CS 354 - Machine Organization & Programming
Tuesday Oct 8, and Thurs Oct 10, 2024

Project p3: Released DUE on or before Friday Oct 25
Activity A06 available

Homework 3: DUE on or before

Exam 1: Scores posted by Thursday

Learning Objectives

*

® 6 6 6 6 6 o o

describe design choices for implementing dynamic memory allocator

write code that splits a free heap block into one alloc’d and one free block

write code to create/update heap block header and add/update free block footer
shift bits and mask bits get size and status values from size_status integer
choose an available free block based on placement policy, FF, NF, BF

test implementation of shared object, heap

describe the effect of various allocator design choices

describe and explain the C/IA-32 memory hierarchy

use make and Makefile to build a so object file, and run tests to show correctness

This Week

Finish Implicit Free List, Placement Policies Explicit Free List (not in p3)
Free Block - Too Large/Too Small Explicit Free List Improvements
Coalescing Free Blocks Heap Caveats (reminders)
Free Block Footers (ready for p3 now) Memory Hierarchy

Exam 1 Results - bring e1_error_report

Next Week: Locality and Designing Caches
B&0O 6.4.2

p3 Progress Dates (do expect to work multiple days and work sessions for p3)

- complete Week A06 activity as soon as possible

- review source code functions before lecture this week

- write code to compute the correct heap block size

- use GDB to examine “print” size from size _status, and status from size status field

- implement alloc and submit progress to Canvas (pass partA tests)

- implement free by Tuesday next week and submit progress to Canvas (pass partB tests)
- implement immediate coalescing by Thursday next week and submit progress

- test and debug to ensure that immediate coalescing and placement policy are correct.

- complete testing and debugging and complete final submission (partC&D tests pass)

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 1

Free Block - Too Large/Too Small

What happens if the free block chosen is bigger than the request?

*

mem util:

thruput:

mem util:

thruput:

Run 4: Heap First-Fit Allocation with Splitting
0x_00 0x_ 08 0x_10 0x_ 18 0x_ 20 0x_ 28 0x_ 30 0x 38 0x 40

TEr T 11 TT1 TT1 TTT T
-—--- [16/0 8/1 8/0 32/0 1
S L 1] L 1] L1 Ll

- Diagram how the heap above is modified by the 4 mallocs below.
For each, what address is assigned to the pointer?
If there is a new free block, what is its address and size?

1) pl malloc(sizeof (char));
2) p2 = malloc (1l * sizeof (char));
3) p3 = malloc(2 * sizeof(int));

4) p4

malloc (5 * sizeof (int));
What happens if there isn’t a large enough free block to satisfy the request?

1st.

—> Can allocated blocks be moved out of the way to create larger free areas?

2nd.

3rd.

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 2

Coalescing Free Blocks

Run 5: Heap Freeing without Coalescing
0x 00 0x 08 0x 10 Ox 18 0x 20 Ox 28 0x 30 Ox 38 Ox 40

T T 11 TT1 TT1 TTT TTT TTT TTT TT
- || 81 16/1 8/1 8/1 8/0 8/1 8/0 1
[Ll L] L1 L1 L1 L1 L1

y i 4
/

pl| /| pof/ pa [7

p3| / p7

- What's the problem resulting from the following heap operations?
1) free(p9); p9 = NULL;
2) free(pl); pl = NULL;
3) pl = malloc(4 * sizeof(int));

Problem?

Solution?
immediate:

delayed:

Run 6: Heap Freeing with Immediate Coalescing
0x_00 0x 08 0x_10 0x 18 0x_ 20 0x_ 28 0x_30 0x_ 38 0x_40

I T T T [[[[B

— | 81 16/1 8/1 8/1 8/0 8/1 8/0 1

||||||* |||* |||* |||* L1l L1l L1l Ll
p3 | 7 o7 [1 pl |/ po |/ pd |/

—> Given the heap above, what is the size in bytes of the freed heap block?
1) free(p7); p7 = NULL;

—> Given a pointer to a payload, how do you find its block header?

—> Given a pointer to a payload, how do you find the block header of the NEXT block?

% Use type casting

- Given the modified heap above, what is the size in bytes of the freed heap block

when immediate coalescing is used?
2) free(p3); p3 = NULL;
3) free(pl); pl = NULL;

-> Given a pointer to a payload, how do you find the block header of the PREVIOUS block?

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 -3

Free Block Footers

% The last word of each free block

- Why don't allocated blocks need footers?

—> If only free blocks have footers, how do we know if previous block will have a footer?

#* Free and allocated block headers

Layout 2: Heap Block with Headers & Free Block Footers

, , 31 3210 bits
- What integer value will the header have
for an allocated block that is: Header
L : "
1) 8 bytes in size and prev. block is free” | Possibly More Words |

2) 8 bytes in size and prev. block is allocated? Footer (free only)

3) 32 bytes in size and prev. block is allocated?

4) 64 bytes in size and prev. block is free?

- Given a pointer to a payload, how do you get to the header of a previous block if it's free?

Run 7: Heap Freeing with Immediate Coalescing using p-bits and Footers
0x 00 0x_ 08 0x_10 0x 18 0x_ 20 0x_ 28 0x_ 30 0x_ 38 0x 40

TEr T 11 TTT T 11 TTT TT T[T T T TT7 TTT[T1
- 24/ 0 24 18/ 1 8/ 1 8 0 8 |8/ 1 8/ 0| 8
S Lol L1 N N N i

pl |/ po | / pd |/

- Given the heap above, what is the size in bytes of the freed heap block?
1) free(pl); pl = NULL;

—> Given the modified heap above, what is the size in bytes of the freed heap block?
2) free(p4); p4 = NULL;

3% Don’t forget to update

» |s coalescing done in a fixed number of steps (constant time)
or is it dependent on the number of heap blocks (linear time)?

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 -4

Explicit Free List

% An allocator using an explicit free list

Explicit Free List Layout: Heap Eree Block with Footer

31

3210 bits

Header = block size

+0pa

pred Free Block

succ Free Block

IPossibly More Free Wordsl

Footer = only block size

Free Block Links

pred

succ

- Complete the addresses in the partially shown heap diagram below.

Free List as a Doubly-Linked List of Nodes

Node Layout

16/10 16/10 32/10 24/10 header
0x0 -4——0x 04 | g O0x2C |-—7F Ox 44 pred
head | OH_ gt 0x 2 1—p| 0x 44| | Ox 94 F—>{ 0x0 succ
16 16 32 24 footer
0x 00 0x 08 0x 10 0x 18 0x 20 0x 28 0x 30 0x 38 0Ox 40
T T L T L T [T [T [L
Ox_ [[16/10[0x |Ox_ 16 |16/01 16/10/0x_ [Ox_ 16 |16/01 32/10...
L1 L1 L1l L1 L1l L1 L1 L1 L1 L1 L1 | |
head * *
p3 |/ p7 |/

- Why is a footer still useful?

- Does the order of free blocks in the free list need to be the same order
as they are found in the address space?

Copyright © 2016-2024 Jim Skrentny

CS 354 (F24): W06-L11,12 -5

Explicit Free List Improvements

Free List Ordering
address order :

malloc with FF

free

last-in order:
malloc with FF

free

Free List Segregation

simple segregation:

structure
malloc

if free list is empty
free

problem

fitted seqregation:

fitting
splitting

coalescing

Copyright © 2016-2024 Jim Skrentny

CS 354 (F24): W06-L11,12 -6

Heap Caveats

Consecutive heap allocations don’t result in contiguous payloads!

> Why?

Don’t assume heap memory is initialized to 0!

Do free all heap memory that your program allocates!

- Why are memory leaks bad?

- Do memory leaks persist when a program ends?

Don’t free heap memory more than once!

- What is the best way to avoid this mistake?

Don’t read/write data in freed heap blocks!

- What kind of error will result?

Don’t change heap memory outside of your payload!

- Why?

Do check if your memory intensive program has run out of heap memory!

- How?

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 -7

Memory Hierarchy

s The memory hierarchy

CPU

LO:
Registers

L1: Cache (C)

L2: Cache (C)

L3: Cache (C)

L4: Main Memory (MM)

L5: Local Secondary Storage (SS)

L6: Network Storage

Cache

Memory Units
word: size used by transfer between
block: size used by transfer between
page: size used by transfer between

Memory Transfer Time
cpu cycles:

latency:

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 -8

