
Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 1

CS 354 - Machine Organization & Programming
Tuesday Nov 12, Thursday Nov 14, 2024

Exam Results expected by Friday Nov 15

Homework hw5DUE Monday 11/11 Homework hw6: DUE on or before Monday 11/18

Homework hw7: DUE on or before Monday 11/25

Project p5: DUE on or before _______________

Learning Objectives

 able to trace function call and its stack frame
 able to access parameters and local variables based on location from %ebp and %esp
 able to trace recursive function calls through their stack frame
 identify and describe effects of ASM call, ret, leave instructions
 able to access 1D array element using ASM instructions and memory operand types
 able to access multidimensional array via ASM instructions and memory operand types
 describe, compute, and use alignment requirements of elements in structs and unions
 understand the difference and use of structs and unions in C.

This Week

Function Call-Return Example (from W10)
Recursion
Stack Allocated Arrays in C
Stack Allocated Arrays in Assembly
Stack Allocated Multidimensional Arrays

Stack Allocated Structs
Alignment
Alignment Practice
Unions

Next Week: Pointers in Assembly, Stack Smashing, and Exceptions
B&O 3.10 Putting it Together: Understanding Pointers
3.12 Out-of-Bounds Memory References and Buffer Overflow

8.1 Exceptions
8.2 Processes
8.3 System Call Error Handling
8.4 Process Control through p719

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 2

Recursion

Use a stack trace to determine the result
of the call fact(3):

int fact(int n) {
int result;
if (n <= 1) result = 1;
else result = n * fact(n - 1);
return result;

}

direct recursion

recursive case

base case

“infinite” recursion

Assembly Trace

fact:
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $4,%esp

movl 8(%ebp),%ebx
movl $1,%eax

cmpl $1,%ebx
jle .L1

leal -1(%ebx),%eax
movl %eax,(%esp)
call fact

imull %ebx,%eax

.L1:
addl $4,%esp
popl %ebx
popl %ebp
ret

 “Infinite” recursion causes

 When tracing functions in assembly code

Stack bottom

1st fact’s arg = 3

main’s return addr

main

1st
fact

2nd
fact

3rd
fact

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 3

Stack Allocated Arrays in C

Recall Array Basics

T A[N]; where T is the element datatype of size L bytes
and N is the number of elements

1.

2.

 The elements of A

Recall Array Indexing and Address Arithmetic

&A[i]

 For each array declarations below, what is L (element size), the address arithmetic for
the ith element, and the total size of the array?

C code L address of ith element total array size

1. int I[11]

2. char C[7]

3. double D[11]

4. short S[42]

5. char *C[13]

6. int **I[11]

7. double *D[7]

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 4

Stack Allocated Arrays in Assembly

Arrays on the Stack

 How is an array laid out on the stack? Option 1 or 2:

 The first element (index 0) of an array

Accessing 1D Arrays in Assembly

Assume array’s start address in %edx and index is in %ecx

movl (%edx, %ecx, 4), %eax

 Assume I is an int array, S is a short int array, for both the array’s start address
is in %edx, and the index i is in %ecx. Determine the element type and instruction for each:

C code type assembly instruction to move C code’s value into %eax

1. I

2. I[0]

3. *I

4. I[i]

5. &I[2]

6. I+i-1

7. *(I+i-3)

8. S[3]

9. S+1

10. &S[i]

11. S[4*i+1]

12. S+i-5

higher addresses

earlier frames

 1. 2.
 A[0] A[N-1]
 A[1] ...
 ... A[1]
 A[N-1] A[0]

Stack Top

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 5

Stack Allocated Multidimensional Arrays

Recall 2D Array Basics

T A[R][C]; where T is the element datatype of size L bytes,
 R is the number of rows and C is the number of columns

 Recall that 2D arrays are stored on the stack

int A[5][3]; typedef int row_t[3];
row_t A[5];

Accessing 2D Arrays in Assembly

&A[i][j]

Given array A as declared above, if xA in %eax, i in %ecx, j in %edx
then A[i][j] in assembly is:

leal (%ecx, %ecx, 2), %ecx

sall $2, %edx

addl %eax, %edx

movl (%edx, %ecx, 4), %eax

Compiler Optimizations

 If only accessing part of array

 If taking a fixed stride through the array

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 6

Stack Allocated Structures

Structures on the Stack

struct iCell {
int x;
int y;
int c[3];
int *v;

};

 How is a structure laid out on the stack? Option 1 or 2:

The compiler




 The first data member of a structure

Accessing Structures in Assembly

Given:
struct iCell ic = //assume ic is initialized

void function(iCell *ip) {

 Assume ic is at the top of the stack, %edx stores ip and %esi stores i.
Determine for each the assembly instruction to move the C code’s value into %eax:

C code assembly

1. ic.v

2. ic.c[i]

3. ip->x

4. ip->y

5. &ip->c[i]

 Assembly code to access a structure

higher addresses

earlier frames

 1. 2.
 v x
 c[2] y
 c[1] c[0]
 c[0] c[1]
 y c[2]
 x v

Stack Top

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 7

Alignment

What?

Why?

Example: Assume cpu reads 8 byte words
 f is a misaligned float

Restrictions

Linux: short
int, float, pointer, double

Windows: same as Linux except
double

Implications

Structure Example

struct s1 {
int i;
char c;
int j;

};

 The total size of a structure

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 8

Alignment Practice

 For each structure below, complete the memory layout
and determine the total bytes allocated.

1) struct sA {
int i;
int j;
char c;

};

2) struct sB {
char a;
char b;
char c;

};

3) struct sC {
char c;
short s;
int i;
char d;

};

4) struct sD {
short s;
int i;
char c;

};

5) struct sE {
int i;
short s;
char c;

};

 The order that a structure’s data members are listed

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 9

Unions

What? A union is





Why?







How?

struct s { union u {
char c; char c;
int i[2]; int i[2];
double d; double d;

}; };

Example

typedef union {
unsigned char cntrlrByte;
struct {

unsigned char playbutn : 1;
unsigned char pausebutn : 1;
unsigned char ctrlbutn : 1;
unsigned char fire1butn : 1;
unsigned char fire2butn : 1;
unsigned char direction : 3;

} bits;
} CntrlrReg;

