
Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (F24):W05 L9-10 - 1

CS 354 - Machine Organization & Programming
Tuesday Oct 1st, and Thursday Oct 3rd, 2024

Midterm Exam - Thurs, Oct 3rd, 7:30 - 9:30 pm

You should have received email with your EXAM INFORMATION including:
DATE, TIME, ROOM, NAME, LECTURE NUMBER, and ID NUMBER,
 UW ID required. Students without UW ID must wait until other students are checked in

 Hardcopy or photo of Exam info email, on phone is fine
 #2 pencils required
 closed book, no notes, no electronic devices (e.g., calculators, phones, watches)
 see “Midterm Exam 1” on course site Assignments for topics

A05 submit copy of e1_cheatsheet.pdf to your activities directory

PM BYOL: Exam Review

Project p2B: Due on or before Sunday, Oct 6th

Homework hw2: Due on Monday 9/30 (solution available Wed morning)

This Week:
Linux: Proceses and Address Spaces
Posix brk & unistd.h
C’s Heap Allocator & stdlib.h

Meet the Heap
Allocator Design
Simple View of Heap

Free Block Organization
Implicit Free List
Placement Policies

MIDTERM EXAM 1

Next Week: Dynamic Memory Allocator options
Read for next week: B&O

9.9.7 Placing Allocated Blocks
9.9.8 Splitting Free Blocks
9.9.9 Getting Additional Heap Memory
9.9.10 Coalescing Free Blocks

9.9.11 Coalescing with Boundary Tags
9.9.12 Putting It Together: Implementing a Simple
Allocator
9.9.13 Explicit Free Lists
9.9.14 Segregated Free Lists

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (F24):W05 L9-10 - 2

Posix brk & unistd.h

What? unistd.h contains a collection of OS functions (system call wrappers) used to access
functions in the Posix API

Posix API (Portable OS Interface) standard for maintaining compatibility among Unix OS’s

DIY “Do It Yourself” Heap via Posix Calls

brk“program break” - pointer to end of program, at top of heap

int brk(void *addr)

Sets the top of heap to the specified address addr.
Returns 0 if successful, else -1 and sets errno.
OS initially clears new pages of heap memory for security

void *sbrk(intptr_t incr) //intptr_t is sizeof long for ptr addr

Attempts to change the program’s top of heap by incr bytes.
Returns the old brk if successful, else -1 and sets errno.

errno

set by OS functions to communicate a specific error

 For most applications, it’s best to use malloc/calloc/realloc/free

 Caveat: Using both malloc/calloc/realloc and break functions above results
 in undefined program behavior.

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (F24):W05 L9-10 - 3

C’s Heap Allocator & stdlib.h

What? stdlib.h contains a collection of ~25 commonly used C functions













C’s Heap Allocator Functions

void *malloc(size_t size)//size_t is sizeof unsigned int

Allocates and returns generic ptr to block of heap memory of size bytes,
or returns NULL if allocation fails.

void *calloc(size_t nItems, size_t size)

Allocates, clears to 0, and returns a block of heap memory of nItems * size bytes,
or returns NULL if allocation fails.

void *realloc(void *ptr, size_t size)

Reallocates to size bytes a previously allocated block of heap memory pointed to by ptr,
or returns NULL if reallocation fails.

void free(void *ptr)

Frees the heap memory pointed to by ptr. If ptr is NULL then does nothing.

 For CS 354, if malloc/calloc/realloc returns NULL

just exit the program with an appropriate error message.

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (F24):W05 L9-10 - 4

Meet the Heap

What? The heap is



dynamically allocated memory:



block:

payload:

overhead:

allocator:

Two Allocator Approaches

1. Implicit:




2. Explicit:




Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (F24):W05 L9-10 - 5

Allocator Design

Two Goals

1. maximize throughput

2. maximize memory utilization

Trade Off:

Requirements

 List the requirements of a heap allocator.

1.

2.

3.

4.

5.

Design Considerations









Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (F24):W05 L9-10 - 6

Simple View of Heap

Rotated Linear Memory Layout

double word alignment:

Run 1: Simple View of Heap Allocation

 Update the diagram to show the following heap allocations:

1) p1 = malloc(2 * sizeof(int));

2) p2 = malloc(3 * sizeof(char));

3) p3 = malloc(4 * sizeof(int));

4) p4 = malloc(5 * sizeof(int));

 What happens with the following heap operations:

5) free(p1); p1 = NULL;

6) free(p3); p3 = NULL;

7) p5 = malloc(6 * sizeof(int));

External Fragmentation:

Internal Fragmentation:

 Why does it make sense that Java doesn’t allow primitives on the heap?

double word
= 8 bytes

1 word
= 4 bytes

1 byte

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

Lo
w

er
 A

dd
rs

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

Lo
w

er
 A

dd
rs

Heap Ends

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (F24):W05 L9-10 - 7

Free Block Organization

 The simple view of the allocator has

size

status

Explicit Free List



code:

space:

time:

Implicit Free List



code:

space:

time:

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (F24):W05 L9-10 - 8

Implicit Free List

 The first word of each block

Layout 1: Basic Heap Block (3 different memory diagrams of same thing)

 The header stores

 Since the block size is a multiple of 8, what value will the last three header bits always have?

 What integer value will the header have for a block that is:

allocated and 8 bytes in size?

free and 32 bytes in size?

allocated and 64 bytes in size?

Run 2: Heap Allocation with Block Headers

 Update the diagram to show the following heap allocations:

1) p1 = malloc(2 * sizeof(int));

2) p2 = malloc(3 * sizeof(char));

3) p3 = malloc(4 * sizeof(int));

4) p4 = malloc(5 * sizeof(int));

 Given a pointer to the first block in the heap, how is the next block found?

AD C B

Header

Payload

Possibly More Payload

Possibly Padding

bit numbers:31...24...16 ...8 ...0 31 ... 3210

1234

DCBA312 4

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (F24):W05 L9-10 - 9

Placement Policies

What? Placement Policies are

Assume the heap is pre-divided into various-sized free blocks ordered from smaller to larger.
 First Fit (FF): start from

 stop at
 fail if

mem util:

thruput:

 Next Fit (NF): start from
 stop at
 fail if

mem util:

thruput:

 Best Fit (BF): start from
 stop at

or stop early
 fail if


mem util:

thruput:

Run 3: Heap Allocation using Placement Policies

 Given the original heap above and the placement policy, what address is ptr assigned?

ptr = malloc(sizeof(int)); //FF? BF?

ptr = malloc(10 * sizeof(char)); //FF? BF?

 Given the original heap above and the address of block most recently allocated,
what address is ptr assigned using NF?

ptr = malloc(sizeof(char)); //0x_04? 0x_34?

ptr = malloc(3 * sizeof(int)); //0x_1C? 0x_34?

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

8/016/016/0 8/18/1 1---- 8/1

