
Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (S24): L10 - 1

CS 354 - Machine Organization & Programming
Tuesday Feb 20th, and Thursday Feb 22nd, 2024

Midterm Exam - Thurs, Feb 22nd, 7:30 - 9:30 pm

You should have received email with your EXAM INFORMATION including:
DATE, TIME, ROOM, NAME, LECTURE NUMBER, and ID NUMBER,
 UW ID required. Students without UW ID must wait until other students are checked in

 Copy or photo of Exam info email
 #2 pencils required
 closed book, no notes, no electronic devices (e.g., calculators, phones, watches)
 see “Midterm Exam 1” on course site Assignments for topics

A05 submit copy of e1_cheatsheet.pdf to your activities directory

PM BYOL: Exam Review

Project p2B: Due on or before Friday, Feb 23rd

Homework hw2: Due on Monday 2/19 (solution available Wed morning)

This Week:
Linux: Proceses and Address Spaces
Posix brk & unistd.h
C’s Heap Allocator & stdlib.h

Meet the Heap
Allocator Design
Simple View of Heap

Free Block Organization
Implicit Free List
Placement Policies

MIDTERM EXAM 1

Next Week: Dynamic Memory Allocator options
Read for next week: B&O

9.9.7 Placing Allocated Blocks
9.9.8 Splitting Free Blocks
9.9.9 Getting Additional Heap Memory
9.9.10 Coalescing Free Blocks

9.9.11 Coalescing with Boundary Tags
9.9.12 Putting It Together: Implementing a Simple
Allocator
9.9.13 Explicit Free Lists
9.9.14 Segregated Free Lists

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (S24): L10 - 2

Posix brk & unistd.h

What? unistd.h contains a collection of

Posix API (Portable OS Interface) standard for maintaining compatibility among Unix OS’s

DIY Heap via Posix Calls

brk

int brk(void *addr)

Sets the top of heap to the specified address addr.
Returns 0 if successful, else -1 and sets errno.

void *sbrk(intptr_t incr) //intptr_t is sizeof long for ptr addr

Attempts to change the program’s top of heap by incr bytes.
Returns the old brk if successful, else -1 and sets errno.

errno

 For most applications, it’s best to use malloc/calloc/realloc/free

 Caveat: Using both malloc/calloc/realloc and break functions above results
 in undefined program behavior.

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (S24): L10 - 3

C’s Heap Allocator & stdlib.h

What? stdlib.h contains a collection of













C’s Heap Allocator Functions

void *malloc(size_t size)

Allocates and returns generic ptr to block of heap memory of size bytes,
or returns NULL if allocation fails.

void *calloc(size_t nItems, size_t size)

Allocates, clears to 0, and returns a block of heap memory of nItems * size bytes,
or returns NULL if allocation fails.

void *realloc(void *ptr, size_t size)

Reallocates to size bytes a previously allocated block of heap memory pointed to by ptr,
or returns NULL if reallocation fails.

void free(void *ptr)

Frees the heap memory pointed to by ptr. If ptr is NULL then does nothing.

 For CS 354, if malloc/calloc/realloc returns NULL

just exit the program with an appropriate error message.

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (S24): L10 - 4

Meet the Heap

What? The heap is



dynamically allocated memory:



block:

payload:

overhead:

allocator:

Two Allocator Approaches

1. Implicit:




2. Explicit:




Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (S24): L10 - 5

Allocator Design

Two Goals

1. maximize throughput

2. maximize memory utilization

Trade Off:

Requirements

 List the requirements of a heap allocator.

1.

2.

3.

4.

5.

Design Considerations









Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (S24): L10 - 6

Simple View of Heap

Rotated Linear Memory Layout

double word alignment:

Run 1: Simple View of Heap Allocation

 Update the diagram to show the following heap allocations:

1) p1 = malloc(2 * sizeof(int));

2) p2 = malloc(3 * sizeof(char));

3) p3 = malloc(4 * sizeof(int));

4) p4 = malloc(5 * sizeof(int));

 What happens with the following heap operations:

5) free(p1); p1 = NULL;

6) free(p3); p3 = NULL;

7) p5 = malloc(6 * sizeof(int));

External Fragmentation:

Internal Fragmentation:

 Why does it make sense that Java doesn’t allow primitives on the heap?

double word
= 8 bytes

1 word
= 4 bytes

1 byte

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

Lo
w

er
 A

dd
rs

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

Lo
w

er
 A

dd
rs

Heap Ends

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (S24): L10 - 7

Free Block Organization

 The simple view of the allocator has

size

status

Explicit Free List



code:

space:

time:

Implicit Free List



code:

space:

time:

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (S24): L10 - 8

Implicit Free List

 The first word of each block

Layout 1: Basic Heap Block (3 different memory diagrams of same thing)

 The header stores

 Since the block size is a multiple of 8, what value will the last three header bits always have?

 What integer value will the header have for a block that is:

allocated and 8 bytes in size?

free and 32 bytes in size?

allocated and 64 bytes in size?

Run 2: Heap Allocation with Block Headers

 Update the diagram to show the following heap allocations:

1) p1 = malloc(2 * sizeof(int));

2) p2 = malloc(3 * sizeof(char));

3) p3 = malloc(4 * sizeof(int));

4) p4 = malloc(5 * sizeof(int));

 Given a pointer to the first block in the heap, how is the next block found?

AD C B

Header

Payload

Possibly More Payload

Possibly Padding

bit numbers:31...24...16 ...8 ...0 31 ... 3210

1234

DCBA312 4

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

Copyright © 2016-2024 Jim Skrentny, Deb Deppeler CS 354 (S24): L10 - 9

Placement Policies

What? Placement Policies are

Assume the heap is pre-divided into various-sized free blocks ordered from smaller to larger.
 First Fit (FF): start from

 stop at
 fail if

mem util:

thruput:

 Next Fit (NF): start from
 stop at
 fail if

mem util:

thruput:

 Best Fit (BF): start from
 stop at

or stop early
 fail if


mem util:

thruput:

Run 3: Heap Allocation using Placement Policies

 Given the original heap above and the placement policy, what address is ptr assigned?

ptr = malloc(sizeof(int)); //FF? BF?

ptr = malloc(10 * sizeof(char)); //FF? BF?

 Given the original heap above and the address of block most recently allocated,
what address is ptr assigned using NF?

ptr = malloc(sizeof(char)); //0x_04? 0x_34?

ptr = malloc(3 * sizeof(int)); //0x_1C? 0x_34?

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

8/016/016/0 8/18/1 1---- 8/1

