
Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 1

CS 354 - Machine Organization & Programming
Tuesday November 19, Thursday Nov 21, 2024

Thanksgiving Break is next week: TA Consulting, Peer Mentoring end at 4pm on Wednesday
Nov 27 and resume Monday Nov 30th.

Deb will still have regular schedule of office hours, Mon&Wed Thanksgiving week.

Homework hw6: DUE on or before Monday Nov 20

Homework hw7: DUE on or before Monday Dec 2

Project p5: DUE on or before Wednesday Nov 27 (do before Fri Nov 22)

Project p6: Assigned soon and Due on last day of classes, Wed Dec 11.

Learning Objectives

 Understand when and how to use function pointers for selecting which function at runtime
 Identify when buffer overflow occurs and be able to eliminate the chance for buffer overflow
 Identify exceptional control flow in C programs
 Understand the default behavior and to define new behaviors for exceptional events
 Trace the control flow that occurs when an exception occurs.
 Name and describe four categories of Exceptions in C.

This Week Next Week

Finish W12 outline
Function Pointers
Buffer Overflow & Stack Smashing
Flow of Execution
Exceptional Events
Kinds of ExceptionsTransferring Control via
Exception Table
THANKSGIVING BREAK

Exceptions/System Calls in IA-32 & Linux
Processes and Context
User/Kernel Modes
Context Switch
Context Switch Example

Next Week: Signals, and multifile coding, Linking and Symbols
B&O 8.5 Signals Intro, 8.5.1 Signal Terminology
8.5.2 Sending Signals
8.5.3 Receiving Signals
8.5.4 Signal Handling Issues, p.745

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 2

Pointers

Recall Pointer Basics in C

int i = 11;
int *iptr = &i;
*iptr = 22;

pointer type int *

pointer value 0x2A300F87, 0x00000000 (NULL)

address of &i

dereferencing *iptr

Recall Casting in C

int *p = malloc(sizeof(int) * 11);

... (char *)p + 2

 Casting changes

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 3

Function Pointers

What? A function pointer

Why?

enables functions to be

How?

int func(int x) { ...}

int (*fptr)(int);

fptr = func;

int x = fptr(11);

Example

#include <stdio.h>

void add (int x, int y) { printf("%d + %d = %d\n", x, y, x+y); }
void subtract(int x, int y) { printf("%d - %d = %d\n", x, y, x-y); }
void multiply(int x, int y) { printf("%d * %d = %d\n", x, y, x*y); }

int main() {
 void (*fptr_arr[])(int, int) = {add, subtract, multiply};
 unsigned int choice;
 int i = 22, j = 11; //user should input

 printf("Enter: [0-add, 1-subtract, 2-multiply]\n");
 scanf("%d", &choice);
 if (choice > 2) return -1;
 fptr_arr[choice](i, j);
 return 0;
}

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 4

Buffer Overflow & Stack Smashing

Bounds Checking

int a[5] = {1,2,3,4,5};
printf("%d", a[11]);

 What happens when you execute the code?

 The lack of bounds checking array accesses

Buffer Overflow

void echo() {
char bufr[8];
gets(bufr);
puts(bufr);

}

 Buffer overflow can overwrite

 It can also overwrite

Stack Smashing

1. Get “exploit code” in

2. Get “exploit code” to run

3. Cover your tracks

 In 1988 the Morris Worm

Stack bottom
other frames

...

caller’s frame

...

return address

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 5

Flow of Execution

What?

control transfer

control flow

 What control structure results in a smooth flow of execution?

 What control structures result in abrupt changes in the flow of execution?

Exceptional Control Flow

logical control flow

exceptional control flow

event

processor state

Some Uses of Exceptions

process

OS

hardware

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 6

Exceptional Events

What? An exception

 What’s the difference between an asychronous vs. a synchronous exception?

asynchronous

synchronous

General Exceptional Control Flow

Application Exception Handler
0. normal flow I0

I1

1.

2.

3.

4.

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 7

Kinds of Exceptions

 Which describes a Trap? Abort? Interrupt? Fault?

1.

signal from external device
asynchronous
returns to Inext

How? Generally:
1.

2.

3. transfer control to appropriate exception handler

4. transfer control back to interrupted process’s next instruction

vs. polling

2.

intentional exception
synchronous
returns to Inext

How? Generally:
1.

int

2. transfer control to the OS system call handler

3. transfer control back to process’s next instruction

3.

potentially recoverable error
synchronous
might return to Icurr and re-execute it

4.

nonrecoverable fatal errors
synchronous
doesn’t retur

