
Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W14 L26,L27 - 1

CS 354 - Machine Organization & Programming
Tuesday Dec 3rd, and Thursday Dec 5, 2024

Course Evaluations: https://aefis.wisc.edu Course: CS354 Instructor: DEPPELER|MAHMOOD

Homework hw8: DUE on or before Monday December 9 

Homework hw9: DUE on or before Wednesday December 11 

Project p6: Due on or before last day of classes Wednesday December 11. NOTE: There is no 
LATE day or OOPS point available for p6. All work must be submitted before 11:59 pm 
Dec 11th.  Please complete p6 this week as all support is very busy last week of classes. 

Learning Objectives

 able to describe how multiple signals are received “handled”
 able to describe purpose and how to use forward declarations
 able to explain difference between declaration and definition in resolving symbols
 know how to declare variable without defining and when and why; reserved word  “extern”
 be able to code and compile a project across multiple source files, use make and Makefile
 able to create, read, and interpret a Relocatable Object File, ROFs
 name and describe sections of object files
 understand and describe static linking of multiple files into a single Executable Object File
 understand and describe how compiler resolves symbols across multiple source files

This Week

Issues with Multiple Signals
Forward Declaration
Multifile Coding
Multifile Compilation
Makefiles

Relocatable Object Files
Static Linking
Linker Symbols
Linker Symbol Table
Symbol Resolution

Next Week:
Resolving Globals
Symbol Relocation
Executable Object File
Loader
What’s next? 
     take OS cs537 as soon as possible
     and Compilers cs536, too!

Read:
B&O 7.1 Compiler Drivers
7.2 Static Linking
7.3 Object Files
7.4 Relocatable Object Files
7.5 Symbols and Symbols Tables
7.6 Symbol Resolution
7.7 Relocation



Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W14 L26,L27 - 2

Issues with Multiple Signals

What? Multiple signals of the same type as well as those of different types

can be sent during same period that other signals are sent
and even while a signal handler is running.

Some Issues

 Can a signal handler be interrupted by other signals?YES, but...
Linux signals of the same type as running signal handler don’t interrupt.
Instead, they become pending.

 Block any signals you don’t want to interrupt your handler:

sigemptyset(&sa.sa_mask); //blocks all signals
sigfillset(&sa.sa_mask); //enables all signals
sigaddset/sigdelset/sigismember(&sa.sa_mask, signum)

 Can a system call be interrupted by a signal?YES for

slow system calls potentially take a long time, e.g., read()-scanf / write() - printf

 Such system calls return immediately with an error condition

sa.sa_flags = SA_RESTART;
NOTE: sleep() CANNOT be restarted

 Does the system queue multiple standard signals of the same type for a process?NO
Bit vector can’t keep a count of duplicates.
Instead they’re ignored.

 Your signal handler shouldn’t assume that a signal was sent only once.

Real-time Signals

Linux has 33 additional application defined signals.

 They can include an integer or pointer in their message.

 Multiple signals of same type are queued in order delivered.

 Multiple signals of different types are received from low to high signal number



Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W14 L26,L27 - 3

Forward Declaration

What? Forward declaration

tells the compiler about certain attributes of an identifer before it is fully defined

 Recall, C requires that an identifier be declared before it is used.

Why?

 one pass compiler (gcc) can then ensure the identifier exists and is correctly used

 large programs can be divided into separate functional units

that can be independently compiled

 mutual recursion is possible

Declaration vs. Definition

declaringtells the compiler about

variables:

functions:

definingprovides the full details

variables:

functions:

 Variable declarations usually both declare and define.

void f(){
int i = 11;
static int j;

 A variable proceeded with 



Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W14 L26,L27 - 4

Multifile Coding

What? 

divide programs into functional units, each coded with its own header file and source file

Header File (filename.h) - “public” interface

contains things you intend to sharemainly function declarations

recall heapAlloc.h from project p3:
#ifndef __heapAlloc_h__
#define __heapAlloc_h__

int   initHeap(int sizeOfRegion);
void* allocHeap(int size);
int   freeHeap(void *ptr);
void  dumpMem();

#endif // __heapAlloc_h__

 An identifier can be defined only once in the global scope. ODR

#include guard: prevents multiple inclusion of same header file

Source File (filename.c) - ”private” implementation

Must include definitions of things declared in its header file.

recall heapAlloc.c from project p3:
#include <unistd.h>
. . .
#include "heapAlloc.h"

typedef struct blockHeader {
int size_status;

} blockHeader;

blockHeader *heapStart = NULL;

void* allocHeap(int size) { . . . }
int   freeHeap(void *ptr) { . . . }
int   initHeap(int sizeOfRegion) { . . . }
void  dumpMem() {. . . }



Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W14 L26,L27 - 5

Multifile Compilation

gcc Compiler Driver

 directs all the tools needed to BUILD an executable from source code

Filename   ->   build step           tool name        description of work or result
main preprocessorremoves comments, does pp directives

main compilertranslates C to ASM

main assemblertranslates ASM to MC (ROF)

main linkercombines R/SOF’s into EOF

mainthe EOF

Object Files

contain binary code and binary data in ELF

relocatable object file (ROF) produced by 

executable object file (EOF) produced by  

shared object file (SOF) produced by 

Compiling All at Once (gcc does it all to create EOF)

gcc align.c heapAlloc.c  -o align      produces EOF named align

Compile Separately (gcc builds individual ROF)

gcc -c align.cproduces align.oROF

gcc -c heapAlloc.cproduces heapAlloc.o ROF

gcc align.o heapAlloc.o -o alignproduces align EOF

 Compiling separately is more efficient and easier to manage.



Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W14 L26,L27 - 6

Makefiles

What? Makefiles are

 text files named m/Makefile that have rules

 used with “make” command

Why?

 convenience - specifies how to build a program

 efficiency - only builds what’s necessary using rules and file dates

Rules have target (name), dependencies (files), instructions (commands) in this form:

<target>: <files the target depends on>
<tab><command(s) for making target>

Example

#simplified p3 Makefile
align: align.o heapAlloc.oRule 1: how to make align EOF

gcc align.o heapAlloc.o -o align
align.o: align.cRule 2: how to make align.o ROF

gcc -c align.c
heapAlloc.o: heapAlloc.c heapAlloc.hRule 3: how to make heapAlloc.o ROF

gcc -c heapAlloc.c
clean:Rule 4: delete OFs to allow build EOF from scrtch

rm *.o
rm align

Using

$ls
align.c  Makefile  heapAlloc.c  heapAlloc.h  
$make
gcc -c align.c
gcc -c heapAlloc.c
gcc align.o heapAlloc.o -o align
$ls
align  align.c  align.o  Makefile  heapAlloc.c  heapAlloc.h  heapAlloc.o
$rm heapAlloc.o
rm: remove regular file 'heapAlloc.o'? y
$make
gcc -c heapAlloc.c
gcc align.o heapAlloc.o -o align
$make heapAlloc.o
make: 'heapAlloc.o' is up to date.
$make clean
rm *.o
rm align
$ls
align.c Makefile heapAlloc.c heapAlloc.h



Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W14 L26,L27 - 7

Relocatable Object Files (ROFs)

What? A relocatable object file is (aka object file)

 a file with “.o” extension containing object code - the binary instructions and data

 in a format that the linker can easily combined with other ROFs

Executable and Linkable Format (ELF)

Object file format used by Linux [layouts vary by OS]

ELF Header
contains general info:

ELF header size, object file type (ROF,SOF,EOF),
offset to SHT, size of SHT and num entriesin SHT

also contains arch info:
word size, byte ordering, machine type

Section Header Table (SHT)
contains location and size of each section in the object file

ELF Header

.text

.rodata

.data

.bss

.symtab

.rel.text

.rel.data

.debug

.line

.strtab

Section Header Table

.text/.rodata/.data/.bss all start at address 0x0 

machine code
Read Only data = string literals, switch jump tables
init to non-0 global and static local vars
uninit global and static local vars ONLY A PLACE HOLDER
linker symbol table - global vars & extern funcs

if gcc -g then debug sym tab + locals & typedefs
                      maps src with machine code
table of names used in ROF



Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W14 L26,L27 - 8

Static Linking

What? Static linking

generates a complete EOF with no var or func identifiers remaining in the OF

static vs. dynamic

executable size:

library code:

How?

Note: All language translation has already been done (cc and as).

Need only to combine R/SOFs into an EOF.

 What issues arise from combining ROFs?

1. variable and function identifiers need to be checked for having exactly one definition ODR

2. variable and function identifiers need to be replaced with their addresses

Making Things Private

 Are functions and global variables only in a source file actually private
if they’re not in the correspondng header file?

 How do you make them truly private?



Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W14 L26,L27 - 9

Linker Symbols

What?

Symbols are identifiers used for variables and functions in a source code

Linker Symbols are symbols managed by the linker

 Which kinds of variables need linker symbols?

those that are allocated in the data segment

1. local variables

2. static local variables

3. parameter variables

4. global variables

5. static global variables

6. extern global variables

 Which kinds of functions need linker symbols?

ALL functions for relocation, likely all for resolution

1. extern functions

2. non-static functions

3. static functions



Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W14 L26,L27 - 10

Linker Symbol Table

What? The linker symbol table is

 built by assembler using symbols exported by compiler

 represented as an array are Elf_Symbol structures

ELF_Symbol Data Members and their Use

Example

Num: Value Size Type Bind Ot Ndx Name
1 - 7 not shown
8: 0 4 OBJECT GLOBAL 0 3 bufp0
9: 0 0 NOTYPE GLOBAL 0 UND buf
10: 0 39 FUNC GLOBAL 0 1 swap
11: 4 4 OBJECT GLOBAL 0 COM bufp1

 Is bufp0 initialized?Yes - section is Ndx 3 its data OBJECT in .data

 Was buf defined in the source file or declared extern?extern - section is UND

 What is the function’s name? swap - type is FUNC, section is Ndx 1

 What is the alignment and size of bufp1?4 byte alignment and 4 byte min size
 



Copyright © 2016-2024 Jim Skrentny CS 354 (F24): W14 L26,L27 - 11

Symbol Resolution

What? Symbol resolution

 checks ODR

 work is divided between the compiler and the linker

Compiler’s Resolution Work

resolves local symbols in one source file at a time

 locals checks ODR

static locals also ensures each has a unique name for the linker

 globals leaves for linker to resolve

static globals can check ODR since private to this source file

 If a global symbol is only declared in this source file the compiler
assumes it’s defined in another source file.

Linker’s Resolution Work

resolves global symbols across multiple OFs (source files)

 static locals - linker doesn’t resolve

 globals - checks ODR - only one definition in all R/SOFs

 If a global symbol is not defined or is multiply defined it is a Linker error


