
Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 1

CS 354 - Machine Organization & Programming
Tuesday Nov 12, Thursday Nov 14, 2024

Exam Results expected by Friday Nov 15

Homework hw5DUE Monday 11/11 Homework hw6: DUE on or before Monday 11/18

Homework hw7: DUE on or before Monday 11/25

Project p5: DUE on or before _______________

Learning Objectives

 able to trace function call and its stack frame
 able to access parameters and local variables based on location from %ebp and %esp
 able to trace recursive function calls through their stack frame
 identify and describe effects of ASM call, ret, leave instructions
 able to access 1D array element using ASM instructions and memory operand types
 able to access multidimensional array via ASM instructions and memory operand types
 describe, compute, and use alignment requirements of elements in structs and unions
 understand the difference and use of structs and unions in C.

This Week

Function Call-Return Example (from W10)
Recursion
Stack Allocated Arrays in C
Stack Allocated Arrays in Assembly
Stack Allocated Multidimensional Arrays

Stack Allocated Structs
Alignment
Alignment Practice
Unions

Next Week: Pointers in Assembly, Stack Smashing, and Exceptions
B&O 3.10 Putting it Together: Understanding Pointers
3.12 Out-of-Bounds Memory References and Buffer Overflow

8.1 Exceptions
8.2 Processes
8.3 System Call Error Handling
8.4 Process Control through p719

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 2

Recursion

Use a stack trace to determine the result
of the call fact(3):

int fact(int n) {
int result;
if (n <= 1) result = 1;
else result = n * fact(n - 1);
return result;

}

direct recursion

recursive case

base case

“infinite” recursion

Assembly Trace

fact:
pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $4,%esp

movl 8(%ebp),%ebx
movl $1,%eax

cmpl $1,%ebx
jle .L1

leal -1(%ebx),%eax
movl %eax,(%esp)
call fact

imull %ebx,%eax

.L1:
addl $4,%esp
popl %ebx
popl %ebp
ret

 “Infinite” recursion causes

 When tracing functions in assembly code

Stack bottom

1st fact’s arg = 3

main’s return addr

main

1st
fact

2nd
fact

3rd
fact

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 3

Stack Allocated Arrays in C

Recall Array Basics

T A[N]; where T is the element datatype of size L bytes
and N is the number of elements

1.

2.

 The elements of A

Recall Array Indexing and Address Arithmetic

&A[i]

 For each array declarations below, what is L (element size), the address arithmetic for
the ith element, and the total size of the array?

C code L address of ith element total array size

1. int I[11]

2. char C[7]

3. double D[11]

4. short S[42]

5. char *C[13]

6. int **I[11]

7. double *D[7]

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 4

Stack Allocated Arrays in Assembly

Arrays on the Stack

 How is an array laid out on the stack? Option 1 or 2:

 The first element (index 0) of an array

Accessing 1D Arrays in Assembly

Assume array’s start address in %edx and index is in %ecx

movl (%edx, %ecx, 4), %eax

 Assume I is an int array, S is a short int array, for both the array’s start address
is in %edx, and the index i is in %ecx. Determine the element type and instruction for each:

C code type assembly instruction to move C code’s value into %eax

1. I

2. I[0]

3. *I

4. I[i]

5. &I[2]

6. I+i-1

7. *(I+i-3)

8. S[3]

9. S+1

10. &S[i]

11. S[4*i+1]

12. S+i-5

higher addresses

earlier frames

 1. 2.
 A[0] A[N-1]
 A[1] ...
 ... A[1]
 A[N-1] A[0]

Stack Top

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 5

Stack Allocated Multidimensional Arrays

Recall 2D Array Basics

T A[R][C]; where T is the element datatype of size L bytes,
 R is the number of rows and C is the number of columns

 Recall that 2D arrays are stored on the stack

int A[5][3]; typedef int row_t[3];
row_t A[5];

Accessing 2D Arrays in Assembly

&A[i][j]

Given array A as declared above, if xA in %eax, i in %ecx, j in %edx
then A[i][j] in assembly is:

leal (%ecx, %ecx, 2), %ecx

sall $2, %edx

addl %eax, %edx

movl (%edx, %ecx, 4), %eax

Compiler Optimizations

 If only accessing part of array

 If taking a fixed stride through the array

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 6

Stack Allocated Structures

Structures on the Stack

struct iCell {
int x;
int y;
int c[3];
int *v;

};

 How is a structure laid out on the stack? Option 1 or 2:

The compiler

 The first data member of a structure

Accessing Structures in Assembly

Given:
struct iCell ic = //assume ic is initialized

void function(iCell *ip) {

 Assume ic is at the top of the stack, %edx stores ip and %esi stores i.
Determine for each the assembly instruction to move the C code’s value into %eax:

C code assembly

1. ic.v

2. ic.c[i]

3. ip->x

4. ip->y

5. &ip->c[i]

 Assembly code to access a structure

higher addresses

earlier frames

 1. 2.
 v x
 c[2] y
 c[1] c[0]
 c[0] c[1]
 y c[2]
 x v

Stack Top

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 7

Alignment

What?

Why?

Example: Assume cpu reads 8 byte words
 f is a misaligned float

Restrictions

Linux: short
int, float, pointer, double

Windows: same as Linux except
double

Implications

Structure Example

struct s1 {
int i;
char c;
int j;

};

 The total size of a structure

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 8

Alignment Practice

 For each structure below, complete the memory layout
and determine the total bytes allocated.

1) struct sA {
int i;
int j;
char c;

};

2) struct sB {
char a;
char b;
char c;

};

3) struct sC {
char c;
short s;
int i;
char d;

};

4) struct sD {
short s;
int i;
char c;

};

5) struct sE {
int i;
short s;
char c;

};

 The order that a structure’s data members are listed

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 9

Unions

What? A union is

Why?

How?

struct s { union u {
char c; char c;
int i[2]; int i[2];
double d; double d;

}; };

Example

typedef union {
unsigned char cntrlrByte;
struct {

unsigned char playbutn : 1;
unsigned char pausebutn : 1;
unsigned char ctrlbutn : 1;
unsigned char fire1butn : 1;
unsigned char fire2butn : 1;
unsigned char direction : 3;

} bits;
} CntrlrReg;

