CS 354 - Machine Organization & Programming
Tuesday November 19, Thursday Nov 21, 2024

Thanksgiving Break is next week: TA Consulting, Peer Mentoring end at 4pm on Wednesday
Nov 27 and resume Monday Nov 30th.

Deb will still have regular schedule of office hours, Mon&Wed Thanksgiving week.

Homework hw6: DUE on or before Monday Nov 20

Homework hw7: DUE on or before Monday Dec 2

Project p5: DUE on or before Wednesday Nov 27 (do before Fri Nov 22)
Project p6: Assigned soon and Due on last day of classes, Wed Dec 11.

Learning Objectives

¢ Understand when and how to use function pointers for selecting which function at runtime
+ Identify when buffer overflow occurs and be able to eliminate the chance for buffer overflow
¢ Identify exceptional control flow in C programs
¢ Understand the default behavior and to define new behaviors for exceptional events
* Trace the control flow that occurs when an exception occurs.
* Name and describe four categories of Exceptions in C.
This Week Next Week
Finish W12 outline Exceptions/System Calls in IA-32 & Linux
Function Pointers Processes and Context
Buffer Overflow & Stack Smashing User/Kernel Modes
Flow of Execution Context Switch
Exceptional Events Context Switch Example
Kinds of ExceptionsTransferring Control via
Exception Table
THANKSGIVING BREAK

Next Week: Signals, and multifile coding, Linking and Symbols
B&O 8.5 Signals Intro, 8.5.1 Signal Terminology

8.5.2 Sending Signals

8.5.3 Receiving Signals

8.5.4 Signal Handling Issues, p.745

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 1

Pointers

Recall Pointer Basics in C

int 1 = 11;

int *iptr = &i;
*iptr = 22;
pointer type int *

pointer value 0x2A300F87, 0x00000000 (NULL)

address of &1

dereferencing *iptr

Recall Casting in C
int *p = malloc(sizeof (int) * 11);

(char *)p + 2

% Casting changes

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 2

Function Pointers

What? A function pointer

*
*
Why?
enables functions to be

*

How?

int func(int x) { ...}

int (*fptr) (int);

fptr = func;
int x = fptr(11);

Example

#include <stdio.h>

void add (int x, int y) { printf("%d + %d
void subtract(int x, int y) { printf("%d - %d
void multiply(int x, int y) { printf("%d * %d

%d\n", x, y, x+y); }
%$d\n", x, y, x-vy); }
%d\n", x, y, x*y); }

int main() {
void (*fptr arr[]) (int, int) = {add, subtract, multiply};
unsigned int choice;
int i = 22, j = 11; //user should input

printf ("Enter: [0-add, l-subtract, 2-multiply]\n");
scanf ("%$d", &choice);

if (choice > 2) return -1;

fptr arr[choice] (i, J);

return 0;

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 3

Buffer Overflow & Stack Smashing

Bounds Checking

int a[5] = {1,2,3,4,5};
printf ("sd", al[ll]);

- What happens when you execute the code?

% The lack of bounds checking array accesses

Buffer Overflow

*

*

void echo () {
char bufr[8];
gets (bufr) ;
puts (bufr) ;

¥ Buffer overflow can overwrite

¥ It can also overwrite

Stack Smashing

1. Get “exploit code” in

2. Get “exploit code” to run

3. Cover your tracks

#* In 1988 the Morris Worm

Copyright © 2016-2024 Jim Skrentny

Stack bottom

other frames

caller’s frame

return address

CS 354 (F24): W12 L23,24 - 4

Flow of Execution

What?

control transfer

control flow

> What control structure results in a smooth flow of execution?

» What control structures result in abrupt changes in the flow of execution?

Exceptional Control Flow

logical control flow

exceptional control flow

processor state

Some Uses of Exceptions

process

0S

hardware
X

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 -5

Exceptional Events

What? An exception

*

- What's the difference between an asychronous vs. a synchronous exception?

asynchronous

synchronous

General Exceptional Control Flow
Application Exception Handler

0. normal flow lo
l4

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 6

Kinds of Exceptions

- Which describes a Trap? Abort? Interrupt? Fault?

signal from external device
asynchronous
returns to Inext

How? Generally:
1.

2.

3. transfer control to appropriate exception handler

4. transfer control back to interrupted process’s next instruction

vs. polling

intentional exception
synchronous
returns to Inext

How? Generally:
1.

int

2. transfer control to the OS system call handler

3. transfer control back to process’s next instruction

potentially recoverable error
synchronous
might return to Icurr and re-execute it

nonrecoverable fatal errors
synchronous
doesn’t retur

Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W12 L23,24 - 7

