
Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 1

CS 354 - Machine Organization & Programming
Tuesday Oct 8, and Thurs Oct 10, 2024

Project p3: Released DUE on or before Friday Oct 25

Activity A06 available

Homework 3: DUE on or before

Exam 1: Scores posted by Thursday

Learning Objectives

 describe design choices for implementing dynamic memory allocator
 write code that splits a free heap block into one alloc’d and one free block
 write code to create/update heap block header and add/update free block footer
 shift bits and mask bits get size and status values from size_status integer
 choose an available free block based on placement policy, FF, NF, BF
 test implementation of shared object, heap
 describe the effect of various allocator design choices
 describe and explain the C/IA-32 memory hierarchy
 use make and Makefile to build a so object file, and run tests to show correctness

This Week

p3 Progress Dates (do expect to work multiple days and work sessions for p3)

- complete Week A06 activity as soon as possible
- review source code functions before lecture this week
- write code to compute the correct heap block size
- use GDB to examine “print” size from size_status, and status from size_status field
- implement alloc and submit progress to Canvas (pass partA tests)
- implement free by Tuesday next week and submit progress to Canvas (pass partB tests)
- implement immediate coalescing by Thursday next week and submit progress
- test and debug to ensure that immediate coalescing and placement policy are correct.
- complete testing and debugging and complete final submission (partC&D tests pass)

Finish Implicit Free List, Placement Policies
Free Block - Too Large/Too Small
Coalescing Free Blocks
Free Block Footers (ready for p3 now)

Explicit Free List (not in p3)
Explicit Free List Improvements
Heap Caveats (reminders)
Memory Hierarchy
Exam 1 Results - bring e1_error_report

Next Week: Locality and Designing Caches
B&O 6.4.2

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 2

Free Block - Too Large/Too Small

What happens if the free block chosen is bigger than the request?



mem util:

thruput:



mem util:

thruput:

Run 4: Heap First-Fit Allocation with Splitting

 Diagram how the heap above is modified by the 4 mallocs below.
For each, what address is assigned to the pointer?
If there is a new free block, what is its address and size?

1) p1 = malloc(sizeof(char));

2) p2 = malloc(11 * sizeof(char));

3) p3 = malloc(2 * sizeof(int));

4) p4 = malloc(5 * sizeof(int));

What happens if there isn’t a large enough free block to satisfy the request?

1st.

 Can allocated blocks be moved out of the way to create larger free areas?

2nd.

3rd.

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

8/1 32/016/0---- 18/0

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 3

Coalescing Free Blocks

Run 5: Heap Freeing without Coalescing

 What’s the problem resulting from the following heap operations?
1) free(p9); p9 = NULL;
2) free(p1); p1 = NULL;
3) p1 = malloc(4 * sizeof(int));

Problem?

Solution?

immediate:

delayed:

Run 6: Heap Freeing with Immediate Coalescing

 Given the heap above, what is the size in bytes of the freed heap block?
1) free(p7); p7 = NULL;

 Given a pointer to a payload, how do you find its block header?

 Given a pointer to a payload, how do you find the block header of the NEXT block?

 Use type casting

 Given the modified heap above, what is the size in bytes of the freed heap block
when immediate coalescing is used?
2) free(p3); p3 = NULL;
3) free(p1); p1 = NULL;

 Given a pointer to a payload, how do you find the block header of the PREVIOUS block?

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

8/1 8/0 8/1 8/016/1 8/1---- 1

p3

8/1

p7 p1 p9 p4

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

8/1 8/0 8/1 8/016/1 8/1---- 1

p3

8/1

p7 p1 p9 p4

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 4

Free Block Footers

 The last word of each free block

 Why don’t allocated blocks need footers?

 If only free blocks have footers, how do we know if previous block will have a footer?

 Free and allocated block headers

Layout 2: Heap Block with Headers & Free Block Footers

 What integer value will the header have
for an allocated block that is:

1) 8 bytes in size and prev. block is free?

2) 8 bytes in size and prev. block is allocated?

3) 32 bytes in size and prev. block is allocated?

4) 64 bytes in size and prev. block is free?

 Given a pointer to a payload, how do you get to the header of a previous block if it’s free?

Run 7: Heap Freeing with Immediate Coalescing using p-bits and Footers

 Given the heap above, what is the size in bytes of the freed heap block?
1) free(p1); p1 = NULL;

 Given the modified heap above, what is the size in bytes of the freed heap block?
2) free(p4); p4 = NULL;

 Don’t forget to update

 Is coalescing done in a fixed number of steps (constant time)
or is it dependent on the number of heap blocks (linear time)?

Possibly More Words

Header

31 3 210 bits

Footer (free only)

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

24/ 0 8/ 0 8/ 1 8/ 08/ 1---- 18/ 124 8 8

p1 p9 p4

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 5

Explicit Free List

 An allocator using an explicit free list

Explicit Free List Layout: Heap Free Block with Footer

 Complete the addresses in the partially shown heap diagram below.

 Why is a footer still useful?

 Does the order of free blocks in the free list need to be the same order
as they are found in the address space?

Header = block size +0pa

pred Free Block

Possibly More Free Words

31 3 210 bits

Footer = only block size

Free Block Links

pred

succ
succ Free Block

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

16/10 16/10 16/0116/010x_ 16 160x 0x_ 0x_ 0x_ ...32/10

head

header

pred

succ

footer

16/10
0x0

0x_2C

16

16/10
0x_04

0x_44

16

32/10
0x_2C

0x_94

32

24/10
0x_44

0x0

24

head 0x_04

 Node LayoutFree List as a Doubly-Linked List of Nodes

p3 p7

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 6

Explicit Free List Improvements

Free List Ordering

address order :

malloc with FF

free

last-in order:
malloc with FF

free

Free List Segregation

simple segregation:

structure

malloc

if free list is empty

free

problem

fitted segregation:

fitting

splitting

coalescing

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 7

Heap Caveats

Consecutive heap allocations don’t result in contiguous payloads!

 Why?

Don’t assume heap memory is initialized to 0!

Do free all heap memory that your program allocates!

 Why are memory leaks bad?

 Do memory leaks persist when a program ends?

Don’t free heap memory more than once!

 What is the best way to avoid this mistake?

Don’t read/write data in freed heap blocks!

 What kind of error will result?

Don’t change heap memory outside of your payload!

 Why?

Do check if your memory intensive program has run out of heap memory!

 How?

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 8

Memory Hierarchy

 The memory hierarchy

Cache

Memory Units

word: size used by transfer between

block: size used by transfer between

page: size used by transfer between

Memory Transfer Time

cpu cycles:

latency:

CPU

L0:
Registers

L1: Cache (C)

L2: Cache (C)

L3: Cache (C)

L4: Main Memory (MM)

L5: Local Secondary Storage (SS)

L6: Network Storage

