
Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 1

CS 354 - Machine Organization & Programming
Tuesday Oct 22, and Thursday Oct 24, F24

Midterm Exam 2 - Thursday November 7th, 7:30 - 9:30 pm

 UW ID required
 #2 pencils required
 closed book, no notes, no electronic devices (e.g., calculators, phones, watches)

see “Midterm Exam 2” on course site Assignments for topics

Project p3B: DUE on or before Friday, Oct 25

Homework hw4: DUE on or before Monday Nov 5th,

Project p4A: DUE on or before Nov 1st,

Project p4AQuestions: DUE on or before Thurs Nov 8th,

Project p4B: DUE on or before Nov 10th,

Learning Objectives

 determine hit or miss given address and cache contents
 determine set number (index) from s-bits
 determine if an address is within a given cache block
 explain the effect of cache configuration on given sequence of address (working set)
 explain difference btw direct mapped, fully associative, and set associative caches
 implement Least Frequently Used replacement policies
 implement Least Recently Used replacement policy
 explain diff btw write-through, write-back, no-write allocate, write allocate caches
 compare cache performance of different cache configurations for working set sequence
 describe the impact of stride and the scales of the memory mountain

This Week

Finish L14 (bring W7 outline)
Direct Mapped Caches - Restrictive
Fully Associative Caches - Unrestrictive
Set Associative Caches - Sweet!
Replacement Policies

Writing to Caches
Cache Performance
Impact of Stride
Memory Mountain
C, Assembly, and Mach Code

Next Week: Assembly Language Instr.
B&O Chapter 3 Intro
3.1 A Historical Perspective
3.2 Program Encodings
3.3 Data Formats

3.4 Accessing Information
3.5 Arithmetic and Logical Control
3.6 Control

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 2

Direct Mapped Caches - Restrictive

Direct Mapped Cache is a cache

 What is the address breakdown if blocks
are 32 bytes and there are 1024 sets?

 Is the cache operation fast O(1) or slow O(S) where S is the number of sets?

 What happens when two different memory blocks map to the same set?

 Appropriate for

bit 31 081624
32-bit Address Breakdown

BLOCK OF MEMORY (size B = 2b, b bits)

SET 0 (s bits)

TAG (t bits)

BLOCK OF MEMORY

SET 2

TAG

BLOCK OF MEMORY

SET S-1 (size S = 2s)

TAG

 . . .

V

V

V

BLOCK OF MEMORY

SET 1

TAGV

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 3

Fully Associative Caches - Unrestrictive

Fully Associative Cache is a cache

 What is the address breakdown if blocks
are 32 bytes and there are 1024 sets?

 Is the cache operation fast O(1) or slow O(E) where E is the number of lines?

 What happens when two different memory blocks map to the same set?

 How many lines should a fully associative cache have?

 Appropriate for

bit 31 081624
32-bit Address Breakdown

LINE 0: BLOCK OF MEMORY (size B = 2b, b bits)TAG (t bits)V

LINE 1: BLOCK OF MEMORYTAGV

LINE E-1: BLOCK OF MEMORYTAGV

 . . .

LINE 2: BLOCK OF MEMORYTAGV

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 4

Set Associative Caches - Sweet!

Set Associative Cache is a cache commonly used today

 What is the address breakdown if blocks
are 32 bytes and there are 1024 sets?

Let E be

E = 4 is

E = 1 is

 C = (S, E, B, m)

Let C be

 How big is a cache given (1024, 4, 32, 32)?

 What happens when E+1 different memory blocks map
to the same set?

bit 31 081624
32-bit Address Breakdown

LINE 0: BLOCK OF MEMORY (size B = 2b, b bits)

SET 0 (s bits)

TAG (t bits)V

LINE 1: BLOCK OF MEMORYTAGV

LINE 2: BLOCK OF MEMORYTAGV

LINE 3: BLOCK OF MEMORYTAGV

LINE 0: BLOCK OF MEMORY

SET S-1 (size S = 2s)

TAGV

LINE 1: BLOCK OF MEMORYTAGV

LINE 2: BLOCK OF MEMORYTAGV

LINE 3: BLOCK OF MEMORYTAGV

LINE 0: BLOCK OF MEMORY

SET 1

TAGV

LINE 1: BLOCK OF MEMORYTAGV

LINE 2: BLOCK OF MEMORYTAGV

LINE 3: BLOCK OF MEMORYTAGV

LINE 0: BLOCK OF MEMORY

SET 2

TAGV

LINE 1: BLOCK OF MEMORYTAGV

LINE 2: BLOCK OF MEMORYTAGV

LINE 3: BLOCK OF MEMORYTAGV

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 5

Replacement Policies

Assume the following sequence of memory blocks

are fetched into the same set of a 4-way associative cache that is initially empty:
b1, b2, b3, b1, b3, b4, b4, b7, b1, b8, b4, b9, b1, b9, b9, b2, b8, b1

1. Random Replacement

 Which of the following four outcomes is possible after the sequence finishes?
Assume the initial placement is random.

 L0 L1 L2 L3
1. b9 b1 b8 b2

2. b1 b2 -- b8

3. b1 b4 b7 b3

4. b1 b2 b8 b1

2. Least Recently Used (LRU)

 What is the outcome after the sequence finishes?
Assume the initial placement is in ascending line order (left to right below).

 L0 L1 L2 L3

3. Least Frequently Used (LFU)

 Which blocks will remain in the cache after the sequence finishes?

 Exploiting replacement policies

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 6

Writing to a Cache

 Reading data copies a block of memory into the cache levels

 Writing data requires that these copies must be kept consistent

Write Hits

occur when writing to a block that IS in this cache

 When should a block be updated in lower memory levels?

1. Write Through:

2. Write Back:

Write Misses

occur when writing to a block that IS NOT in this cache

 Should space be allocated in this cache for the block being changed?

1. No Write Allocate:

2. Write Allocate:

Typical Designs

1. Write Through paired with No Write Allocate

2. Write Back paired with Write Allocate

 Which best exploits locality?

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 7

Cache Performance

Metrics

hit rate

hit time

miss penalty,

Larger Blocks (S and E unchanged)

hit rate

hit time

miss penalty

THEREFORE

More Sets (B and E unchanged)

hit rate

hit time

miss penalty

THEREFORE

More Lines E per Set (B and S unchanged)

hit rate

hit time

miss penalty

THEREFORE

Intel Quad Core i7 Cache (gen 7)

all: 64 byte blocks, use pseudo LRU, write back

L1: 32KB, 4-way Instruction & 32KB 8-way Data, no write allocate
L2: 256KB, 8-way, write allocate
L3: 8MB, 16-way (2MB/Core shared), write allocate

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 8

Impact of Stride

Stride Misses

Example:

int initArray(int a[][8], int rows) {
for (int i = 0; i < rows; i++)

for(int j = 0; j < 8; j++)
a[i][j] = i * j;

}
 Draw a diagram of the memory layout of the first two rows of a:

recall C uses row-major order

Assume: a is aligned with cache blocks
is too big to fit entirely into the cache
words are 4 bytes, block size is 16 bytes
direct-mapped cache is initially empty, write allocate used

 Indicate the order elements are accessed in the table below and mark H for hit or M for miss:

 Now exchange the i and j loops mark the table again:

a[i][j] j = 0 1 2 3 4 5 6 7

i = 0

1

...

a[i][j] j = 0 1 2 3 4 5 6 7

i = 0

1

...

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 9

Memory Mountain

Independent Variables

stride - 1 to 16 double words step size used to scan through array
size - 2K to 64 MB arraysize

Dependent Variable

read throughput - 0 to 7000 MB/s

Temporal Locality Impacts

factor of ~10 between L1 (6000MB/s) and MM (600MB/s)

Spatial Locality Impacts

factor of ~7 from top (4000MB/s) to bottom stride slope (600MB/s)

 Memory access speed is not characterized by a single value. It’s a landscape
that can be exploited through the use of spatial and temporal locality.

Computer Systems, A Programmer’s Perspective
Second Edition, Bryant and O’Hallaron

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W08, L15-16 - 10

C, Assembly, & Machine Code

C Function Assembly (AT&T) Machine (hex)

int accum = 0;
int sum(int x, int y) sum:
{ pushl %ebp 55

movl %esp, %ebp 89 e5
movl 12(%ebp), %eax 8b 45 0C

int t = x + y; addl 8(%ebp), %eax 03 45 08
accum += t; addl %eax, accum 01 05 ?? ?? ?? ??
return t; popl %ebp 5D

} ret C3

C

 is HLL (high level language) that enable us to be more productive coders

 helps us write correct code with syntax and type checking

 can be compiled and run on different architectures (portable)

 What aspects of the machine does C hide from us?
low-level machine details

Assembly (ASM)

 is human readable representation of MC

 is very machine dependent

 What ISA (Instruction Set Architecture) are we studying?

 What does assembly remove from C source? HLL constructs

 Why Learn Assembly?
1. better understand the stack
2. identify code inefficiencies and vulnerabilities
3. understand compiler optimization options

Machine Code (MC) is

 elementary cpu instructions and data in binary (typically generated by assembler)

 the unique encodings that a particular machine understands and can execute

 How many bytes long is an IA-32 instructions? 1 - 15 bytes

