CS 354 - Machine Organization & Programming
Tuesday Nov 12, Thursday Nov 14, 2024

Exam Results expected by Friday Nov 15

Homework hwSDUE Monday 11/11 Homework hw6: DUE on or before Monday 11/18
Homework hw7: DUE on or before Monday 11/25

Project p5: DUE on or before

Learning Objectives

¢ able to trace function call and its stack frame

able to access parameters and local variables based on location from %ebp and %esp
able to trace recursive function calls through their stack frame

identify and describe effects of ASM call, ret, leave instructions

able to access 1D array element using ASM instructions and memory operand types
able to access multidimensional array via ASM instructions and memory operand types
describe, compute, and use alignment requirements of elements in structs and unions
understand the difference and use of structs and unions in C.

® 6 6 6 6 o o

This Week

Function Call-Return Example (from W10) Stack Allocated Structs
Recursion Alignment

Stack Allocated Arrays in C Alignment Practice
Stack Allocated Arrays in Assembly Unions

Stack Allocated Multidimensional Arrays

Next Week: Pointers in Assembly, Stack Smashing, and Exceptions
B&O 3.10 Putting it Together: Understanding Pointers
3.12 Out-of-Bounds Memory References and Buffer Overflow

8.1 Exceptions

8.2 Processes

8.3 System Call Error Handling
8.4 Process Control through p719

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 1

Recursion

Use a stack trace to determine the result
of the call fact (3):

int fact(int n) {
int result;
if (n <= 1) result = 1;
else result = n * fact(n - 1);
return result;

}

direct recursion

recursive case

base case

“infinite” recursion

Assembly Trace Stack bottom

fact:
pushl %ebp 1st fact’sarg=3
movl %esp, %ebp
pushl %ebx
subl $4, %esp

main

main’s return addr

movl 8 (%ebp), $ebx 1st
movl $1,%eax fact

cmpl $1, %ebx
jle .L1

leal -1 (%ebx), %eax 2nd
movl %eax, (sesp)
call fact

fact

imull %ebx, $eax

.L1:
addl $4,%esp
popl S%ebx
popl %ebp
ret

3rd
fact

¥ “Infinite” recursion causes

% When tracing functions in assembly code

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 2

Stack Allocated Arrays in C

Recall Array Basics

T A[N]; where T is the element datatype of size L bytes
and N is the number of elements

#% The elements of A

Recall Array Indexing and Address Arithmetic

&A[1]

—> For each array declarations below, what is L (element size), the address arithmetic for
the ith element, and the total size of the array?

C code L address of ith element total array size
int I[11]

char C[7]

double DJ[11]

short S[42]

char *C[13]

int **I[11]

N o o s~ e Ddhd =

double *D[7]

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 3

Stack Allocated Arrays in Assembly

Arrays on the Stack higher addresses

—> How is an array laid out on the stack? Option 1 or 2: carlier frames
1. 2
s The first element (index 0) of an array ALO] A[N-1]
Al1] ..
.. Al1]
A[N-1] A[0]
Accessing 1D Arrays in Assembly Stack Top

Assume array’s start address in %edx and index is in %ecx

movl (%edx, %ecx, 4), %eax

- Assume I is an int array, S is a short int array, for both the array’s start address
is in %edx, and the index i is in %ecx. Determine the element type and instruction for each:

C code type assembly instruction to move C code’s value into %eax

© N o 0o K~ w0 Ddhd =
°g}
H
S

I+i-1
* (I+1i-3)
S[3]
9. s+1
10. &S[1]
11. S[4*1i+1]
12. S+i-5

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 4

Stack Allocated Multidimensional Arrays
Recall 2D Array Basics

T A[R] [C]; where T is the element datatype of size L bytes,
R is the number of rows and C is the number of columns

% Recall that 2D arrays are stored on the stack

int A[5][3]; typedef int row t[3];
row_t A[5];

Accessing 2D Arrays in Assembly

&A[1][]]

Given array A as declared above, if xp in %eax, iin %ecx, j in %edx
thenA[i] [j] in assembly is:

leal (%ecx, %ecx, 2), %ecx
sall $2, %edx
addl %eax, %edx

movl (%edx, %ecx, 4), %eax

Compiler Optimizations

¢ If only accessing part of array

+ |f taking a fixed stride through the array

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 -5

Stack Allocated Structures

Structures on the Stack higher addresses
Strpct iCell { earlier frames
int x;
int vy;
int c[3]; 1. 2.
int *v; v *
}s cl[2] y
. . . cl1] [0]
- How is a structure laid out on the stack? Option 1 or 2: c[0] (1]
. v cl[2]
The compiler X v
¢ Stack Top

#* The first data member of a structure

Accessing Structures in Assembly

Given:
struct iCell ic = //assume ic is initialized

void function (iCell *ip) {

- Assume ic is at the top of the stack, %edx stores ip and %esi stores i.
Determine for each the assembly instruction to move the C code’s value into %eax:

C code assembly

1. ic.v
2. 1c.c[1]
3. ip->x
4. ip->y

5. &ip->c[i]

% Assembly code to access a structure

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 6

Alignment

What?

Why?

Example: Assume cpu reads 8 byte words
fis a misaligned float

Restrictions

Linux: short
int, float, pointer, double

Windows: same as Linux except
double

Implications

Structure Example

struct sl {
int 1i;

char c¢;

int 7j;

}i

#% The total size of a structure

Copyright © 2016-2024 Jim Skrentny

CS 354 (F24): W11 L21,22 - 7

Alignment Practice

—> For each structure below, complete the memory layout
and determine the total bytes allocated.

1) struct sA {
int 1i;
int 3j;
char c;

}i

2) struct sB {
char a;
char b;
char c¢;

}i

3) struct sC {
char c¢;
short s;
int 1i;
char d;

}s

4) struct sD {
short s;
int 1i;
char c¢;

}i

5) struct sE {
int 1i;
short s;
char c¢;

}s

% The order that a structure’s data members are listed

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 - 8

Unions

What? A union is

.
.
Why?
.
.
.
How?
struct s { union u {
char c¢; char c¢;
int 1[2]; int 1[2];
double d; double d;
}i }i
Example

typedef union {
unsigned char cntrlrByte;
struct {
unsigned char playbutn
unsigned char pausebutn
unsigned char ctrlbutn
unsigned char firelbutn
unsigned char fireZbutn
unsigned char direction
} bits;
} CntrlrReg;

Ne N

~e ¢ N

R
~

~e

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W11 L21,22 -9

