
Copyright © 2016-2024 Jim Skrentny CS 354 (F24): L14 - 1

CS 354 - Machine Organization & Programming
Tuesday Oct 14, and Thursday Oct 17, 2024

Print paper copies of this outline for best use.

Week 07 Activity and Week 08 Activities available

Project p3A: DUE on or before Friday 10/18 & p3B on 10/25

Homework 3: DUE on or before Monday 10/21Learning Objectives

 Describe the relative difference in speed and size of various types of memory and storage.
 Identify and describe the units of transfer used by each storage type.
 Identify and describe case with spatial locality and temporal locality
 Identify good locality in program code
 Explain why programs with good locality work better with caching.
 Compute stride (in words) of array memory accesses
 Determine if common algorithms produce good or bad locality for each type.
 Define and use basic cache terminology
 Convert hex to binary, use bits of an address to determine if the address is in a given cache
 Extract bits and compute the set index, tag bits, and byte, determine if byte is in the cache

This Week: MEMORY MANAGEMENT via CACHING blocks of memory for fast access

Note: p4A and p4B will be released next week

Get p3A and p3B done this week and avoid the rush!
p3 - implement and test alloc (partA) and free (partB) by Monday and submit progress
p3 - implement immediate coalescing by Wednesday and submit progress
p3 - complete testing and debugging by Friday and complete final submission

E.F.L. Improvements, Memory Hierarchy
Locality & Caching
Bad Locality
Caching: Basic Idea & Terms
Designing a Cache: Blocks

Rethinking Addressing
Designing a Cache: Sets and Tags
Basic Cache Lines
Basic Cache Operation
Basic Cache Practice

Next Week: Vary cache set size and Cache Writes
B&O 6.4.3 Set Associative Caches
6.4.4 Fully Associative Caches
6.4.5 Issues with Writes
6.4.6 Anatomy of a Real Cache Hierarchy
6.4.7 Performance Impact of Cache Parameters

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): L14 - 2

Memory Hierarchy

 The memory hierarchygives the illusion of having lots of fast memory.

Cache

is a smaller faster mem that acts as a staging area for data stored in a larger slower mem

Memory Units

word: size used by CPU transfer betweenL1 & CPU

block: size used by C transfer betweenC levels & MM

page: size used by MM transfer betweenMM & SS

Memory Transfer Time: https://simple.wikipedia.org/wiki/Orders_of_magnitude_(time)

cpu cycles:used to measure time

latency:memory access time (delay)

CPU

L0:
Registers

1 cyc .25ns

L1: Cache (C)
4 cyc 1ns

L2: Cache (C)
12 cyc 3ns

L3: Cache (C)
40 cyc unshared 10ns

L4: Main Memory (MM)
100ns = 42 cyc + 50ns

L5: Local Secondary Storage (SS)
SDD 50-150us
HDD 1-10ms

L6: Network Storage
cloud storage 100ms

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): L14 - 3

Locality & Caching

What?

temporal locality:

spatial locality:

locality is designed into

Example

int sumArray(int a[], int size, int step) {
int sum = 0;
for (int i = 0; i < size; i += step)

sum += a[i];
return sum;

}
 List the variables that clearly demonstrate temporal locality.

 List the variables that clearly demonstrate spatial locality.

stride:

 The caching system uses localityto predict what the cpu will need
 in the near future.

How?

cache block:

 Programs with good localityrun faster since they work better
with the caching system!

Why?

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): L14 - 4

Bad Locality

Why is this code bad?

int a[ROWS][COLS];

for (int c = 0; c < COLS; c++)
for (int r = 0; r < ROWS; r++)

a[r][c] = r * c;

 How would you improve the code to reduce stride?

Key Questions for Determining Spatial Locality:

1. What does the memory layout look like for the data?

2. What is the stride of the code across the data?

Why is this code bad?

struct {
float rgb[3];
float hsl[3];

} image[HEIGHT][WIDTH];

for (int v = 0; v < 3; v++)
for (int c = 0; c < WIDTH; c++)

for (int r = 0; r < HEIGHT; r++) {
image[r][c].rgb[v] = 0;
image[r][c].hsl[v] = 0;

}

 How would you improve the code to reduce stride?

Good or bad locality?

 Instruction Flow:
sequencing?

selection?

repetition?

 Searching Algorithms:
linear search

binary search

a

...

row 0 row 1 row 2

image

RGBHSL RGBHSL RGBHSL RGBHSL RGBHSL RGBHSL

row 0 row 1
Col. 0 col 1 col 2 col 0 col 1 col 2

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): L14 - 5

Caching: Basic Idea & Terms

Assume: Memory is divided into 32 byte blocks and all blocks are already in main memory.
Cache L1 has 4 locations to store blocks and L2 has 16 locations to store blocks.

 Update the memory hierarchy below given blocks are accessed in this sequence:
22,11,22,44,11,33,11,22,55,27,44

cache miss

cold miss

capacity miss

conflict miss

cache hit

placement policies

1.

2.

replacement policies

1.

2.

victim block

working set

data = block (32 bytes)

1 2 43 5 6

8

7

9 10 1211 13 14

16

15

L1

L2

Main Memory

17 18 2019 21 22

24

23

25 26 2827 29 30

32

31

33 34 3635 37 38

40

39

41 42 4443 45 46

0

47

data = block (32 bytes)

data = word (4 bytes)

48 49 50 5251 53 54 55

address

CPU

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): L14 - 6

Designing a Cache: Blocks

 The bits of an address

How many bytes in an address space?

Let M

M = 2m

m = log2M

Thus m is

How big is a block?

 Cache blocks must be big enough
but small enough

Let B be

B = 2b

b = log2B

b bits:

word offset

byte offset

 What is the problem with using the most significant bits (left side) for the b bits?

How many 32-byte blocks of memory in a 32-bit address space?

 The remaining bits of an address

bit 31 081624
32-bit Address Breakdown

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): L14 - 7

Rethinking Adressing

 An address identifies

 An address is

Memory Access in Caching System

step 1. Identify which

step 2. Identify which

step 3. Identify which

bit 31 081624
32-bit Address Breakdown

7

6

5

4

3

1

00x800000000

0x800000008

0x800000010

0x800000018

0x800000020

0x8000000B

0x00000000

0xFFFFFFFF

0
1
2

Blocks

Words
in Block

in VAS Bytes
in Word

67108862

67108863

67108864

67108865
3

IA-32 4GB

8 0 0 0 0 0 0 B <- address in hex for a char

1000 0000 0000 0000 0000 0000 0000 1011 1. byte #2147483659 in VAS

1000 0000 0000 0000 0000 0000 000 1. MM and C access

 0 10 2. L1 passes to CPU

 11 3. CPU accesses

Virtual Address Space

2

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): L14 - 8

Designing a Cache: Sets & Tags

 A cache must be searched

 Problem?

Improvement?

set:

 The block number bits of an address

1.

2.

How many sets in the cache?

Let S be

S = 2s

s = log2S

s bits:

 What is the problem with using the most significant bits (left side) for the s bits?

 How many blocks map to each set for a 32-bit AS and a cache with 1024 sets? 8192 sets?

Since different blocks map to the same set
how do we know which block is in a set?

t bits:

 When a block is copied into a cache

b bits

bit 31 081624
32-bit Address Breakdown

b bits

bit 31 081624
32-bit Address Breakdown

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): L14 - 9

Basic Cache Lines

What? A line is

 In our basic cache each cache set

Basic Cache Diagram

 How do you know if a line in the cache is used or not?

 How big is a basic cache given S sets with blocks having B bytes?

BLOCK OF MEMORY (size B = 2b)

SET 0 (s bits)

TAG (t bits)

BLOCK OF MEMORY

SET 1

TAG

BLOCK OF MEMORY

SET S-1 (size S = 2s)

TAG

 . . .

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): L14 - 10

Basic Cache Operation

Basic Cache Diagram

 How big is this basic cache?

How does a cache process a request for a word at a particular address?

1. Set Selection

2. Line Matching

if no match or valid bit is 0

if match and valid bit is 1

BLOCK OF MEMORY (32 bytes = 25)

SET 0

TAG (17 bits)

BLOCK OF MEMORY

SET 1

TAG

BLOCK OF MEMORY

SET 1023 = 210 - 1

TAG

 . . .

V

V

V

bit 31 081624
32-bit Address Breakdown

b bitss bitst bits

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): L14 - 11

Basic Cache Practice

You are given the following 32-bit address
breakdown used by a cache:

 How big are the blocks?

 How many sets?

 How big is this basic cache?

Assume the cache design above is given the following specific address: 0x07515E2B

 Which set should be checked given the address above?

 Which word in the block does the L1 cache access for the address?

 Which byte in the word does the address specify?

Assume address above maps to a set with its line having the following V status and tag.

 Does the address above produce a hit or miss?
V tag

1.) 1 0x0750

2.) 0 0x0750

3.) 1 0x00EA

4.) 0 0x00EA

bit 31 081624
32-bit Address Breakdown

b bitss bitst bits

