
Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 1

CS 354 - Machine Organization & Programming
Tuesday Oct 8, and Thurs Oct 10, 2024

Project p3: Released DUE on or before Friday Oct 25

Activity A06 available

Homework 3: DUE on or before

Exam 1: Scores posted by Thursday

Learning Objectives

 describe design choices for implementing dynamic memory allocator
 write code that splits a free heap block into one alloc’d and one free block
 write code to create/update heap block header and add/update free block footer
 shift bits and mask bits get size and status values from size_status integer
 choose an available free block based on placement policy, FF, NF, BF
 test implementation of shared object, heap
 describe the effect of various allocator design choices
 describe and explain the C/IA-32 memory hierarchy
 use make and Makefile to build a so object file, and run tests to show correctness

This Week

p3 Progress Dates (do expect to work multiple days and work sessions for p3)

- complete Week A06 activity as soon as possible
- review source code functions before lecture this week
- write code to compute the correct heap block size
- use GDB to examine “print” size from size_status, and status from size_status field
- implement alloc and submit progress to Canvas (pass partA tests)
- implement free by Tuesday next week and submit progress to Canvas (pass partB tests)
- implement immediate coalescing by Thursday next week and submit progress
- test and debug to ensure that immediate coalescing and placement policy are correct.
- complete testing and debugging and complete final submission (partC&D tests pass)

Finish Implicit Free List, Placement Policies
Free Block - Too Large/Too Small
Coalescing Free Blocks
Free Block Footers (ready for p3 now)

Explicit Free List (not in p3)
Explicit Free List Improvements
Heap Caveats (reminders)
Memory Hierarchy
Exam 1 Results - bring e1_error_report

Next Week: Locality and Designing Caches
B&O 6.4.2

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 2

Free Block - Too Large/Too Small

What happens if the free block chosen is bigger than the request?

mem util:

thruput:

mem util:

thruput:

Run 4: Heap First-Fit Allocation with Splitting

 Diagram how the heap above is modified by the 4 mallocs below.
For each, what address is assigned to the pointer?
If there is a new free block, what is its address and size?

1) p1 = malloc(sizeof(char));

2) p2 = malloc(11 * sizeof(char));

3) p3 = malloc(2 * sizeof(int));

4) p4 = malloc(5 * sizeof(int));

What happens if there isn’t a large enough free block to satisfy the request?

1st.

 Can allocated blocks be moved out of the way to create larger free areas?

2nd.

3rd.

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

8/1 32/016/0---- 18/0

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 3

Coalescing Free Blocks

Run 5: Heap Freeing without Coalescing

 What’s the problem resulting from the following heap operations?
1) free(p9); p9 = NULL;
2) free(p1); p1 = NULL;
3) p1 = malloc(4 * sizeof(int));

Problem?

Solution?

immediate:

delayed:

Run 6: Heap Freeing with Immediate Coalescing

 Given the heap above, what is the size in bytes of the freed heap block?
1) free(p7); p7 = NULL;

 Given a pointer to a payload, how do you find its block header?

 Given a pointer to a payload, how do you find the block header of the NEXT block?

 Use type casting

 Given the modified heap above, what is the size in bytes of the freed heap block
when immediate coalescing is used?
2) free(p3); p3 = NULL;
3) free(p1); p1 = NULL;

 Given a pointer to a payload, how do you find the block header of the PREVIOUS block?

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

8/1 8/0 8/1 8/016/1 8/1---- 1

p3

8/1

p7 p1 p9 p4

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

8/1 8/0 8/1 8/016/1 8/1---- 1

p3

8/1

p7 p1 p9 p4

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 4

Free Block Footers

 The last word of each free block

 Why don’t allocated blocks need footers?

 If only free blocks have footers, how do we know if previous block will have a footer?

 Free and allocated block headers

Layout 2: Heap Block with Headers & Free Block Footers

 What integer value will the header have
for an allocated block that is:

1) 8 bytes in size and prev. block is free?

2) 8 bytes in size and prev. block is allocated?

3) 32 bytes in size and prev. block is allocated?

4) 64 bytes in size and prev. block is free?

 Given a pointer to a payload, how do you get to the header of a previous block if it’s free?

Run 7: Heap Freeing with Immediate Coalescing using p-bits and Footers

 Given the heap above, what is the size in bytes of the freed heap block?
1) free(p1); p1 = NULL;

 Given the modified heap above, what is the size in bytes of the freed heap block?
2) free(p4); p4 = NULL;

 Don’t forget to update

 Is coalescing done in a fixed number of steps (constant time)
or is it dependent on the number of heap blocks (linear time)?

Possibly More Words

Header

31 3 210 bits

Footer (free only)

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

24/ 0 8/ 0 8/ 1 8/ 08/ 1---- 18/ 124 8 8

p1 p9 p4

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 5

Explicit Free List

 An allocator using an explicit free list

Explicit Free List Layout: Heap Free Block with Footer

 Complete the addresses in the partially shown heap diagram below.

 Why is a footer still useful?

 Does the order of free blocks in the free list need to be the same order
as they are found in the address space?

Header = block size +0pa

pred Free Block

Possibly More Free Words

31 3 210 bits

Footer = only block size

Free Block Links

pred

succ
succ Free Block

0x_00 0x_08 0x_10 0x_18 0x_20 0x_28 0x_30 0x_38 0x_40

16/10 16/10 16/0116/010x_ 16 160x 0x_ 0x_ 0x_ ...32/10

head

header

pred

succ

footer

16/10
0x0

0x_2C

16

16/10
0x_04

0x_44

16

32/10
0x_2C

0x_94

32

24/10
0x_44

0x0

24

head 0x_04

 Node LayoutFree List as a Doubly-Linked List of Nodes

p3 p7

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 6

Explicit Free List Improvements

Free List Ordering

address order :

malloc with FF

free

last-in order:
malloc with FF

free

Free List Segregation

simple segregation:

structure

malloc

if free list is empty

free

problem

fitted segregation:

fitting

splitting

coalescing

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 7

Heap Caveats

Consecutive heap allocations don’t result in contiguous payloads!

 Why?

Don’t assume heap memory is initialized to 0!

Do free all heap memory that your program allocates!

 Why are memory leaks bad?

 Do memory leaks persist when a program ends?

Don’t free heap memory more than once!

 What is the best way to avoid this mistake?

Don’t read/write data in freed heap blocks!

 What kind of error will result?

Don’t change heap memory outside of your payload!

 Why?

Do check if your memory intensive program has run out of heap memory!

 How?

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W06-L11,12 - 8

Memory Hierarchy

 The memory hierarchy

Cache

Memory Units

word: size used by transfer between

block: size used by transfer between

page: size used by transfer between

Memory Transfer Time

cpu cycles:

latency:

CPU

L0:
Registers

L1: Cache (C)

L2: Cache (C)

L3: Cache (C)

L4: Main Memory (MM)

L5: Local Secondary Storage (SS)

L6: Network Storage

