
Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 1

CS 354 - Machine Organization & Programming
Tuesday Oct 22, and Thursday Oct 24, F24

Midterm Exam 2 - Thursday November 7th, 7:30 - 9:30 pm

 UW ID required
 #2 pencils required
 closed book, no notes, no electronic devices (e.g., calculators, phones, watches)

see “Midterm Exam 2” on course site Assignments for topics

Project p3B: DUE on or before Friday, Oct 25

Homework hw4: DUE on or before Monday Nov 5th,

Project p4A: DUE on or before Nov 1st,

Project p4AQuestions: DUE on or before Thurs Nov 8th,

Project p4B: DUE on or before Nov 10th,

Learning Objectives

 determine hit or miss given address and cache contents
 determine set number (index) from s-bits
 determine if an address is within a given cache block
 explain the effect of cache configuration on given sequence of address (working set)
 explain difference btw direct mapped, fully associative, and set associative caches
 implement Least Frequently Used replacement policies
 implement Least Recently Used replacement policy
 explain diff btw write-through, write-back, no-write allocate, write allocate caches
 compare cache performance of different cache configurations for working set sequence
 describe the impact of stride and the scales of the memory mountain

This Week

Finish L14 (bring W7 outline)
Direct Mapped Caches - Restrictive
Fully Associative Caches - Unrestrictive
Set Associative Caches - Sweet!
Replacement Policies

Writing to Caches
Cache Performance
Impact of Stride
Memory Mountain
C, Assembly, and Mach Code

Next Week: Assembly Language Instr.
B&O Chapter 3 Intro
3.1 A Historical Perspective
3.2 Program Encodings
3.3 Data Formats

3.4 Accessing Information
3.5 Arithmetic and Logical Control
3.6 Control

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 2

Direct Mapped Caches - Restrictive

Direct Mapped Cache is a cache

 What is the address breakdown if blocks
are 32 bytes and there are 1024 sets?

 Is the cache operation fast O(1) or slow O(S) where S is the number of sets?

 What happens when two different memory blocks map to the same set?

 Appropriate for

bit 31 081624
32-bit Address Breakdown

BLOCK OF MEMORY (size B = 2b, b bits)

SET 0 (s bits)

TAG (t bits)

BLOCK OF MEMORY

SET 2

TAG

BLOCK OF MEMORY

SET S-1 (size S = 2s)

TAG

 . . .

V

V

V

BLOCK OF MEMORY

SET 1

TAGV

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 3

Fully Associative Caches - Unrestrictive

Fully Associative Cache is a cache

 What is the address breakdown if blocks
are 32 bytes and there are 1024 sets?

 Is the cache operation fast O(1) or slow O(E) where E is the number of lines?

 What happens when two different memory blocks map to the same set?

 How many lines should a fully associative cache have?

 Appropriate for

bit 31 081624
32-bit Address Breakdown

LINE 0: BLOCK OF MEMORY (size B = 2b, b bits)TAG (t bits)V

LINE 1: BLOCK OF MEMORYTAGV

LINE E-1: BLOCK OF MEMORYTAGV

 . . .

LINE 2: BLOCK OF MEMORYTAGV

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 4

Set Associative Caches - Sweet!

Set Associative Cache is a cache commonly used today

 What is the address breakdown if blocks
are 32 bytes and there are 1024 sets?

Let E be

E = 4 is

E = 1 is

 C = (S, E, B, m)

Let C be

 How big is a cache given (1024, 4, 32, 32)?

 What happens when E+1 different memory blocks map
to the same set?

bit 31 081624
32-bit Address Breakdown

LINE 0: BLOCK OF MEMORY (size B = 2b, b bits)

SET 0 (s bits)

TAG (t bits)V

LINE 1: BLOCK OF MEMORYTAGV

LINE 2: BLOCK OF MEMORYTAGV

LINE 3: BLOCK OF MEMORYTAGV

LINE 0: BLOCK OF MEMORY

SET S-1 (size S = 2s)

TAGV

LINE 1: BLOCK OF MEMORYTAGV

LINE 2: BLOCK OF MEMORYTAGV

LINE 3: BLOCK OF MEMORYTAGV

LINE 0: BLOCK OF MEMORY

SET 1

TAGV

LINE 1: BLOCK OF MEMORYTAGV

LINE 2: BLOCK OF MEMORYTAGV

LINE 3: BLOCK OF MEMORYTAGV

LINE 0: BLOCK OF MEMORY

SET 2

TAGV

LINE 1: BLOCK OF MEMORYTAGV

LINE 2: BLOCK OF MEMORYTAGV

LINE 3: BLOCK OF MEMORYTAGV

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 5

Replacement Policies

Assume the following sequence of memory blocks

are fetched into the same set of a 4-way associative cache that is initially empty:
b1, b2, b3, b1, b3, b4, b4, b7, b1, b8, b4, b9, b1, b9, b9, b2, b8, b1

1. Random Replacement

 Which of the following four outcomes is possible after the sequence finishes?
Assume the initial placement is random.

 L0 L1 L2 L3
1. b9 b1 b8 b2

2. b1 b2 -- b8

3. b1 b4 b7 b3

4. b1 b2 b8 b1

2. Least Recently Used (LRU)

 What is the outcome after the sequence finishes?
Assume the initial placement is in ascending line order (left to right below).

 L0 L1 L2 L3

3. Least Frequently Used (LFU)

 Which blocks will remain in the cache after the sequence finishes?

 Exploiting replacement policies

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 6

Writing to a Cache

 Reading data copies a block of memory into the cache levels

 Writing data requires that these copies must be kept consistent

Write Hits

occur when writing to a block that IS in this cache

 When should a block be updated in lower memory levels?

1. Write Through:

2. Write Back:

Write Misses

occur when writing to a block that IS NOT in this cache

 Should space be allocated in this cache for the block being changed?

1. No Write Allocate:

2. Write Allocate:

Typical Designs

1. Write Through paired with No Write Allocate

2. Write Back paired with Write Allocate

 Which best exploits locality?

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 7

Cache Performance

Metrics

hit rate

hit time

miss penalty,

Larger Blocks (S and E unchanged)

hit rate

hit time

miss penalty

THEREFORE

More Sets (B and E unchanged)

hit rate

hit time

miss penalty

THEREFORE

More Lines E per Set (B and S unchanged)

hit rate

hit time

miss penalty

THEREFORE

Intel Quad Core i7 Cache (gen 7)

all: 64 byte blocks, use pseudo LRU, write back

L1: 32KB, 4-way Instruction & 32KB 8-way Data, no write allocate
L2: 256KB, 8-way, write allocate
L3: 8MB, 16-way (2MB/Core shared), write allocate

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 8

Impact of Stride

Stride Misses

Example:

int initArray(int a[][8], int rows) {
for (int i = 0; i < rows; i++)

for(int j = 0; j < 8; j++)
a[i][j] = i * j;

}
 Draw a diagram of the memory layout of the first two rows of a:

recall C uses row-major order

Assume: a is aligned with cache blocks
is too big to fit entirely into the cache
words are 4 bytes, block size is 16 bytes
direct-mapped cache is initially empty, write allocate used

 Indicate the order elements are accessed in the table below and mark H for hit or M for miss:

 Now exchange the i and j loops mark the table again:

a[i][j] j = 0 1 2 3 4 5 6 7

i = 0

1

...

a[i][j] j = 0 1 2 3 4 5 6 7

i = 0

1

...

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 9

Memory Mountain

Independent Variables

stride - 1 to 16 double words step size used to scan through array
size - 2K to 64 MB arraysize

Dependent Variable

read throughput - 0 to 7000 MB/s

Temporal Locality Impacts

factor of ~10 between L1 (6000MB/s) and MM (600MB/s)

Spatial Locality Impacts

factor of ~7 from top (4000MB/s) to bottom stride slope (600MB/s)

 Memory access speed is not characterized by a single value. It’s a landscape
that can be exploited through the use of spatial and temporal locality.

Computer Systems, A Programmer’s Perspective
Second Edition, Bryant and O’Hallaron

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 10

C, Assembly, & Machine Code

C Function Assembly (AT&T) Machine (hex)

int accum = 0;
int sum(int x, int y) sum:
{ pushl %ebp 55

movl %esp, %ebp 89 e5
movl 12(%ebp), %eax 8b 45 0C

int t = x + y; addl 8(%ebp), %eax 03 45 08
accum += t; addl %eax, accum 01 05 ?? ?? ?? ??
return t; popl %ebp 5D

} ret C3

C

 is HLL (high level language) that enable us to be more productive coders

 helps us write correct code with syntax and type checking

 can be compiled and run on different architectures (portable)

 What aspects of the machine does C hide from us?
low-level machine details

Assembly (ASM)

 is human readable representation of MC

 is very machine dependent

 What ISA (Instruction Set Architecture) are we studying?

 What does assembly remove from C source? HLL constructs

 Why Learn Assembly?
1. better understand the stack
2. identify code inefficiencies and vulnerabilities
3. understand compiler optimization options

Machine Code (MC) is

 elementary cpu instructions and data in binary (typically generated by assembler)

 the unique encodings that a particular machine understands and can execute

 How many bytes long is an IA-32 instructions? 1 - 15 bytes

