework hw1 (arrays and pointers)

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 2

Command Line Arguments

What? Command line arguments are a whitespace separated list of input entered
after the terminal’s command prompt

program arguments:follow the program/command name and are
typically file names and/or options/flags that specify the program's behavior.

$gcc myprog.c -Wall -m32 -std=gnu99 -o myprog

Why?

How?

int main(int argc, char *argv[]) {
for (int i = 0; i < argc; i++)

printf("%s\n", argv[i]);
return 0;

}

argc:argument count
 number of the cla's

argv:argument values/vector
 an array of char pointers where each element points to a cla string in order entered

 Assume the program above is run with the command "$a.out eleven -22.2"
Draw the memory diagram for argv.

NOTE: these are all C strings (not int or other types)

 Show what is output by the program:

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 3

Recall 2D Arrays

2D Arrays in Java

int[][] m = new int[2][4];

 Draw a basic memory diagram of resulting 2D array:

for (int i = 0; i < 2; i++)
for (int j = 0; j < 4; j++)

m[i][j] = i + j;

 What is output by this code fragment?

for (int i = 0; i < 2; i++) {
for (int j = 0; j < 4; j++)

printf("%i", m[i][j]);
printf("\n");

}

 What memory segment does Java use to allocate 2D arrays?

 What technique does Java use to layout a 2D array?

 What does the memory allocation look like for m as declared at the top of the page?

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 4

2D Arrays on the Heap

2D “Array of Arrays” in C

 1. Make a 2D array pointer named m.
 Declare a pointer to an integer pointer.

 2. Assign m an “array of arrays”.
 Allocate of a 1D array of integer pointers of size 2 (the number of rows).

 3. Assign each element in the “array of arrays” it own row of integers.
 Allocate for each row a 1D array of integers of size 4 (the number of columns).

 What is the contents of m after the code below executes?
for (int i = 0; i < 2; i++) {

for (int j = 0; j < 4; j++)
m[i][j] = i + j;

 Write the code to free the heap allocated 2D array.

 Avoid memory leaks; free the components of your heap 2D array

Address Arithmetic

 Which of the following are equivalent to m[i][j]?

a.) *(m[i]+j)
b.) (*(m+i))[j]
c.) *(*(m+i)+j)

 m[i][j]

 compute row i‘s address
 dereference address in 1. gives
 compute element j‘s address in row i
 dereference the address in 3. to access element at row i column j

 m[0][0]

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 5

2D Arrays on the Stack

Stack Allocated 2D Arrays in C

void someFunction(){
int m[2][4] = {{0,1,2,3},{4,5,6,7}};

 2D arrays allocated on the stack

Stack & Heap 2D Array Compatibility

 For each one below, what is provided when used as
a source operand? What is its type and scale factor?

1. **m?

type?
scale factor?

2. *m? *(m+i)?

type?
scale factor?

3. m[0]? m[i]?

4. m?

type?
scale factor?

For 2D STACK Arrays ONLY

 m and *m are

 m[i][j]

7

6

5

4

3

2

1

0

Stack

0x_28

0x_30

0x_38

0x_40

0x_48

0x_50

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 6

2D Arrays: Stack vs. Heap

Stack: row-major order layout Heap: array-of-arrays layout

m

0 1 2 3

4 5 6 7

m

7

3

6

2

5

1

4

0

7

6

5

4

3

2

1

0

0xB_28

0xB_30

0xB_38

0xB_40

0xB_48

0xB_50

0xB_20

7

6

5

4

3

0x0_38

0x0_40

0x0_48

0x0_50

0x0_58

0x0_30 0

1

2

 0x0_50

 0x0_30

0xB_F8 0x0_44
Stack

.

.

.

.

.

.

Heap

Stack

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 7

Array Caveats

 Arrays have no bounds checking!
int a[5];
for (int i = 0; i < 11; i++)

a[i] = 0;

 Arrays cannot be return types!
int[] makeIntArray(int size) {

return malloc(sizeof(int) * size);
}

 Not all 2D arrays are alike!

 What is the layout for ALL 2D arrays on the stack?
 What is the layout for 2D arrays on the heap?

 An array argument must match its parameter’s type!

 Stack allocated arrays require all but their first dimension specified!

int a[2][4] = {{1,2,3,4},{5,6,7,8}};
printIntArray(a,2,4); //size of 2D array must be passed in (last 2 arguments)

 Which of the following are type compatible with a declared above?
void printIntArray(int a[2][4],int rows,int cols)
void printIntArray(int a[8][4],int rows,int cols)
void printIntArray(int a[][4], int rows,int cols)
void printIntArray(int a[4][8],int rows,int cols)
void printIntArray(int a[][], int rows,int cols)
void printIntArray(int (*a)[4],int rows,int cols)
void printIntArray(int **a, int rows,int cols)

 Why is all but the first dimension needed?

m

0 1 2 3

10 11 12 13

m

0 1 2 3 10 11 12 13

m

0 1 2 3 10 11 12 13

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 8

Meet Structures

What? A structure









Why?

How? Definition

struct <typename> { typedef struct {
<data-member-declaratns>; <data-member-declaratns>;

}; } <typename>;

 Define a structure representing a date having integers month, day of month, and year.

How? Declaration

 Create a Date variable containing today’s date.

 dot operator:

 A structure’s data members

 A structure’s identifier used as a source operand

 A structure’s identifier used as a destination operand
struct Date tomorrow;
tomorrow = today;

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 9

Nesting in Structures and Array of Structures

Nesting in Structures

 Add a Date struct, named caught, to the structure code below.

typedef struct { ... } Date; //assume as done on prior page

typedef struct {
char name[12];
char type[12];
float weight;

} Pokemon;

 Structures can contain

 Identify how a Pokemon is laid out in the memory diagram.

Array of Structures

 Arrays can have

 Statically allocate an array, named pokedex,
and initialize it with two pokemon.

 Write the code to change the weight to 22.2 for the Pokemon at index 1.

 Write the code to change the month to 11 for the Pokemon at index 0.

0x_20

0x_28

0x_30

0x_38

0x_40

0x_18

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 10

Passing Structures

 Complete the function below so that it displays a Date structure.

void printDate (Date date) {

 Structures are passed-by-value to a function,

Consider the additional code:

//assume code for Date, Pokemon, printDate same as prior pages

void printPm(Pokemon pm) {
 printf("\nPokemon Name : %s",pm.name);

printf("\nPokemon Type : %s",pm.type);
printf("\nPokemon Weight : %f",pm.weight);
printf("\nPokemon Caught on : "); printDate(pm.caught);
printf("\n");

}

int main(void) {
Pokemon pm1 = {"Abra","Psychic",30,{1,21,2017}};
printPm(pm1);
...

 Complete the function below so that it displays a pokedex.

void printDex(Pokemon dex[], int size) {

 Recall: Arrays are passed-by-value to a function,

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W03 L6 - 11

Pointers to Structures

Why? Using pointers to structures









How?

 Declare a pointer to a Pokemon and dynamically allocate it’s structure.

 Assign a weight to the Pokemon.

 points-to operator:
 Assign a name and type to the Pokemon.

 Assign a caught date to the Pokemon.

 Deallocate the Pokemon‘s memory.

 Update the code below to efficiently pass and print a Pokemon.
void printPm(Pokemon pm) {
 printf("\nPokemon Name : %s",pm name);

printf("\nPokemon Type : %s",pm type);
printf("\nPokemon Weight : %f",pm weight);
printf("\nPokemon Caught on : "); printDate(pm caught);
printf("\n");

}
int main(void) {

Pokemon pm1 = {"Abra","Psychic",30,{1,21,2017}};
printPm(pm1)

